More Info
Private Name Tags
ContractCreator
TokenTracker
Latest 25 from a total of 3,345 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Approve | 70083520 | 13 days ago | IN | 0 POL | 0.00080058 | ||||
Approve | 70083517 | 13 days ago | IN | 0 POL | 0.00080058 | ||||
Approve | 69526225 | 27 days ago | IN | 0 POL | 0.00166753 | ||||
Approve | 69526220 | 27 days ago | IN | 0 POL | 0.00170138 | ||||
Approve | 69321586 | 32 days ago | IN | 0 POL | 0.0014691 | ||||
Claim Fees | 69318923 | 32 days ago | IN | 0 POL | 0.00346056 | ||||
Approve | 69089754 | 38 days ago | IN | 0 POL | 0.00080058 | ||||
Approve | 68508557 | 52 days ago | IN | 0 POL | 0.00075033 | ||||
Approve | 68447369 | 54 days ago | IN | 0 POL | 0.00089434 | ||||
Approve | 68279993 | 58 days ago | IN | 0 POL | 0.00087126 | ||||
Approve | 68279781 | 58 days ago | IN | 0 POL | 0.00084709 | ||||
Approve | 68210959 | 60 days ago | IN | 0 POL | 0.00161404 | ||||
Approve | 68210959 | 60 days ago | IN | 0 POL | 0.00161404 | ||||
Approve | 67772584 | 71 days ago | IN | 0 POL | 0.00073775 | ||||
Approve | 67772574 | 71 days ago | IN | 0 POL | 0.00073788 | ||||
Approve | 67771852 | 71 days ago | IN | 0 POL | 0.00073859 | ||||
Approve | 67771849 | 71 days ago | IN | 0 POL | 0.00073868 | ||||
Approve | 66678135 | 99 days ago | IN | 0 POL | 0.00090724 | ||||
Approve | 66678121 | 99 days ago | IN | 0 POL | 0.00091351 | ||||
Approve | 66678108 | 99 days ago | IN | 0 POL | 0.00089483 | ||||
Approve | 66678098 | 99 days ago | IN | 0 POL | 0.0008811 | ||||
Approve | 66678089 | 99 days ago | IN | 0 POL | 0.00088178 | ||||
Approve | 65709406 | 123 days ago | IN | 0 POL | 0.01516704 | ||||
Approve | 65647634 | 125 days ago | IN | 0 POL | 0.00259491 | ||||
Approve | 65474743 | 129 days ago | IN | 0 POL | 0.00177343 |
Latest 2 internal transactions
Parent Transaction Hash | Block | From | To | |||
---|---|---|---|---|---|---|
45789195 | 630 days ago | Contract Creation | 0 POL | |||
45789195 | 630 days ago | Contract Creation | 0 POL |
Loading...
Loading
Minimal Proxy Contract for 0x0afaa3501861fa72f6b4fecfa6f6bdab7bee6b9d
Contract Name:
Pair
Compiler Version
v0.8.18+commit.87f61d96
Optimization Enabled:
Yes with 1000 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "@openzeppelin/contracts/proxy/Clones.sol"; import "@openzeppelin/contracts/proxy/utils/Initializable.sol"; import "@openzeppelin/contracts/security/Pausable.sol"; import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; import "@openzeppelin/contracts/utils/math/Math.sol"; import "contracts/interfaces/IPair.sol"; import "contracts/interfaces/IPairCallee.sol"; import "contracts/interfaces/IPairFactory.sol"; import "contracts/PairFees.sol"; // The base pair of pools, either stable or volatile contract Pair is IPair, Initializable { string public name; string public symbol; uint8 public constant decimals = 18; bool public stable; uint256 public totalSupply; mapping(address => mapping(address => uint256)) public allowance; mapping(address => uint256) public balanceOf; bytes32 internal DOMAIN_SEPARATOR; // keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"); bytes32 internal constant PERMIT_TYPEHASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9; mapping(address => uint256) public nonces; uint256 internal constant MINIMUM_LIQUIDITY = 10 ** 3; address public token0; address public token1; address public fees; address factory; // Structure to capture time period obervations every 30 minutes, used for local oracles struct Observation { uint256 timestamp; uint256 reserve0Cumulative; uint256 reserve1Cumulative; } // Capture oracle reading every 30 minutes uint256 constant periodSize = 1800; Observation[] public observations; uint256 internal decimals0; uint256 internal decimals1; uint256 public reserve0; uint256 public reserve1; uint256 public blockTimestampLast; uint256 public reserve0CumulativeLast; uint256 public reserve1CumulativeLast; // index0 and index1 are used to accumulate fees, this is split out from normal trades to keep the swap "clean" // this further allows LP holders to easily claim fees for tokens they have/staked uint256 public index0; uint256 public index1; // position assigned to each LP to track their current index0 & index1 vs the global position mapping(address => uint256) public supplyIndex0; mapping(address => uint256) public supplyIndex1; // tracks the amount of unclaimed, but claimable tokens off of fees for token0 and token1 mapping(address => uint256) public claimable0; mapping(address => uint256) public claimable1; event Fees(address indexed sender, uint256 amount0, uint256 amount1); event Mint(address indexed sender, uint256 amount0, uint256 amount1); event Burn(address indexed sender, uint256 amount0, uint256 amount1, address indexed to); event Swap(address indexed sender, uint256 amount0In, uint256 amount1In, uint256 amount0Out, uint256 amount1Out, address indexed to); event Sync(uint256 reserve0, uint256 reserve1); event Claim(address indexed sender, address indexed recipient, uint256 amount0, uint256 amount1); event Transfer(address indexed from, address indexed to, uint256 amount); event Approval(address indexed owner, address indexed spender, uint256 amount); function initialize(address _token0, address _token1, bool _stable) external initializer { factory = msg.sender; (token0, token1, stable) = (_token0, _token1, _stable); fees = address(new PairFees(_token0, _token1)); if (_stable) { name = string(abi.encodePacked("StableV1 AMM - ", IERC20Metadata(_token0).symbol(), "/", IERC20Metadata(_token1).symbol())); symbol = string(abi.encodePacked("sAMM-", IERC20Metadata(_token0).symbol(), "/", IERC20Metadata(_token1).symbol())); } else { name = string(abi.encodePacked("VolatileV1 AMM - ", IERC20Metadata(_token0).symbol(), "/", IERC20Metadata(_token1).symbol())); symbol = string(abi.encodePacked("vAMM-", IERC20Metadata(_token0).symbol(), "/", IERC20Metadata(_token1).symbol())); } decimals0 = 10 ** IERC20Metadata(_token0).decimals(); decimals1 = 10 ** IERC20Metadata(_token1).decimals(); observations.push(Observation(block.timestamp, 0, 0)); _unlocked = 1; } // simple re-entrancy check uint256 internal _unlocked; modifier lock() { require(_unlocked == 1); _unlocked = 2; _; _unlocked = 1; } function observationLength() external view returns (uint256) { return observations.length; } function lastObservation() public view returns (Observation memory) { return observations[observations.length - 1]; } function metadata() external view returns (uint256 dec0, uint256 dec1, uint256 r0, uint256 r1, bool st, address t0, address t1) { return (decimals0, decimals1, reserve0, reserve1, stable, token0, token1); } function tokens() external view returns (address, address) { return (token0, token1); } // claim accumulated but unclaimed fees (viewable via claimable0 and claimable1) function claimFees() external returns (uint256 claimed0, uint256 claimed1) { _updateFor(msg.sender); claimed0 = claimable0[msg.sender]; claimed1 = claimable1[msg.sender]; if (claimed0 != 0 || claimed1 != 0) { claimable0[msg.sender] = 0; claimable1[msg.sender] = 0; PairFees(fees).claimFeesFor(msg.sender, claimed0, claimed1); emit Claim(msg.sender, msg.sender, claimed0, claimed1); } } // Accrue fees on token0 and token1 function _updateFees(uint256 amount0, uint256 amount1) internal { if (amount0 != 0) { _safeTransfer(token0, fees, amount0); // transfer the fees out to PairFees uint256 _ratio = (amount0 * 1e18) / totalSupply; // 1e18 adjustment is removed during claim if (_ratio != 0) { index0 += _ratio; } } if (amount1 != 0) { _safeTransfer(token1, fees, amount1); // transfer the fees out to PairFees uint256 _ratio = (amount1 * 1e18) / totalSupply; // 1e18 adjustment is removed during claim if (_ratio != 0) { index1 += _ratio; } } if (amount0 != 0 || amount1 != 0) { PairFees(fees).notifyFeeAmounts(amount0, amount1); emit Fees(msg.sender, amount0, amount1); } } // this function MUST be called on any balance changes, otherwise can be used to infinitely claim fees // Fees are segregated from core funds, so fees can never put liquidity at risk function _updateFor(address recipient) internal { uint256 _supplied = balanceOf[recipient]; // get LP balance of `recipient` if (_supplied != 0) { uint256 _supplyIndex0 = supplyIndex0[recipient]; // get last adjusted index0 for recipient uint256 _supplyIndex1 = supplyIndex1[recipient]; uint256 _index0 = index0; // get global index0 for accumulated fees uint256 _index1 = index1; supplyIndex0[recipient] = _index0; // update user current position to global position supplyIndex1[recipient] = _index1; uint256 _delta0 = _index0 - _supplyIndex0; // see if there is any difference that need to be accrued uint256 _delta1 = _index1 - _supplyIndex1; if (_delta0 != 0) { uint256 _share = (_supplied * _delta0) / 1e18; // add accrued difference for each supplied token claimable0[recipient] += _share; } if (_delta1 != 0) { uint256 _share = (_supplied * _delta1) / 1e18; claimable1[recipient] += _share; } } else { supplyIndex0[recipient] = index0; // new users are set to the default global state supplyIndex1[recipient] = index1; } } function getReserves() public view returns (uint256 _reserve0, uint256 _reserve1, uint256 _blockTimestampLast) { _reserve0 = reserve0; _reserve1 = reserve1; _blockTimestampLast = blockTimestampLast; } // update reserves and, on the first call per block, price accumulators function _update(uint256 balance0, uint256 balance1, uint256 _reserve0, uint256 _reserve1) internal { uint256 blockTimestamp = block.timestamp; uint256 timeElapsed = blockTimestamp - blockTimestampLast; // overflow is desired if (timeElapsed != 0 && _reserve0 != 0 && _reserve1 != 0) { reserve0CumulativeLast += _reserve0 * timeElapsed; reserve1CumulativeLast += _reserve1 * timeElapsed; } Observation memory _point = lastObservation(); timeElapsed = blockTimestamp - _point.timestamp; // compare the last observation with current timestamp, if greater than 30 minutes, record a new event if (timeElapsed > periodSize) { observations.push(Observation(blockTimestamp, reserve0CumulativeLast, reserve1CumulativeLast)); } reserve0 = balance0; reserve1 = balance1; blockTimestampLast = blockTimestamp; emit Sync(reserve0, reserve1); } // produces the cumulative price using counterfactuals to save gas and avoid a call to sync. function currentCumulativePrices() public view returns (uint256 reserve0Cumulative, uint256 reserve1Cumulative, uint256 blockTimestamp) { blockTimestamp = block.timestamp; reserve0Cumulative = reserve0CumulativeLast; reserve1Cumulative = reserve1CumulativeLast; // if time has elapsed since the last update on the pair, mock the accumulated price values (uint256 _reserve0, uint256 _reserve1, uint256 _blockTimestampLast) = getReserves(); if (_blockTimestampLast != blockTimestamp) { // subtraction overflow is desired uint256 timeElapsed = blockTimestamp - _blockTimestampLast; reserve0Cumulative += _reserve0 * timeElapsed; reserve1Cumulative += _reserve1 * timeElapsed; } } // gives the current twap price measured from amountIn * tokenIn gives amountOut function current(address tokenIn, uint256 amountIn) external view returns (uint256 amountOut) { Observation memory _observation = lastObservation(); (uint256 reserve0Cumulative, uint256 reserve1Cumulative, ) = currentCumulativePrices(); if (block.timestamp == _observation.timestamp) { _observation = observations[observations.length - 2]; } uint256 timeElapsed = block.timestamp - _observation.timestamp; uint256 _reserve0 = (reserve0Cumulative - _observation.reserve0Cumulative) / timeElapsed; uint256 _reserve1 = (reserve1Cumulative - _observation.reserve1Cumulative) / timeElapsed; amountOut = _getAmountOut(amountIn, tokenIn, _reserve0, _reserve1); } // as per `current`, however allows user configured granularity, up to the full window size function quote(address tokenIn, uint256 amountIn, uint256 granularity) external view returns (uint256 amountOut) { uint256[] memory _prices = sample(tokenIn, amountIn, granularity, 1); uint256 priceAverageCumulative; for (uint256 i = _prices.length; i != 0; ) { unchecked { --i; } priceAverageCumulative += _prices[i]; } return priceAverageCumulative / granularity; } // returns a memory set of twap prices function prices(address tokenIn, uint256 amountIn, uint256 points) external view returns (uint256[] memory) { return sample(tokenIn, amountIn, points, 1); } function sample(address tokenIn, uint256 amountIn, uint256 points, uint256 window) public view returns (uint256[] memory) { uint256[] memory _prices = new uint256[](points); uint256 length = observations.length - 1; uint256 nextIndex; uint256 index = 0; for (uint256 i = length - (points * window); i < length; ) { unchecked { nextIndex = i + window; } uint256 timeElapsed = observations[nextIndex].timestamp - observations[i].timestamp; uint256 _reserve0 = (observations[nextIndex].reserve0Cumulative - observations[i].reserve0Cumulative) / timeElapsed; uint256 _reserve1 = (observations[nextIndex].reserve1Cumulative - observations[i].reserve1Cumulative) / timeElapsed; _prices[index] = _getAmountOut(amountIn, tokenIn, _reserve0, _reserve1); // index < length; length cannot overflow unchecked { ++index; } i = nextIndex; } return _prices; } // this low-level function should be called by addLiquidity functions in Router.sol, which performs important safety checks // standard uniswap v2 implementation function mint(address to) external lock returns (uint256 liquidity) { (uint256 _reserve0, uint256 _reserve1) = (reserve0, reserve1); uint256 _balance0 = IERC20(token0).balanceOf(address(this)); uint256 _balance1 = IERC20(token1).balanceOf(address(this)); uint256 _amount0 = _balance0 - _reserve0; uint256 _amount1 = _balance1 - _reserve1; uint256 _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee if (_totalSupply == 0) { liquidity = Math.sqrt(_amount0 * _amount1) - MINIMUM_LIQUIDITY; _mint(address(0), MINIMUM_LIQUIDITY); // permanently lock the first MINIMUM_LIQUIDITY tokens } else { liquidity = Math.min((_amount0 * _totalSupply) / _reserve0, (_amount1 * _totalSupply) / _reserve1); } require(liquidity != 0, "ILM"); // Pair: INSUFFICIENT_LIQUIDITY_MINTED _mint(to, liquidity); _update(_balance0, _balance1, _reserve0, _reserve1); emit Mint(msg.sender, _amount0, _amount1); } // this low-level function should be called from a contract which performs important safety checks // standard uniswap v2 implementation function burn(address to) external lock returns (uint256 amount0, uint256 amount1) { (uint256 _reserve0, uint256 _reserve1) = (reserve0, reserve1); (address _token0, address _token1) = (token0, token1); uint256 _balance0 = IERC20(_token0).balanceOf(address(this)); uint256 _balance1 = IERC20(_token1).balanceOf(address(this)); uint256 _liquidity = balanceOf[address(this)]; uint256 _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee amount0 = (_liquidity * _balance0) / _totalSupply; // using balances ensures pro-rata distribution amount1 = (_liquidity * _balance1) / _totalSupply; // using balances ensures pro-rata distribution require(amount0 != 0 && amount1 != 0, "ILB"); // Pair: INSUFFICIENT_LIQUIDITY_BURNED _burn(address(this), _liquidity); _safeTransfer(_token0, to, amount0); _safeTransfer(_token1, to, amount1); _balance0 = IERC20(_token0).balanceOf(address(this)); _balance1 = IERC20(_token1).balanceOf(address(this)); _update(_balance0, _balance1, _reserve0, _reserve1); emit Burn(msg.sender, amount0, amount1, to); } // this low-level function should be called from a contract which performs important safety checks function swap(uint256 amount0Out, uint256 amount1Out, address to, bytes calldata data) external lock { require(!Pausable(factory).paused()); require(amount0Out != 0 || amount1Out != 0, "IOA"); // Pair: INSUFFICIENT_OUTPUT_AMOUNT (uint256 _reserve0, uint256 _reserve1) = (reserve0, reserve1); require(amount0Out < _reserve0 && amount1Out < _reserve1, "IL"); // Pair: INSUFFICIENT_LIQUIDITY uint256 _balance0; uint256 _balance1; { // scope for _token{0,1}, avoids stack too deep errors (address _token0, address _token1) = (token0, token1); require(to != _token0 && to != _token1, "IT"); // Pair: INVALID_TO if (amount0Out != 0) _safeTransfer(_token0, to, amount0Out); // optimistically transfer tokens if (amount1Out != 0) _safeTransfer(_token1, to, amount1Out); // optimistically transfer tokens if (data.length != 0) IPairCallee(to).hook(msg.sender, amount0Out, amount1Out, data); // callback, used for flash loans _balance0 = IERC20(_token0).balanceOf(address(this)); _balance1 = IERC20(_token1).balanceOf(address(this)); } uint256 amount0In = _balance0 > _reserve0 - amount0Out ? _balance0 - (_reserve0 - amount0Out) : 0; uint256 amount1In = _balance1 > _reserve1 - amount1Out ? _balance1 - (_reserve1 - amount1Out) : 0; require(amount0In != 0 || amount1In != 0, "IIA"); // Pair: INSUFFICIENT_INPUT_AMOUNT { // scope for reserve{0,1}Adjusted, avoids stack too deep errors (address _token0, address _token1) = (token0, token1); _updateFees( IPairFactory(factory).getFeeAmount(stable, amount0In, msg.sender), IPairFactory(factory).getFeeAmount(stable, amount1In, msg.sender) ); // accrue fees for token0 and token1 and move them out of pool _balance0 = IERC20(_token0).balanceOf(address(this)); // since we removed tokens, we need to reconfirm balances, can also simply use previous balance - amountIn/ 10000, but doing balanceOf again as safety check _balance1 = IERC20(_token1).balanceOf(address(this)); // The curve, either x3y+y3x for stable pools, or x*y for volatile pools require(_k(_balance0, _balance1) >= _k(_reserve0, _reserve1), "K"); // Pair: K } _update(_balance0, _balance1, _reserve0, _reserve1); emit Swap(msg.sender, amount0In, amount1In, amount0Out, amount1Out, to); } // force balances to match reserves function skim(address to) external lock { (address _token0, address _token1) = (token0, token1); _safeTransfer(_token0, to, IERC20(_token0).balanceOf(address(this)) - (reserve0)); _safeTransfer(_token1, to, IERC20(_token1).balanceOf(address(this)) - (reserve1)); } // force reserves to match balances function sync() external lock { _update(IERC20(token0).balanceOf(address(this)), IERC20(token1).balanceOf(address(this)), reserve0, reserve1); } function _f(uint256 x0, uint256 y) internal pure returns (uint256) { return (x0 * ((((y * y) / 1e18) * y) / 1e18)) / 1e18 + (((((x0 * x0) / 1e18) * x0) / 1e18) * y) / 1e18; } function _d(uint256 x0, uint256 y) internal pure returns (uint256) { return (3 * x0 * ((y * y) / 1e18)) / 1e18 + ((((x0 * x0) / 1e18) * x0) / 1e18); } function _get_y(uint256 x0, uint256 xy, uint256 y) internal pure returns (uint256) { for (uint256 i = 255; i != 0; ) { uint256 y_prev = y; uint256 k = _f(x0, y); if (k < xy) { uint256 dy = ((xy - k) * 1e18) / _d(x0, y); y = y + dy; } else { uint256 dy = ((k - xy) * 1e18) / _d(x0, y); y = y - dy; } if (y > y_prev) { if (y - y_prev <= 1) { return y; } } else { if (y_prev - y <= 1) { return y; } } unchecked { --i; } } return y; } function getAmountOut(uint256 amountIn, address tokenIn) external view returns (uint256) { (uint256 _reserve0, uint256 _reserve1) = (reserve0, reserve1); amountIn -= IPairFactory(factory).getFeeAmount(stable, amountIn, msg.sender); // remove fee from amount received return _getAmountOut(amountIn, tokenIn, _reserve0, _reserve1); } function _getAmountOut(uint256 amountIn, address tokenIn, uint256 _reserve0, uint256 _reserve1) internal view returns (uint256) { if (stable) { uint256 xy = _k(_reserve0, _reserve1); _reserve0 = (_reserve0 * 1e18) / decimals0; _reserve1 = (_reserve1 * 1e18) / decimals1; (uint256 reserveA, uint256 reserveB) = tokenIn == token0 ? (_reserve0, _reserve1) : (_reserve1, _reserve0); amountIn = tokenIn == token0 ? (amountIn * 1e18) / decimals0 : (amountIn * 1e18) / decimals1; uint256 y = reserveB - _get_y(amountIn + reserveA, xy, reserveB); return (y * (tokenIn == token0 ? decimals1 : decimals0)) / 1e18; } else { (uint256 reserveA, uint256 reserveB) = tokenIn == token0 ? (_reserve0, _reserve1) : (_reserve1, _reserve0); return (amountIn * reserveB) / (reserveA + amountIn); } } function _k(uint256 x, uint256 y) internal view returns (uint256) { if (stable) { uint256 _x = (x * 1e18) / decimals0; uint256 _y = (y * 1e18) / decimals1; uint256 _a = (_x * _y) / 1e18; uint256 _b = ((_x * _x) / 1e18 + (_y * _y) / 1e18); return (_a * _b) / 1e18; // x3y+y3x >= k } else { return x * y; // xy >= k } } function _mint(address dst, uint256 amount) internal { _updateFor(dst); // balances must be updated on mint/burn/transfer totalSupply += amount; balanceOf[dst] += amount; emit Transfer(address(0), dst, amount); } function _burn(address dst, uint256 amount) internal { _updateFor(dst); totalSupply -= amount; balanceOf[dst] -= amount; emit Transfer(dst, address(0), amount); } function approve(address spender, uint256 amount) external returns (bool) { allowance[msg.sender][spender] = amount; emit Approval(msg.sender, spender, amount); return true; } function permit(address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) external { require(deadline >= block.timestamp, "Pair: EXPIRED"); DOMAIN_SEPARATOR = keccak256( abi.encode( keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"), keccak256(bytes(name)), keccak256(bytes("1")), block.chainid, address(this) ) ); bytes32 digest = keccak256( abi.encodePacked( "\x19\x01", DOMAIN_SEPARATOR, keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, nonces[owner]++, deadline)) ) ); address recoveredAddress = ecrecover(digest, v, r, s); require(recoveredAddress != address(0) && recoveredAddress == owner, "Pair: INVALID_SIGNATURE"); allowance[owner][spender] = value; emit Approval(owner, spender, value); } function transfer(address dst, uint256 amount) external returns (bool) { _transferTokens(msg.sender, dst, amount); return true; } function transferFrom(address src, address dst, uint256 amount) external returns (bool) { address spender = msg.sender; uint256 spenderAllowance = allowance[src][spender]; if (spender != src && spenderAllowance != type(uint256).max) { uint256 newAllowance = spenderAllowance - amount; allowance[src][spender] = newAllowance; emit Approval(src, spender, newAllowance); } _transferTokens(src, dst, amount); return true; } function _transferTokens(address src, address dst, uint256 amount) internal { _updateFor(src); // update fee position for src _updateFor(dst); // update fee position for dst balanceOf[src] -= amount; balanceOf[dst] += amount; emit Transfer(src, dst, amount); } function _safeTransfer(address token, address to, uint256 value) internal { if (value != 0) { require(token.code.length > 0); (bool success, bytes memory data) = token.call(abi.encodeWithSelector(IERC20.transfer.selector, to, value)); require(success && (data.length == 0 || abi.decode(data, (bool)))); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (proxy/Clones.sol) pragma solidity ^0.8.0; /** * @dev https://eips.ethereum.org/EIPS/eip-1167[EIP 1167] is a standard for * deploying minimal proxy contracts, also known as "clones". * * > To simply and cheaply clone contract functionality in an immutable way, this standard specifies * > a minimal bytecode implementation that delegates all calls to a known, fixed address. * * The library includes functions to deploy a proxy using either `create` (traditional deployment) or `create2` * (salted deterministic deployment). It also includes functions to predict the addresses of clones deployed using the * deterministic method. * * _Available since v3.4._ */ library Clones { /** * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`. * * This function uses the create opcode, which should never revert. */ function clone(address implementation) internal returns (address instance) { /// @solidity memory-safe-assembly assembly { // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes // of the `implementation` address with the bytecode before the address. mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000)) // Packs the remaining 17 bytes of `implementation` with the bytecode after the address. mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3)) instance := create(0, 0x09, 0x37) } require(instance != address(0), "ERC1167: create failed"); } /** * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`. * * This function uses the create2 opcode and a `salt` to deterministically deploy * the clone. Using the same `implementation` and `salt` multiple time will revert, since * the clones cannot be deployed twice at the same address. */ function cloneDeterministic(address implementation, bytes32 salt) internal returns (address instance) { /// @solidity memory-safe-assembly assembly { // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes // of the `implementation` address with the bytecode before the address. mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000)) // Packs the remaining 17 bytes of `implementation` with the bytecode after the address. mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3)) instance := create2(0, 0x09, 0x37, salt) } require(instance != address(0), "ERC1167: create2 failed"); } /** * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}. */ function predictDeterministicAddress( address implementation, bytes32 salt, address deployer ) internal pure returns (address predicted) { /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) mstore(add(ptr, 0x38), deployer) mstore(add(ptr, 0x24), 0x5af43d82803e903d91602b57fd5bf3ff) mstore(add(ptr, 0x14), implementation) mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73) mstore(add(ptr, 0x58), salt) mstore(add(ptr, 0x78), keccak256(add(ptr, 0x0c), 0x37)) predicted := keccak256(add(ptr, 0x43), 0x55) } } /** * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}. */ function predictDeterministicAddress( address implementation, bytes32 salt ) internal view returns (address predicted) { return predictDeterministicAddress(implementation, salt, address(this)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/Address.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ```solidity * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a * constructor. * * Emits an {Initialized} event. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: setting the version to 255 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized != type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint8) { return _initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _initializing; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which allows children to implement an emergency stop * mechanism that can be triggered by an authorized account. * * This module is used through inheritance. It will make available the * modifiers `whenNotPaused` and `whenPaused`, which can be applied to * the functions of your contract. Note that they will not be pausable by * simply including this module, only once the modifiers are put in place. */ abstract contract Pausable is Context { /** * @dev Emitted when the pause is triggered by `account`. */ event Paused(address account); /** * @dev Emitted when the pause is lifted by `account`. */ event Unpaused(address account); bool private _paused; /** * @dev Initializes the contract in unpaused state. */ constructor() { _paused = false; } /** * @dev Modifier to make a function callable only when the contract is not paused. * * Requirements: * * - The contract must not be paused. */ modifier whenNotPaused() { _requireNotPaused(); _; } /** * @dev Modifier to make a function callable only when the contract is paused. * * Requirements: * * - The contract must be paused. */ modifier whenPaused() { _requirePaused(); _; } /** * @dev Returns true if the contract is paused, and false otherwise. */ function paused() public view virtual returns (bool) { return _paused; } /** * @dev Throws if the contract is paused. */ function _requireNotPaused() internal view virtual { require(!paused(), "Pausable: paused"); } /** * @dev Throws if the contract is not paused. */ function _requirePaused() internal view virtual { require(paused(), "Pausable: not paused"); } /** * @dev Triggers stopped state. * * Requirements: * * - The contract must not be paused. */ function _pause() internal virtual whenNotPaused { _paused = true; emit Paused(_msgSender()); } /** * @dev Returns to normal state. * * Requirements: * * - The contract must be paused. */ function _unpause() internal virtual whenPaused { _paused = false; emit Unpaused(_msgSender()); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 amount) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * * Furthermore, `isContract` will also return true if the target contract within * the same transaction is already scheduled for destruction by `SELFDESTRUCT`, * which only has an effect at the end of a transaction. * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1, "Math: mulDiv overflow"); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0); } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface IPair { function initialize(address _token0, address _token1, bool _stable) external; function metadata() external view returns (uint256 dec0, uint256 dec1, uint256 r0, uint256 r1, bool st, address t0, address t1); function claimFees() external returns (uint256, uint256); function tokens() external view returns (address, address); function token0() external view returns (address); function token1() external view returns (address); function transferFrom(address src, address dst, uint256 amount) external returns (bool); function permit(address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) external; function swap(uint256 amount0Out, uint256 amount1Out, address to, bytes calldata data) external; function burn(address to) external returns (uint256 amount0, uint256 amount1); function mint(address to) external returns (uint256 liquidity); function getReserves() external view returns (uint256 _reserve0, uint256 _reserve1, uint256 _blockTimestampLast); function getAmountOut(uint256, address) external view returns (uint256); function name() external view returns (string memory); function symbol() external view returns (string memory); function totalSupply() external view returns (uint256); function decimals() external view returns (uint8); function claimable0(address _user) external view returns (uint256); function claimable1(address _user) external view returns (uint256); function stable() external view returns (bool); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface IPairCallee { function hook(address sender, uint256 amount0, uint256 amount1, bytes calldata data) external; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface IPairFactory { function allPairsLength() external view returns (uint256); function isPair(address pair) external view returns (bool); function allPairs(uint256 index) external view returns (address); function getPair(address tokenA, address token, bool stable) external view returns (address); function createPair(address tokenA, address tokenB, bool stable) external returns (address pair); function getFeeAmount(bool _stable, uint256 _amount, address _account) external view returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; // Pair Fees contract is used as a 1:1 pair relationship to split out fees, this ensures that the curve does not need to be modified for LP shares contract PairFees { address internal immutable pair; // The pair it is bonded to address internal immutable token0; // token0 of pair, saved localy and statically for gas optimization address internal immutable token1; // Token1 of pair, saved localy and statically for gas optimization uint256 private _reserve0; uint256 private _reserve1; constructor(address _token0, address _token1) { pair = msg.sender; token0 = _token0; token1 = _token1; } function _safeTransfer(address token, address to, uint256 value) internal { if (value != 0) { require(token.code.length != 0); (bool success, bytes memory data) = token.call(abi.encodeWithSelector(IERC20.transfer.selector, to, value)); require(success && (data.length == 0 || abi.decode(data, (bool)))); } } // Allow the pair to transfer fees to users function claimFeesFor(address recipient, uint256 amount0, uint256 amount1) external { require(msg.sender == pair); if (amount0 != 0) { uint256 reserve0 = _reserve0; if (reserve0 >= amount0) { unchecked { _reserve0 = reserve0 - amount0; _safeTransfer(token0, recipient, amount0); } } } if (amount1 != 0) { uint256 reserve1 = _reserve1; if (reserve1 >= amount1) { unchecked { _reserve1 = reserve1 - amount1; _safeTransfer(token1, recipient, amount1); } } } } function skim() external returns (uint256 amount0, uint256 amount1) { uint256 balance0 = IERC20(token0).balanceOf(address(this)); uint256 balance1 = IERC20(token1).balanceOf(address(this)); uint256 reserve0 = _reserve0; uint256 reserve1 = _reserve1; if (balance0 > reserve0) { unchecked { _safeTransfer(token0, msg.sender, amount0 = balance0 - reserve0); _reserve0 = balance0; } } if (balance1 > reserve1) { unchecked { _safeTransfer(token1, msg.sender, amount1 = balance1 - reserve1); _reserve1 = balance1; } } } function notifyFeeAmounts(uint256 amount0, uint256 amount1) external { require(msg.sender == pair); if (amount0 != 0) _reserve0 = _reserve0 + amount0; if (amount1 != 0) _reserve1 = _reserve1 + amount1; } }
{ "viaIR": true, "optimizer": { "enabled": true, "runs": 1000 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "libraries": {} }
Contract ABI
API[{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount0","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount1","type":"uint256"},{"indexed":true,"internalType":"address","name":"to","type":"address"}],"name":"Burn","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":true,"internalType":"address","name":"recipient","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount0","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount1","type":"uint256"}],"name":"Claim","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount0","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount1","type":"uint256"}],"name":"Fees","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint8","name":"version","type":"uint8"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount0","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount1","type":"uint256"}],"name":"Mint","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount0In","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount1In","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount0Out","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount1Out","type":"uint256"},{"indexed":true,"internalType":"address","name":"to","type":"address"}],"name":"Swap","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"reserve0","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"reserve1","type":"uint256"}],"name":"Sync","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"blockTimestampLast","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"}],"name":"burn","outputs":[{"internalType":"uint256","name":"amount0","type":"uint256"},{"internalType":"uint256","name":"amount1","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"claimFees","outputs":[{"internalType":"uint256","name":"claimed0","type":"uint256"},{"internalType":"uint256","name":"claimed1","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"claimable0","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"claimable1","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"tokenIn","type":"address"},{"internalType":"uint256","name":"amountIn","type":"uint256"}],"name":"current","outputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"currentCumulativePrices","outputs":[{"internalType":"uint256","name":"reserve0Cumulative","type":"uint256"},{"internalType":"uint256","name":"reserve1Cumulative","type":"uint256"},{"internalType":"uint256","name":"blockTimestamp","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"fees","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"address","name":"tokenIn","type":"address"}],"name":"getAmountOut","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getReserves","outputs":[{"internalType":"uint256","name":"_reserve0","type":"uint256"},{"internalType":"uint256","name":"_reserve1","type":"uint256"},{"internalType":"uint256","name":"_blockTimestampLast","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"index0","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"index1","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_token0","type":"address"},{"internalType":"address","name":"_token1","type":"address"},{"internalType":"bool","name":"_stable","type":"bool"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"lastObservation","outputs":[{"components":[{"internalType":"uint256","name":"timestamp","type":"uint256"},{"internalType":"uint256","name":"reserve0Cumulative","type":"uint256"},{"internalType":"uint256","name":"reserve1Cumulative","type":"uint256"}],"internalType":"struct Pair.Observation","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"metadata","outputs":[{"internalType":"uint256","name":"dec0","type":"uint256"},{"internalType":"uint256","name":"dec1","type":"uint256"},{"internalType":"uint256","name":"r0","type":"uint256"},{"internalType":"uint256","name":"r1","type":"uint256"},{"internalType":"bool","name":"st","type":"bool"},{"internalType":"address","name":"t0","type":"address"},{"internalType":"address","name":"t1","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"}],"name":"mint","outputs":[{"internalType":"uint256","name":"liquidity","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"observationLength","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"observations","outputs":[{"internalType":"uint256","name":"timestamp","type":"uint256"},{"internalType":"uint256","name":"reserve0Cumulative","type":"uint256"},{"internalType":"uint256","name":"reserve1Cumulative","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"permit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"tokenIn","type":"address"},{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"uint256","name":"points","type":"uint256"}],"name":"prices","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"tokenIn","type":"address"},{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"uint256","name":"granularity","type":"uint256"}],"name":"quote","outputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"reserve0","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"reserve0CumulativeLast","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"reserve1","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"reserve1CumulativeLast","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"tokenIn","type":"address"},{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"uint256","name":"points","type":"uint256"},{"internalType":"uint256","name":"window","type":"uint256"}],"name":"sample","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"}],"name":"skim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"stable","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"supplyIndex0","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"supplyIndex1","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount0Out","type":"uint256"},{"internalType":"uint256","name":"amount1Out","type":"uint256"},{"internalType":"address","name":"to","type":"address"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"swap","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"sync","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"token0","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"token1","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tokens","outputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"dst","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"src","type":"address"},{"internalType":"address","name":"dst","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"}]
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.