POL Price: $0.662303 (-4.60%)
 

Overview

POL Balance

Polygon PoS Chain LogoPolygon PoS Chain LogoPolygon PoS Chain Logo0 POL

POL Value

$0.00

Token Holdings

More Info

Private Name Tags

TokenTracker

Multichain Info

1 address found via
Transaction Hash
Method
Block
From
To
Approve651826572024-12-07 6:24:562 days ago1733552696IN
0xD17cb0f1...57E681D6b
0 POL0.001469130.00000003
Approve649465042024-12-01 8:29:267 days ago1733041766IN
0xD17cb0f1...57E681D6b
0 POL0.0012429646.57754213
Approve649189492024-11-30 16:00:048 days ago1732982404IN
0xD17cb0f1...57E681D6b
0 POL0.0025445595.35181766
Approve649188892024-11-30 15:57:568 days ago1732982276IN
0xD17cb0f1...57E681D6b
0 POL0.0024324191.14948755
Approve649188382024-11-30 15:56:058 days ago1732982165IN
0xD17cb0f1...57E681D6b
0 POL0.0022283583.50282218
Approve648666042024-11-29 8:33:319 days ago1732869211IN
0xD17cb0f1...57E681D6b
0 POL0.001385951.93367093
Approve648665882024-11-29 8:32:579 days ago1732869177IN
0xD17cb0f1...57E681D6b
0 POL0.0014925452.0302628
Approve648665842024-11-29 8:32:499 days ago1732869169IN
0xD17cb0f1...57E681D6b
0 POL0.0014822755.54487172
Approve647739392024-11-27 1:22:2712 days ago1732670547IN
0xD17cb0f1...57E681D6b
0 POL0.0008809733.01274388
Approve647366722024-11-26 2:04:0713 days ago1732586647IN
0xD17cb0f1...57E681D6b
0 POL0.001134742.52075014
Approve647366642024-11-26 2:03:4913 days ago1732586629IN
0xD17cb0f1...57E681D6b
0 POL0.001162443.55842519
Approve645687332024-11-21 20:59:5217 days ago1732222792IN
0xD17cb0f1...57E681D6b
0 POL0.000880733.00268818
Approve644085002024-11-17 21:08:1021 days ago1731877690IN
0xD17cb0f1...57E681D6b
0 POL0.001469130.00000003
Approve643840292024-11-17 6:29:1722 days ago1731824957IN
0xD17cb0f1...57E681D6b
0 POL0.0014433950.31718088
Approve642748652024-11-14 12:30:4024 days ago1731587440IN
0xD17cb0f1...57E681D6b
0 POL0.0009855936.93319426
Approve637885002024-11-02 9:16:1336 days ago1730538973IN
0xD17cb0f1...57E681D6b
0 POL0.0008511531.8952182
Approve637882872024-11-02 9:08:3436 days ago1730538514IN
0xD17cb0f1...57E681D6b
0 POL0.0008512831.90004433
Approve637646192024-11-01 18:49:3037 days ago1730486970IN
0xD17cb0f1...57E681D6b
0 POL0.0017114364.13231105
Approve637177502024-10-31 15:00:0438 days ago1730386804IN
0xD17cb0f1...57E681D6b
0 POL0.00323281121.14263788
Approve635294472024-10-26 22:35:2043 days ago1729982120IN
0xD17cb0f1...57E681D6b
0 POL0.0007377627.64616246
Approve635294372024-10-26 22:34:5843 days ago1729982098IN
0xD17cb0f1...57E681D6b
0 POL0.0007377627.64616246
Approve634170802024-10-24 3:43:3646 days ago1729741416IN
0xD17cb0f1...57E681D6b
0 POL0.0017397365.1926788
Approve632323902024-10-19 13:48:1450 days ago1729345694IN
0xD17cb0f1...57E681D6b
0 POL0.0008005830.00000005
Approve631309512024-10-17 1:43:5753 days ago1729129437IN
0xD17cb0f1...57E681D6b
0 POL0.0008803232.98818098
Approve631309442024-10-17 1:43:4353 days ago1729129423IN
0xD17cb0f1...57E681D6b
0 POL0.0008803232.98818095
View all transactions

Latest 2 internal transactions

Parent Transaction Hash Block From To
457891952023-08-01 18:08:56495 days ago1690913336
0xD17cb0f1...57E681D6b
 Contract Creation0 POL
457891952023-08-01 18:08:56495 days ago1690913336  Contract Creation0 POL
Loading...
Loading

Minimal Proxy Contract for 0x0afaa3501861fa72f6b4fecfa6f6bdab7bee6b9d

Contract Name:
Pair

Compiler Version
v0.8.18+commit.87f61d96

Optimization Enabled:
Yes with 1000 runs

Other Settings:
default evmVersion

Contract Source Code (Solidity Standard Json-Input format)

File 1 of 13 : Pair.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import "@openzeppelin/contracts/proxy/Clones.sol";
import "@openzeppelin/contracts/proxy/utils/Initializable.sol";
import "@openzeppelin/contracts/security/Pausable.sol";
import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import "@openzeppelin/contracts/utils/math/Math.sol";

import "contracts/interfaces/IPair.sol";
import "contracts/interfaces/IPairCallee.sol";
import "contracts/interfaces/IPairFactory.sol";
import "contracts/PairFees.sol";

// The base pair of pools, either stable or volatile
contract Pair is IPair, Initializable {
    string public name;
    string public symbol;
    uint8 public constant decimals = 18;

    bool public stable;

    uint256 public totalSupply;

    mapping(address => mapping(address => uint256)) public allowance;
    mapping(address => uint256) public balanceOf;

    bytes32 internal DOMAIN_SEPARATOR;
    // keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
    bytes32 internal constant PERMIT_TYPEHASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9;
    mapping(address => uint256) public nonces;

    uint256 internal constant MINIMUM_LIQUIDITY = 10 ** 3;

    address public token0;
    address public token1;
    address public fees;
    address factory;

    // Structure to capture time period obervations every 30 minutes, used for local oracles
    struct Observation {
        uint256 timestamp;
        uint256 reserve0Cumulative;
        uint256 reserve1Cumulative;
    }

    // Capture oracle reading every 30 minutes
    uint256 constant periodSize = 1800;

    Observation[] public observations;

    uint256 internal decimals0;
    uint256 internal decimals1;

    uint256 public reserve0;
    uint256 public reserve1;
    uint256 public blockTimestampLast;

    uint256 public reserve0CumulativeLast;
    uint256 public reserve1CumulativeLast;

    // index0 and index1 are used to accumulate fees, this is split out from normal trades to keep the swap "clean"
    // this further allows LP holders to easily claim fees for tokens they have/staked
    uint256 public index0;
    uint256 public index1;

    // position assigned to each LP to track their current index0 & index1 vs the global position
    mapping(address => uint256) public supplyIndex0;
    mapping(address => uint256) public supplyIndex1;

    // tracks the amount of unclaimed, but claimable tokens off of fees for token0 and token1
    mapping(address => uint256) public claimable0;
    mapping(address => uint256) public claimable1;

    event Fees(address indexed sender, uint256 amount0, uint256 amount1);
    event Mint(address indexed sender, uint256 amount0, uint256 amount1);
    event Burn(address indexed sender, uint256 amount0, uint256 amount1, address indexed to);
    event Swap(address indexed sender, uint256 amount0In, uint256 amount1In, uint256 amount0Out, uint256 amount1Out, address indexed to);
    event Sync(uint256 reserve0, uint256 reserve1);
    event Claim(address indexed sender, address indexed recipient, uint256 amount0, uint256 amount1);

    event Transfer(address indexed from, address indexed to, uint256 amount);
    event Approval(address indexed owner, address indexed spender, uint256 amount);

    function initialize(address _token0, address _token1, bool _stable) external initializer {
        factory = msg.sender;
        (token0, token1, stable) = (_token0, _token1, _stable);
        fees = address(new PairFees(_token0, _token1));
        if (_stable) {
            name = string(abi.encodePacked("StableV1 AMM - ", IERC20Metadata(_token0).symbol(), "/", IERC20Metadata(_token1).symbol()));
            symbol = string(abi.encodePacked("sAMM-", IERC20Metadata(_token0).symbol(), "/", IERC20Metadata(_token1).symbol()));
        } else {
            name = string(abi.encodePacked("VolatileV1 AMM - ", IERC20Metadata(_token0).symbol(), "/", IERC20Metadata(_token1).symbol()));
            symbol = string(abi.encodePacked("vAMM-", IERC20Metadata(_token0).symbol(), "/", IERC20Metadata(_token1).symbol()));
        }

        decimals0 = 10 ** IERC20Metadata(_token0).decimals();
        decimals1 = 10 ** IERC20Metadata(_token1).decimals();

        observations.push(Observation(block.timestamp, 0, 0));

        _unlocked = 1;
    }

    // simple re-entrancy check
    uint256 internal _unlocked;
    modifier lock() {
        require(_unlocked == 1);
        _unlocked = 2;
        _;
        _unlocked = 1;
    }

    function observationLength() external view returns (uint256) {
        return observations.length;
    }

    function lastObservation() public view returns (Observation memory) {
        return observations[observations.length - 1];
    }

    function metadata() external view returns (uint256 dec0, uint256 dec1, uint256 r0, uint256 r1, bool st, address t0, address t1) {
        return (decimals0, decimals1, reserve0, reserve1, stable, token0, token1);
    }

    function tokens() external view returns (address, address) {
        return (token0, token1);
    }

    // claim accumulated but unclaimed fees (viewable via claimable0 and claimable1)
    function claimFees() external returns (uint256 claimed0, uint256 claimed1) {
        _updateFor(msg.sender);

        claimed0 = claimable0[msg.sender];
        claimed1 = claimable1[msg.sender];

        if (claimed0 != 0 || claimed1 != 0) {
            claimable0[msg.sender] = 0;
            claimable1[msg.sender] = 0;

            PairFees(fees).claimFeesFor(msg.sender, claimed0, claimed1);

            emit Claim(msg.sender, msg.sender, claimed0, claimed1);
        }
    }

    // Accrue fees on token0 and token1
    function _updateFees(uint256 amount0, uint256 amount1) internal {
        if (amount0 != 0) {
            _safeTransfer(token0, fees, amount0); // transfer the fees out to PairFees
            uint256 _ratio = (amount0 * 1e18) / totalSupply; // 1e18 adjustment is removed during claim
            if (_ratio != 0) {
                index0 += _ratio;
            }
        }
        if (amount1 != 0) {
            _safeTransfer(token1, fees, amount1); // transfer the fees out to PairFees
            uint256 _ratio = (amount1 * 1e18) / totalSupply; // 1e18 adjustment is removed during claim
            if (_ratio != 0) {
                index1 += _ratio;
            }
        }
        if (amount0 != 0 || amount1 != 0) {
            PairFees(fees).notifyFeeAmounts(amount0, amount1);
            emit Fees(msg.sender, amount0, amount1);
        }
    }

    // this function MUST be called on any balance changes, otherwise can be used to infinitely claim fees
    // Fees are segregated from core funds, so fees can never put liquidity at risk
    function _updateFor(address recipient) internal {
        uint256 _supplied = balanceOf[recipient]; // get LP balance of `recipient`
        if (_supplied != 0) {
            uint256 _supplyIndex0 = supplyIndex0[recipient]; // get last adjusted index0 for recipient
            uint256 _supplyIndex1 = supplyIndex1[recipient];
            uint256 _index0 = index0; // get global index0 for accumulated fees
            uint256 _index1 = index1;
            supplyIndex0[recipient] = _index0; // update user current position to global position
            supplyIndex1[recipient] = _index1;
            uint256 _delta0 = _index0 - _supplyIndex0; // see if there is any difference that need to be accrued
            uint256 _delta1 = _index1 - _supplyIndex1;
            if (_delta0 != 0) {
                uint256 _share = (_supplied * _delta0) / 1e18; // add accrued difference for each supplied token
                claimable0[recipient] += _share;
            }
            if (_delta1 != 0) {
                uint256 _share = (_supplied * _delta1) / 1e18;
                claimable1[recipient] += _share;
            }
        } else {
            supplyIndex0[recipient] = index0; // new users are set to the default global state
            supplyIndex1[recipient] = index1;
        }
    }

    function getReserves() public view returns (uint256 _reserve0, uint256 _reserve1, uint256 _blockTimestampLast) {
        _reserve0 = reserve0;
        _reserve1 = reserve1;
        _blockTimestampLast = blockTimestampLast;
    }

    // update reserves and, on the first call per block, price accumulators
    function _update(uint256 balance0, uint256 balance1, uint256 _reserve0, uint256 _reserve1) internal {
        uint256 blockTimestamp = block.timestamp;
        uint256 timeElapsed = blockTimestamp - blockTimestampLast; // overflow is desired
        if (timeElapsed != 0 && _reserve0 != 0 && _reserve1 != 0) {
            reserve0CumulativeLast += _reserve0 * timeElapsed;
            reserve1CumulativeLast += _reserve1 * timeElapsed;
        }

        Observation memory _point = lastObservation();
        timeElapsed = blockTimestamp - _point.timestamp; // compare the last observation with current timestamp, if greater than 30 minutes, record a new event
        if (timeElapsed > periodSize) {
            observations.push(Observation(blockTimestamp, reserve0CumulativeLast, reserve1CumulativeLast));
        }
        reserve0 = balance0;
        reserve1 = balance1;
        blockTimestampLast = blockTimestamp;
        emit Sync(reserve0, reserve1);
    }

    // produces the cumulative price using counterfactuals to save gas and avoid a call to sync.
    function currentCumulativePrices()
        public
        view
        returns (uint256 reserve0Cumulative, uint256 reserve1Cumulative, uint256 blockTimestamp)
    {
        blockTimestamp = block.timestamp;
        reserve0Cumulative = reserve0CumulativeLast;
        reserve1Cumulative = reserve1CumulativeLast;

        // if time has elapsed since the last update on the pair, mock the accumulated price values
        (uint256 _reserve0, uint256 _reserve1, uint256 _blockTimestampLast) = getReserves();
        if (_blockTimestampLast != blockTimestamp) {
            // subtraction overflow is desired
            uint256 timeElapsed = blockTimestamp - _blockTimestampLast;
            reserve0Cumulative += _reserve0 * timeElapsed;
            reserve1Cumulative += _reserve1 * timeElapsed;
        }
    }

    // gives the current twap price measured from amountIn * tokenIn gives amountOut
    function current(address tokenIn, uint256 amountIn) external view returns (uint256 amountOut) {
        Observation memory _observation = lastObservation();
        (uint256 reserve0Cumulative, uint256 reserve1Cumulative, ) = currentCumulativePrices();
        if (block.timestamp == _observation.timestamp) {
            _observation = observations[observations.length - 2];
        }

        uint256 timeElapsed = block.timestamp - _observation.timestamp;
        uint256 _reserve0 = (reserve0Cumulative - _observation.reserve0Cumulative) / timeElapsed;
        uint256 _reserve1 = (reserve1Cumulative - _observation.reserve1Cumulative) / timeElapsed;
        amountOut = _getAmountOut(amountIn, tokenIn, _reserve0, _reserve1);
    }

    // as per `current`, however allows user configured granularity, up to the full window size
    function quote(address tokenIn, uint256 amountIn, uint256 granularity) external view returns (uint256 amountOut) {
        uint256[] memory _prices = sample(tokenIn, amountIn, granularity, 1);
        uint256 priceAverageCumulative;
        for (uint256 i = _prices.length; i != 0; ) {
            unchecked {
                --i;
            }
            priceAverageCumulative += _prices[i];
        }
        return priceAverageCumulative / granularity;
    }

    // returns a memory set of twap prices
    function prices(address tokenIn, uint256 amountIn, uint256 points) external view returns (uint256[] memory) {
        return sample(tokenIn, amountIn, points, 1);
    }

    function sample(address tokenIn, uint256 amountIn, uint256 points, uint256 window) public view returns (uint256[] memory) {
        uint256[] memory _prices = new uint256[](points);

        uint256 length = observations.length - 1;
        uint256 nextIndex;
        uint256 index = 0;

        for (uint256 i = length - (points * window); i < length; ) {
            unchecked {
                nextIndex = i + window;
            }
            uint256 timeElapsed = observations[nextIndex].timestamp - observations[i].timestamp;
            uint256 _reserve0 = (observations[nextIndex].reserve0Cumulative - observations[i].reserve0Cumulative) / timeElapsed;
            uint256 _reserve1 = (observations[nextIndex].reserve1Cumulative - observations[i].reserve1Cumulative) / timeElapsed;
            _prices[index] = _getAmountOut(amountIn, tokenIn, _reserve0, _reserve1);
            // index < length; length cannot overflow
            unchecked {
                ++index;
            }
            i = nextIndex;
        }
        return _prices;
    }

    // this low-level function should be called by addLiquidity functions in Router.sol, which performs important safety checks
    // standard uniswap v2 implementation
    function mint(address to) external lock returns (uint256 liquidity) {
        (uint256 _reserve0, uint256 _reserve1) = (reserve0, reserve1);
        uint256 _balance0 = IERC20(token0).balanceOf(address(this));
        uint256 _balance1 = IERC20(token1).balanceOf(address(this));
        uint256 _amount0 = _balance0 - _reserve0;
        uint256 _amount1 = _balance1 - _reserve1;

        uint256 _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
        if (_totalSupply == 0) {
            liquidity = Math.sqrt(_amount0 * _amount1) - MINIMUM_LIQUIDITY;
            _mint(address(0), MINIMUM_LIQUIDITY); // permanently lock the first MINIMUM_LIQUIDITY tokens
        } else {
            liquidity = Math.min((_amount0 * _totalSupply) / _reserve0, (_amount1 * _totalSupply) / _reserve1);
        }
        require(liquidity != 0, "ILM"); // Pair: INSUFFICIENT_LIQUIDITY_MINTED
        _mint(to, liquidity);

        _update(_balance0, _balance1, _reserve0, _reserve1);
        emit Mint(msg.sender, _amount0, _amount1);
    }

    // this low-level function should be called from a contract which performs important safety checks
    // standard uniswap v2 implementation
    function burn(address to) external lock returns (uint256 amount0, uint256 amount1) {
        (uint256 _reserve0, uint256 _reserve1) = (reserve0, reserve1);
        (address _token0, address _token1) = (token0, token1);
        uint256 _balance0 = IERC20(_token0).balanceOf(address(this));
        uint256 _balance1 = IERC20(_token1).balanceOf(address(this));
        uint256 _liquidity = balanceOf[address(this)];

        uint256 _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
        amount0 = (_liquidity * _balance0) / _totalSupply; // using balances ensures pro-rata distribution
        amount1 = (_liquidity * _balance1) / _totalSupply; // using balances ensures pro-rata distribution
        require(amount0 != 0 && amount1 != 0, "ILB"); // Pair: INSUFFICIENT_LIQUIDITY_BURNED
        _burn(address(this), _liquidity);
        _safeTransfer(_token0, to, amount0);
        _safeTransfer(_token1, to, amount1);
        _balance0 = IERC20(_token0).balanceOf(address(this));
        _balance1 = IERC20(_token1).balanceOf(address(this));

        _update(_balance0, _balance1, _reserve0, _reserve1);
        emit Burn(msg.sender, amount0, amount1, to);
    }

    // this low-level function should be called from a contract which performs important safety checks
    function swap(uint256 amount0Out, uint256 amount1Out, address to, bytes calldata data) external lock {
        require(!Pausable(factory).paused());
        require(amount0Out != 0 || amount1Out != 0, "IOA"); // Pair: INSUFFICIENT_OUTPUT_AMOUNT
        (uint256 _reserve0, uint256 _reserve1) = (reserve0, reserve1);
        require(amount0Out < _reserve0 && amount1Out < _reserve1, "IL"); // Pair: INSUFFICIENT_LIQUIDITY

        uint256 _balance0;
        uint256 _balance1;
        {
            // scope for _token{0,1}, avoids stack too deep errors
            (address _token0, address _token1) = (token0, token1);
            require(to != _token0 && to != _token1, "IT"); // Pair: INVALID_TO
            if (amount0Out != 0) _safeTransfer(_token0, to, amount0Out); // optimistically transfer tokens
            if (amount1Out != 0) _safeTransfer(_token1, to, amount1Out); // optimistically transfer tokens
            if (data.length != 0) IPairCallee(to).hook(msg.sender, amount0Out, amount1Out, data); // callback, used for flash loans
            _balance0 = IERC20(_token0).balanceOf(address(this));
            _balance1 = IERC20(_token1).balanceOf(address(this));
        }
        uint256 amount0In = _balance0 > _reserve0 - amount0Out ? _balance0 - (_reserve0 - amount0Out) : 0;
        uint256 amount1In = _balance1 > _reserve1 - amount1Out ? _balance1 - (_reserve1 - amount1Out) : 0;
        require(amount0In != 0 || amount1In != 0, "IIA"); // Pair: INSUFFICIENT_INPUT_AMOUNT
        {
            // scope for reserve{0,1}Adjusted, avoids stack too deep errors
            (address _token0, address _token1) = (token0, token1);
            _updateFees(
                IPairFactory(factory).getFeeAmount(stable, amount0In, msg.sender),
                IPairFactory(factory).getFeeAmount(stable, amount1In, msg.sender)
            ); // accrue fees for token0 and token1 and move them out of pool
            _balance0 = IERC20(_token0).balanceOf(address(this)); // since we removed tokens, we need to reconfirm balances, can also simply use previous balance - amountIn/ 10000, but doing balanceOf again as safety check
            _balance1 = IERC20(_token1).balanceOf(address(this));
            // The curve, either x3y+y3x for stable pools, or x*y for volatile pools
            require(_k(_balance0, _balance1) >= _k(_reserve0, _reserve1), "K"); // Pair: K
        }

        _update(_balance0, _balance1, _reserve0, _reserve1);
        emit Swap(msg.sender, amount0In, amount1In, amount0Out, amount1Out, to);
    }

    // force balances to match reserves
    function skim(address to) external lock {
        (address _token0, address _token1) = (token0, token1);
        _safeTransfer(_token0, to, IERC20(_token0).balanceOf(address(this)) - (reserve0));
        _safeTransfer(_token1, to, IERC20(_token1).balanceOf(address(this)) - (reserve1));
    }

    // force reserves to match balances
    function sync() external lock {
        _update(IERC20(token0).balanceOf(address(this)), IERC20(token1).balanceOf(address(this)), reserve0, reserve1);
    }

    function _f(uint256 x0, uint256 y) internal pure returns (uint256) {
        return (x0 * ((((y * y) / 1e18) * y) / 1e18)) / 1e18 + (((((x0 * x0) / 1e18) * x0) / 1e18) * y) / 1e18;
    }

    function _d(uint256 x0, uint256 y) internal pure returns (uint256) {
        return (3 * x0 * ((y * y) / 1e18)) / 1e18 + ((((x0 * x0) / 1e18) * x0) / 1e18);
    }

    function _get_y(uint256 x0, uint256 xy, uint256 y) internal pure returns (uint256) {
        for (uint256 i = 255; i != 0; ) {
            uint256 y_prev = y;
            uint256 k = _f(x0, y);
            if (k < xy) {
                uint256 dy = ((xy - k) * 1e18) / _d(x0, y);
                y = y + dy;
            } else {
                uint256 dy = ((k - xy) * 1e18) / _d(x0, y);
                y = y - dy;
            }
            if (y > y_prev) {
                if (y - y_prev <= 1) {
                    return y;
                }
            } else {
                if (y_prev - y <= 1) {
                    return y;
                }
            }
            unchecked {
                --i;
            }
        }
        return y;
    }

    function getAmountOut(uint256 amountIn, address tokenIn) external view returns (uint256) {
        (uint256 _reserve0, uint256 _reserve1) = (reserve0, reserve1);
        amountIn -= IPairFactory(factory).getFeeAmount(stable, amountIn, msg.sender); // remove fee from amount received
        return _getAmountOut(amountIn, tokenIn, _reserve0, _reserve1);
    }

    function _getAmountOut(uint256 amountIn, address tokenIn, uint256 _reserve0, uint256 _reserve1) internal view returns (uint256) {
        if (stable) {
            uint256 xy = _k(_reserve0, _reserve1);
            _reserve0 = (_reserve0 * 1e18) / decimals0;
            _reserve1 = (_reserve1 * 1e18) / decimals1;
            (uint256 reserveA, uint256 reserveB) = tokenIn == token0 ? (_reserve0, _reserve1) : (_reserve1, _reserve0);
            amountIn = tokenIn == token0 ? (amountIn * 1e18) / decimals0 : (amountIn * 1e18) / decimals1;
            uint256 y = reserveB - _get_y(amountIn + reserveA, xy, reserveB);
            return (y * (tokenIn == token0 ? decimals1 : decimals0)) / 1e18;
        } else {
            (uint256 reserveA, uint256 reserveB) = tokenIn == token0 ? (_reserve0, _reserve1) : (_reserve1, _reserve0);
            return (amountIn * reserveB) / (reserveA + amountIn);
        }
    }

    function _k(uint256 x, uint256 y) internal view returns (uint256) {
        if (stable) {
            uint256 _x = (x * 1e18) / decimals0;
            uint256 _y = (y * 1e18) / decimals1;
            uint256 _a = (_x * _y) / 1e18;
            uint256 _b = ((_x * _x) / 1e18 + (_y * _y) / 1e18);
            return (_a * _b) / 1e18; // x3y+y3x >= k
        } else {
            return x * y; // xy >= k
        }
    }

    function _mint(address dst, uint256 amount) internal {
        _updateFor(dst); // balances must be updated on mint/burn/transfer
        totalSupply += amount;
        balanceOf[dst] += amount;
        emit Transfer(address(0), dst, amount);
    }

    function _burn(address dst, uint256 amount) internal {
        _updateFor(dst);
        totalSupply -= amount;
        balanceOf[dst] -= amount;
        emit Transfer(dst, address(0), amount);
    }

    function approve(address spender, uint256 amount) external returns (bool) {
        allowance[msg.sender][spender] = amount;
        emit Approval(msg.sender, spender, amount);
        return true;
    }

    function permit(address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) external {
        require(deadline >= block.timestamp, "Pair: EXPIRED");
        DOMAIN_SEPARATOR = keccak256(
            abi.encode(
                keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"),
                keccak256(bytes(name)),
                keccak256(bytes("1")),
                block.chainid,
                address(this)
            )
        );
        bytes32 digest = keccak256(
            abi.encodePacked(
                "\x19\x01",
                DOMAIN_SEPARATOR,
                keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, nonces[owner]++, deadline))
            )
        );
        address recoveredAddress = ecrecover(digest, v, r, s);
        require(recoveredAddress != address(0) && recoveredAddress == owner, "Pair: INVALID_SIGNATURE");
        allowance[owner][spender] = value;

        emit Approval(owner, spender, value);
    }

    function transfer(address dst, uint256 amount) external returns (bool) {
        _transferTokens(msg.sender, dst, amount);
        return true;
    }

    function transferFrom(address src, address dst, uint256 amount) external returns (bool) {
        address spender = msg.sender;
        uint256 spenderAllowance = allowance[src][spender];

        if (spender != src && spenderAllowance != type(uint256).max) {
            uint256 newAllowance = spenderAllowance - amount;
            allowance[src][spender] = newAllowance;

            emit Approval(src, spender, newAllowance);
        }

        _transferTokens(src, dst, amount);
        return true;
    }

    function _transferTokens(address src, address dst, uint256 amount) internal {
        _updateFor(src); // update fee position for src
        _updateFor(dst); // update fee position for dst

        balanceOf[src] -= amount;
        balanceOf[dst] += amount;

        emit Transfer(src, dst, amount);
    }

    function _safeTransfer(address token, address to, uint256 value) internal {
        if (value != 0) {
            require(token.code.length > 0);
            (bool success, bytes memory data) = token.call(abi.encodeWithSelector(IERC20.transfer.selector, to, value));
            require(success && (data.length == 0 || abi.decode(data, (bool))));
        }
    }
}

File 2 of 13 : Clones.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (proxy/Clones.sol)

pragma solidity ^0.8.0;

/**
 * @dev https://eips.ethereum.org/EIPS/eip-1167[EIP 1167] is a standard for
 * deploying minimal proxy contracts, also known as "clones".
 *
 * > To simply and cheaply clone contract functionality in an immutable way, this standard specifies
 * > a minimal bytecode implementation that delegates all calls to a known, fixed address.
 *
 * The library includes functions to deploy a proxy using either `create` (traditional deployment) or `create2`
 * (salted deterministic deployment). It also includes functions to predict the addresses of clones deployed using the
 * deterministic method.
 *
 * _Available since v3.4._
 */
library Clones {
    /**
     * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`.
     *
     * This function uses the create opcode, which should never revert.
     */
    function clone(address implementation) internal returns (address instance) {
        /// @solidity memory-safe-assembly
        assembly {
            // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes
            // of the `implementation` address with the bytecode before the address.
            mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
            // Packs the remaining 17 bytes of `implementation` with the bytecode after the address.
            mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3))
            instance := create(0, 0x09, 0x37)
        }
        require(instance != address(0), "ERC1167: create failed");
    }

    /**
     * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`.
     *
     * This function uses the create2 opcode and a `salt` to deterministically deploy
     * the clone. Using the same `implementation` and `salt` multiple time will revert, since
     * the clones cannot be deployed twice at the same address.
     */
    function cloneDeterministic(address implementation, bytes32 salt) internal returns (address instance) {
        /// @solidity memory-safe-assembly
        assembly {
            // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes
            // of the `implementation` address with the bytecode before the address.
            mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
            // Packs the remaining 17 bytes of `implementation` with the bytecode after the address.
            mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3))
            instance := create2(0, 0x09, 0x37, salt)
        }
        require(instance != address(0), "ERC1167: create2 failed");
    }

    /**
     * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
     */
    function predictDeterministicAddress(
        address implementation,
        bytes32 salt,
        address deployer
    ) internal pure returns (address predicted) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(add(ptr, 0x38), deployer)
            mstore(add(ptr, 0x24), 0x5af43d82803e903d91602b57fd5bf3ff)
            mstore(add(ptr, 0x14), implementation)
            mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73)
            mstore(add(ptr, 0x58), salt)
            mstore(add(ptr, 0x78), keccak256(add(ptr, 0x0c), 0x37))
            predicted := keccak256(add(ptr, 0x43), 0x55)
        }
    }

    /**
     * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
     */
    function predictDeterministicAddress(
        address implementation,
        bytes32 salt
    ) internal view returns (address predicted) {
        return predictDeterministicAddress(implementation, salt, address(this));
    }
}

File 3 of 13 : Initializable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.2;

import "../../utils/Address.sol";

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```solidity
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 *
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Indicates that the contract has been initialized.
     * @custom:oz-retyped-from bool
     */
    uint8 private _initialized;

    /**
     * @dev Indicates that the contract is in the process of being initialized.
     */
    bool private _initializing;

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint8 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts.
     *
     * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
     * constructor.
     *
     * Emits an {Initialized} event.
     */
    modifier initializer() {
        bool isTopLevelCall = !_initializing;
        require(
            (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
            "Initializable: contract is already initialized"
        );
        _initialized = 1;
        if (isTopLevelCall) {
            _initializing = true;
        }
        _;
        if (isTopLevelCall) {
            _initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * A reinitializer may be used after the original initialization step. This is essential to configure modules that
     * are added through upgrades and that require initialization.
     *
     * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
     * cannot be nested. If one is invoked in the context of another, execution will revert.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     *
     * WARNING: setting the version to 255 will prevent any future reinitialization.
     *
     * Emits an {Initialized} event.
     */
    modifier reinitializer(uint8 version) {
        require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
        _initialized = version;
        _initializing = true;
        _;
        _initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        require(_initializing, "Initializable: contract is not initializing");
        _;
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     *
     * Emits an {Initialized} event the first time it is successfully executed.
     */
    function _disableInitializers() internal virtual {
        require(!_initializing, "Initializable: contract is initializing");
        if (_initialized != type(uint8).max) {
            _initialized = type(uint8).max;
            emit Initialized(type(uint8).max);
        }
    }

    /**
     * @dev Returns the highest version that has been initialized. See {reinitializer}.
     */
    function _getInitializedVersion() internal view returns (uint8) {
        return _initialized;
    }

    /**
     * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
     */
    function _isInitializing() internal view returns (bool) {
        return _initializing;
    }
}

File 4 of 13 : Pausable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which allows children to implement an emergency stop
 * mechanism that can be triggered by an authorized account.
 *
 * This module is used through inheritance. It will make available the
 * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
 * the functions of your contract. Note that they will not be pausable by
 * simply including this module, only once the modifiers are put in place.
 */
abstract contract Pausable is Context {
    /**
     * @dev Emitted when the pause is triggered by `account`.
     */
    event Paused(address account);

    /**
     * @dev Emitted when the pause is lifted by `account`.
     */
    event Unpaused(address account);

    bool private _paused;

    /**
     * @dev Initializes the contract in unpaused state.
     */
    constructor() {
        _paused = false;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is not paused.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    modifier whenNotPaused() {
        _requireNotPaused();
        _;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is paused.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    modifier whenPaused() {
        _requirePaused();
        _;
    }

    /**
     * @dev Returns true if the contract is paused, and false otherwise.
     */
    function paused() public view virtual returns (bool) {
        return _paused;
    }

    /**
     * @dev Throws if the contract is paused.
     */
    function _requireNotPaused() internal view virtual {
        require(!paused(), "Pausable: paused");
    }

    /**
     * @dev Throws if the contract is not paused.
     */
    function _requirePaused() internal view virtual {
        require(paused(), "Pausable: not paused");
    }

    /**
     * @dev Triggers stopped state.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    function _pause() internal virtual whenNotPaused {
        _paused = true;
        emit Paused(_msgSender());
    }

    /**
     * @dev Returns to normal state.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    function _unpause() internal virtual whenPaused {
        _paused = false;
        emit Unpaused(_msgSender());
    }
}

File 5 of 13 : IERC20Metadata.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 *
 * _Available since v4.1._
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

File 6 of 13 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 amount) external returns (bool);
}

File 7 of 13 : Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     *
     * Furthermore, `isContract` will also return true if the target contract within
     * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
     * which only has an effect at the end of a transaction.
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

File 8 of 13 : Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

File 9 of 13 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}

File 10 of 13 : IPair.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

interface IPair {
    function initialize(address _token0, address _token1, bool _stable) external;

    function metadata() external view returns (uint256 dec0, uint256 dec1, uint256 r0, uint256 r1, bool st, address t0, address t1);

    function claimFees() external returns (uint256, uint256);

    function tokens() external view returns (address, address);

    function token0() external view returns (address);

    function token1() external view returns (address);

    function transferFrom(address src, address dst, uint256 amount) external returns (bool);

    function permit(address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) external;

    function swap(uint256 amount0Out, uint256 amount1Out, address to, bytes calldata data) external;

    function burn(address to) external returns (uint256 amount0, uint256 amount1);

    function mint(address to) external returns (uint256 liquidity);

    function getReserves() external view returns (uint256 _reserve0, uint256 _reserve1, uint256 _blockTimestampLast);

    function getAmountOut(uint256, address) external view returns (uint256);

    function name() external view returns (string memory);

    function symbol() external view returns (string memory);

    function totalSupply() external view returns (uint256);

    function decimals() external view returns (uint8);

    function claimable0(address _user) external view returns (uint256);

    function claimable1(address _user) external view returns (uint256);

    function stable() external view returns (bool);
}

File 11 of 13 : IPairCallee.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

interface IPairCallee {
    function hook(address sender, uint256 amount0, uint256 amount1, bytes calldata data) external;
}

File 12 of 13 : IPairFactory.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

interface IPairFactory {
    function allPairsLength() external view returns (uint256);

    function isPair(address pair) external view returns (bool);

    function allPairs(uint256 index) external view returns (address);

    function getPair(address tokenA, address token, bool stable) external view returns (address);

    function createPair(address tokenA, address tokenB, bool stable) external returns (address pair);

    function getFeeAmount(bool _stable, uint256 _amount, address _account) external view returns (uint256);
}

File 13 of 13 : PairFees.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";

// Pair Fees contract is used as a 1:1 pair relationship to split out fees, this ensures that the curve does not need to be modified for LP shares
contract PairFees {
    address internal immutable pair; // The pair it is bonded to
    address internal immutable token0; // token0 of pair, saved localy and statically for gas optimization
    address internal immutable token1; // Token1 of pair, saved localy and statically for gas optimization

    uint256 private _reserve0;
    uint256 private _reserve1;

    constructor(address _token0, address _token1) {
        pair = msg.sender;
        token0 = _token0;
        token1 = _token1;
    }

    function _safeTransfer(address token, address to, uint256 value) internal {
        if (value != 0) {
            require(token.code.length != 0);
            (bool success, bytes memory data) = token.call(abi.encodeWithSelector(IERC20.transfer.selector, to, value));
            require(success && (data.length == 0 || abi.decode(data, (bool))));
        }
    }

    // Allow the pair to transfer fees to users
    function claimFeesFor(address recipient, uint256 amount0, uint256 amount1) external {
        require(msg.sender == pair);
        if (amount0 != 0) {
            uint256 reserve0 = _reserve0;
            if (reserve0 >= amount0) {
                unchecked {
                    _reserve0 = reserve0 - amount0;
                    _safeTransfer(token0, recipient, amount0);
                }
            }
        }
        if (amount1 != 0) {
            uint256 reserve1 = _reserve1;
            if (reserve1 >= amount1) {
                unchecked {
                    _reserve1 = reserve1 - amount1;
                    _safeTransfer(token1, recipient, amount1);
                }
            }
        }
    }

    function skim() external returns (uint256 amount0, uint256 amount1) {
        uint256 balance0 = IERC20(token0).balanceOf(address(this));
        uint256 balance1 = IERC20(token1).balanceOf(address(this));
        uint256 reserve0 = _reserve0;
        uint256 reserve1 = _reserve1;
        if (balance0 > reserve0) {
            unchecked {
                _safeTransfer(token0, msg.sender, amount0 = balance0 - reserve0);
                _reserve0 = balance0;
            }
        }
        if (balance1 > reserve1) {
            unchecked {
                _safeTransfer(token1, msg.sender, amount1 = balance1 - reserve1);
                _reserve1 = balance1;
            }
        }
    }

    function notifyFeeAmounts(uint256 amount0, uint256 amount1) external {
        require(msg.sender == pair);
        if (amount0 != 0) _reserve0 = _reserve0 + amount0;
        if (amount1 != 0) _reserve1 = _reserve1 + amount1;
    }
}

Settings
{
  "viaIR": true,
  "optimizer": {
    "enabled": true,
    "runs": 1000
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "libraries": {}
}

Contract ABI

[{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount0","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount1","type":"uint256"},{"indexed":true,"internalType":"address","name":"to","type":"address"}],"name":"Burn","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":true,"internalType":"address","name":"recipient","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount0","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount1","type":"uint256"}],"name":"Claim","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount0","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount1","type":"uint256"}],"name":"Fees","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint8","name":"version","type":"uint8"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount0","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount1","type":"uint256"}],"name":"Mint","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount0In","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount1In","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount0Out","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount1Out","type":"uint256"},{"indexed":true,"internalType":"address","name":"to","type":"address"}],"name":"Swap","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"reserve0","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"reserve1","type":"uint256"}],"name":"Sync","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"blockTimestampLast","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"}],"name":"burn","outputs":[{"internalType":"uint256","name":"amount0","type":"uint256"},{"internalType":"uint256","name":"amount1","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"claimFees","outputs":[{"internalType":"uint256","name":"claimed0","type":"uint256"},{"internalType":"uint256","name":"claimed1","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"claimable0","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"claimable1","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"tokenIn","type":"address"},{"internalType":"uint256","name":"amountIn","type":"uint256"}],"name":"current","outputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"currentCumulativePrices","outputs":[{"internalType":"uint256","name":"reserve0Cumulative","type":"uint256"},{"internalType":"uint256","name":"reserve1Cumulative","type":"uint256"},{"internalType":"uint256","name":"blockTimestamp","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"fees","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"address","name":"tokenIn","type":"address"}],"name":"getAmountOut","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getReserves","outputs":[{"internalType":"uint256","name":"_reserve0","type":"uint256"},{"internalType":"uint256","name":"_reserve1","type":"uint256"},{"internalType":"uint256","name":"_blockTimestampLast","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"index0","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"index1","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_token0","type":"address"},{"internalType":"address","name":"_token1","type":"address"},{"internalType":"bool","name":"_stable","type":"bool"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"lastObservation","outputs":[{"components":[{"internalType":"uint256","name":"timestamp","type":"uint256"},{"internalType":"uint256","name":"reserve0Cumulative","type":"uint256"},{"internalType":"uint256","name":"reserve1Cumulative","type":"uint256"}],"internalType":"struct Pair.Observation","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"metadata","outputs":[{"internalType":"uint256","name":"dec0","type":"uint256"},{"internalType":"uint256","name":"dec1","type":"uint256"},{"internalType":"uint256","name":"r0","type":"uint256"},{"internalType":"uint256","name":"r1","type":"uint256"},{"internalType":"bool","name":"st","type":"bool"},{"internalType":"address","name":"t0","type":"address"},{"internalType":"address","name":"t1","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"}],"name":"mint","outputs":[{"internalType":"uint256","name":"liquidity","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"observationLength","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"observations","outputs":[{"internalType":"uint256","name":"timestamp","type":"uint256"},{"internalType":"uint256","name":"reserve0Cumulative","type":"uint256"},{"internalType":"uint256","name":"reserve1Cumulative","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"permit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"tokenIn","type":"address"},{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"uint256","name":"points","type":"uint256"}],"name":"prices","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"tokenIn","type":"address"},{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"uint256","name":"granularity","type":"uint256"}],"name":"quote","outputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"reserve0","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"reserve0CumulativeLast","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"reserve1","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"reserve1CumulativeLast","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"tokenIn","type":"address"},{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"uint256","name":"points","type":"uint256"},{"internalType":"uint256","name":"window","type":"uint256"}],"name":"sample","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"}],"name":"skim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"stable","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"supplyIndex0","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"supplyIndex1","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount0Out","type":"uint256"},{"internalType":"uint256","name":"amount1Out","type":"uint256"},{"internalType":"address","name":"to","type":"address"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"swap","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"sync","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"token0","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"token1","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tokens","outputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"dst","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"src","type":"address"},{"internalType":"address","name":"dst","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"}]

Block Transaction Gas Used Reward
view all blocks produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.