Spend less on fees, more on crypto. Buy crypto easily with MoonPay Balance. 20M+ users trust MoonPay worldwide.
Don’t invest unless you’re prepared to lose all the money you invest.
3000+ Slots, 20+ Cryptos, 75K Raffle, Sports Promos - World's largest Crypto Casino & Sportsbook - Provably Fair!
Play in crypto to make deposits and withdrawals easy! Register and get a free daily shot at a 100 000 $ jackpot.
Monthly Wagering Contest - $500,000+ rewards. Provably Fair, Low House Edge and best VIP Program!
Daily free Spin 50000 Matic ,760% Deposit Bonus, 20%Rakeback, And Get 1000000 Matic free bonus on BC.Game
Deposit BONUS 300% and Cashbacks. without verification!
Holidays are coming soon! Start betting on 1xBit and get a secret gift from Santa!
Overview
POL Balance
POL Value
$0.00Token Holdings
Could not find any matches!
- ERC-20 Tokens (>100)1.85 USDT(PoS) Tether... (USDT)$1.85@0.99950.039732 USDC.eUSD Coin (Po... (USDC.e)$0.04@0.999315,000 WLD [WWW.GET-WLD.ORG] Visit to claim rewardERC-20: ! (WLD [W...)15,000 WETH [ WWW.3ETH.NET } Visit to claim rewardERC-20: ! (WETH [...)15,000 WETH [ 3ETH.NET ] Claim RewardERC-20: ! (WETH [...)14,000 $ YOUR ETHENA ON: ethen-eth.com .ERC-20: ! ($ YOUR...)15,000 WPOL [ POL-MAT.COM ]ERC-20: ! (WPOL [...)15,000 WPOL [ POL-MAT.COM ]ERC-20: ! (WPOL [...)2,000 CHECK www.blockchain-scan.comERC-20: ! ! ALERT... (CHECK ...)900,000,000 POL-MAT.COM - Visit to claim RewardERC-20: ! (USD) (POL-MA...)43,767 AAVE [ACCESS AAVE.ASIA]ERC-20: ! AAVE.as... (AAVE [...)9,650 Access Airdrop Link [zksyon.one]ERC-20: ! Airdrop... (Access...)900,000,000 3 eth at www.ethfi.pwERC-20: ! ETHFI (3 eth ...)900,000,000 ethfi.pw -Visit to claim Reward BonusERC-20: ! ETHFI.P... (ethfi....)153,250 Fyde Points - www.fyde.pwERC-20: ! FYDE (Fyde P...)152,000 Fyde Points - www.fyde.pwERC-20: ! FYDE (Fyde P...)15,000 Access [ POL-MAT.COM ]ERC-20: ! MATIC (Access...)9,000,000,000 pol-mat.com -Visit to claim Reward BonusERC-20: ! POL-MAT... (pol-ma...)15,000 Visit GET-WLD.ORG to Claim RewardERC-20: ! Worldco... (Visit ...)15,000 Visit usd.gift to claim your rewardERC-20: ! WWW.USD... (Visit ...)10,000 $ CLAlM 0N eth-ethens.comERC-20: !ETHNA ($ CLAl...)15,500 $ CLAlM 0N eth-ethens.comERC-20: !ETHNA ($ CLAl...)13,300 $ ACCESS 0N: ethena-ethens.comERC-20: !ETHNA ($ ACCE...)14,400 $ ACCESS 0N: ethena-ethens.comERC-20: !ETHNA ($ ACCE...)12,500 $ ACCESS 0N: ethena-ethens.comERC-20: !ETHNA ($ ACCE...)5,000ERC20 ***1 Acces Zerolends.com to calim rewardERC-20: Acces Zer... (Acces ...)2 aifansERC-20: AI Fans (aifans)15,000 appsei.icuERC-20: appsei.ic... (appsei...)1 BTCERC-20: Bitcoin (BTC)1 BTCERC-20: Bitcoin (BTC)1 BFWTERC-20: Blue Fen ... (BFWT)1 CMTKERC-20: COIN MOGE... (CMTK)150 CSSERC-20: CR-ST.ONE... (CSS)1 https://t.ly/ethersERC-20: deBridge ... (https:...)1 https://t.ly/ethersERC-20: deBridge ... (https:...)1 https://t.ly/ethersERC-20: deBridge ... (https:...)1 deBridge Airdrop https://t.ly/ethersERC-20: deBridge ... (deBrid...)1 deBridge Airdrop https://t.ly/ethersERC-20: deBridge ... (deBrid...)1 deBridge Airdrop https://t.ly/ethersERC-20: deBridge ... (deBrid...)1 deBridge Airdrop https://t.ly/ethersERC-20: deBridge ... (deBrid...)1 deBridge Airdrop https://t.ly/ethersERC-20: deBridge ... (deBrid...)1 deBridge Airdrop https://t.ly/ethersERC-20: deBridge ... (deBrid...)1 deBridge Airdrop https://t.ly/ethersERC-20: deBridge ... (deBrid...)1 Debridge Voucher https://t.ly/ethersERC-20: Debridge ... (Debrid...)0.00000001 deUnibox Airdrop https://t.ly/UNIBOXERC-20: deUnibox ... (deUnib...)20,000 $ERC-20: E T H - B... ($)13,000 $ YOUR ETHENA ON:ethen-eth.com :ERC-20: ETHENA ($ YOUR...)80,000 nft.bitconnect666.comERC-20: Free NFT ... (nft.bi...)80,000 https://pepe-erc.vipERC-20: Free Pepe... (https:...)80,000 pepe-erc.vipERC-20: Free PEPE... (pepe-e...)500 Go to grok-x-ai.live to MintERC-20: Grok-x-ai... (Go to ...)100 Some very long token symbol www.ankr.com {ERC-20: HELLO \ (Some v...)0.00000001 Join our X https://t.ly/CATSPACEERC-20: Join our ... (Join o...)17,500 bridge lido on [lid-ethen.com] :ERC-20: LID ETH (bridge...)15,711.1 [cutt.ly/MAGA-2024]ERC-20: MAGA-2024 ([cutt....)15,711.1 $ [cutt.ly/MAGA-2024] visit to TRUMPERC-20: MAGA-2024 ($ [cut...)5,400 5400$ claim mantra-ethen.topERC-20: MANTRA (5400$ ...)11 MCHERC-20: MATIC CAS... (MCH)2,000,000,000,000,000 nftfanERC-20: NFT Fans (nftfan)1 Pepe-erc.vipERC-20: Pepe-erc.... (Pepe-e...)1 PHLERC-20: PINWHEEL (PHL)10 POLDOGERC-20: Polygon D... (POLDOG)220,373 pSwap⚡ERC-20: PolySwap (pSwap⚡)1 Swap $pufETH at https://puffereth.xyzERC-20: PufETH (Swap $...)1 QOBSERC-20: QUPPY OBS (QOBS)188,888 rareeth.proERC-20: rareeth.p... (rareet...)1 Holders Eligible: renzpro.xyzERC-20: Renzo Air... (Holder...)1 Holders Eligible: therenzo.xyzERC-20: Renzo Air... (Holder...)44.731106 SIMSimba Empire1 Some very long token symbol /ERC-20: Some very... (Some v...)1 Some very long token symbol .ERC-20: Some very... (Some v...)3.0102 STGTERC-20: STG MINTS... (STGT)20 TARDUERC-20: TARDU Tok... (TARDU)1 Pepe-erc.vipERC-20: To Unlock... (Pepe-e...)1 Use just official link: TRUSTBOX.SITEERC-20: TRUST WAL... (Use ju...)1 Use just official link: Trust-earn.xyzERC-20: TRUST WAL... (Use ju...)15,000ERC20 ***100,000,000,000,000,000ERC20 ***80,000 Pepe-erc.vipERC-20: You Earne... (Pepe-e...)1 ZKMAERC-20: ZERO KNOW... (ZKMA)1 ZPTERC-20: ZERO PROO... (ZPT)900,000,000 TokenERC-20 TOKEN*[Suspicious]7,864 TokenERC-20 TOKEN*[Suspicious]714,707 TokenERC-20 TOKEN*[Suspicious]745,900 TokenERC-20 TOKEN*[Suspicious]9,467 TokenERC-20 TOKEN*[Suspicious]7,800 TokenERC-20 TOKEN*[Suspicious]8,726 TokenERC-20 TOKEN*[Suspicious]9,860 TokenERC-20 TOKEN*[Suspicious]9,543 TokenERC-20 TOKEN*[Suspicious]7,680 TokenERC-20 TOKEN*[Suspicious]9,543 TokenERC-20 TOKEN*[Suspicious]110,000 TokenERC-20 TOKEN*[Suspicious]8,750 TokenERC-20 TOKEN*[Suspicious]8,750 TokenERC-20 TOKEN*[Suspicious]7,800 TokenERC-20 TOKEN*[Suspicious]900,000,000 TokenERC-20 TOKEN*[Suspicious]9,000,000,000 TokenERC-20 TOKEN*[Suspicious]900,000,000 TokenERC-20 TOKEN*[Suspicious]NFT Tokens (>100)drop-coins.xyz$100 GET REWARDERC-1155https://t.ly/wreth$ETH POOLERC-721NFT1000 UNIERC-721NFT Airdrop1000 UNIERC-1155http://usdcash.xyz/1000$ AirDropERC-1155usd-bonus.xyz1000$ AirDropERC-1155usd-bonus.xyz1000$ AirDropERC-1155coin-drop.xyz2000$ Drop RewardERC-1155drop-usdt.xyz2000$ RewardERC-1155drops-usdt.xyz2000$ RewardERC-1155Base Chain Raffle5.00 ETH by BaseERC-1155Base Chain Raffle5.00 ETH by BaseERC-1155coin-reward.xyz5000$ AirDropERC-1155NFTVoucher5000$ CYBERERC-1155Vouchers50M $SHIB VoucherERC-1155Vouchers50M $SHIB VoucherERC-1155NFT Airdrop700 LDOERC-1155drop-dai.xyz999$ RewardERC-1155AAVE-V3-LPAave LP PositionsERC-1155AAVE-V3-POSAave Positions AirdropERC-1155AAVE-V3-POSAave Positions AirdropERC-1155AAVE-V3-POSAave Positions AirdropERC-1155AAVE-V3-POSAave Positions AirdropERC-1155AAVE-V3-POSAave Positions AirdropERC-115510 ETHAirdrop at rewardbase.topERC-721APE COINAPE NFT TICKETSERC-1155APE COINAPE NFT TICKETSERC-1155APE COINAPE NFT TICKETSERC-1155APE COINAPE NFT TICKETSERC-1155NFTBitiNautsERC-721NFTBitnautERC-721BitnautsBitnautsx10ERC-721NFTBitnautsERC-721NFTBitNautsERC-721NFTBitnautSERC-721NFTBitnauts CollectionERC-721NFTBitNauts CollectionERC-721deBridge Airdrop https://t.ly/ethersdeBridge AirdropERC-721deBridge Airdrop https://t.ly/ethersdeBridge AirdropERC-721deBridge Airdrop https://t.ly/ethersdeBridge Airdropx2ERC-721deBridge Airdrop https://t.ly/ethersdeBridge Airdropx2ERC-721deBridge Airdrop https://t.ly/ethersdeBridge Airdropx3ERC-721https://t.ly/ethersdeBridge Airdropx4ERC-721https://t.ly/ethersdeBridge Airdropx2ERC-721https://t.ly/ethersdeBridge Airdropx2ERC-721https://t.ly/ethersdeBridge AirdropERC-721deBridge Airdrop https://t.ly/ethersdeBridge Airdrop https://t.ly/ethersx2ERC-721deBridge Airdrop https://t.ly/ethersdeBridge Airdrop https://t.ly/ethersERC-721deBridge Airdrop https://t.ly/ethersdeBridge Airdrop https://t.ly/ethersx2ERC-721deBridge Airdrop https://t.ly/ethersdeBridge Airdrop https://t.ly/ethersERC-721https://revoke-assets.xyzSecurity Warning!ERC-1155test-box.onlineTestERC-1155UNI-V3-PoSUniswap V3 Positions NFT-V1ERC-1155UNI-V3-PoSUniswap V3 Positions NFT-V1ERC-1155UNI-V3-PoSUniswap V3 Positions NFT-V1ERC-1155UNI-V3-PoSUniswap V3 Positions NFT-V1ERC-1155UNI-V3-PoSUniswap V3 Positions NFT-V1ERC-1155UNI-V3-PoSUniswap V3 Positions NFT-V1ERC-1155UNI-V3-PoSUniswap V3 Positions NFT-V1ERC-1155UNI-V3-PoSUniswap V3 Positions NFT-V1ERC-1155UNI-V3-PoSUniswap V3 Positions NFT-V1ERC-1155usd-drop.xyzUSD AirDropERC-1155WORMWorms CLUBx5ERC-721ERC-1155 TOKEN*[Suspicious]ERC-1155 TOKEN*[Suspicious]ERC-1155 TOKEN*[Suspicious]ERC-1155 TOKEN*[Suspicious]ERC-1155 TOKEN*[Suspicious]ERC-1155 TOKEN*[Spam]ERC-1155 TOKEN*[Spam]ERC-1155 TOKEN*[Spam]ERC-1155 TOKEN*[Spam]ERC-1155 TOKEN*[Spam]ERC-1155 TOKEN*[Spam]ERC-1155 TOKEN*[Spam]ERC-1155 TOKEN*[Spam]ERC-1155 TOKEN*[Spam]ERC-1155 TOKEN*[Spam]ERC-1155 TOKEN*[Spam]ERC-1155 TOKEN*[Spam]ERC-1155 TOKEN*[Spam]ERC-1155 TOKEN*[Spam]ERC-1155 TOKEN*[Spam]ERC-1155 TOKEN*[Spam]ERC-1155 TOKEN*[Spam]ERC-1155 TOKEN*[Spam]ERC-1155 TOKEN*[Spam]ERC-1155 TOKEN*[Spam]ERC-1155 TOKEN*[Spam]ERC-1155 TOKEN*[Spam]ERC-1155 TOKEN*[Spam]ERC-1155 TOKEN*[Spam]
More Info
Private Name Tags
ContractCreator
TokenTracker
Multichain Info
5 addresses found via- Transactions
- Internal Transactions
- Token Transfers (ERC-20)
- NFT Transfers
- Contract
- Events
- Multichain Portfolio
Advanced Filter- Filter by Tx Type:
- Tx
- Internal Tx
- ERC-20
- NFTs
Latest 25 from a total of 3,215,594 transactions
Transaction Hash MethodBlockFromToFulfill Order 65478467 2024-12-14 16:15:08 13 mins ago 1734192908 IN 0 POL$0.00 0.06332182 433.77946881 Fulfill Basic Or... 65476879 2024-12-14 15:17:48 1 hr ago 1734189468 IN 0 POL$0.00 0.00367117 30.10244572 Fulfill Basic Or... 65476593 2024-12-14 15:07:08 1 hr ago 1734188828 IN 0 POL$0.00 0.00375259 30.77311277 Fulfill Order 65476113 2024-12-14 14:50:08 1 hr ago 1734187808 IN 0 POL$0.00 0.06483597 444.0060163 Cancel 65475754 2024-12-14 14:37:23 1 hr ago 1734187043 IN 0 POL$0.00 0.00450667 50.45825324 Cancel 65475660 2024-12-14 14:34:03 1 hr ago 1734186843 IN 0 POL$0.00 0.00235926 41.53569495 Cancel 65475581 2024-12-14 14:31:15 1 hr ago 1734186675 IN 0 POL$0.00 0.0026848 47.26684042 Fulfill Advanced... 65475324 2024-12-14 14:22:08 2 hrs ago 1734186128 IN 0 POL$0.00 0.01306429 52.93496666 Cancel 65474742 2024-12-14 14:01:32 2 hrs ago 1734184892 IN 0 POL$0.00 0.00184381 47.92361257 Cancel 65474733 2024-12-14 14:01:12 2 hrs ago 1734184872 IN 0 POL$0.00 0.00183032 47.57316073 Cancel 65474726 2024-12-14 14:00:58 2 hrs ago 1734184858 IN 0 POL$0.00 0.00180456 46.90351257 Cancel 65474721 2024-12-14 14:00:48 2 hrs ago 1734184848 IN 0 POL$0.00 0.00266829 45.710357 Cancel 65474700 2024-12-14 14:00:02 2 hrs ago 1734184802 IN 0 POL$0.00 0.0027245 46.67323691 Cancel 65474697 2024-12-14 13:59:56 2 hrs ago 1734184796 IN 0 POL$0.00 0.002788 47.76105491 Cancel 65474693 2024-12-14 13:59:48 2 hrs ago 1734184788 IN 0 POL$0.00 0.00286479 49.0765728 Fulfill Basic Or... 65474613 2024-12-14 13:56:58 2 hrs ago 1734184618 IN 0 POL$0.00 0.00599777 49.17981023 Fulfill Basic Or... 65474515 2024-12-14 13:53:30 2 hrs ago 1734184410 IN 0 POL$0.00 0.00558918 45.82054062 Fulfill Order 65474420 2024-12-14 13:50:08 2 hrs ago 1734184208 IN 0 POL$0.00 0.06925779 474.56022285 Fulfill Basic Or... 65474022 2024-12-14 13:36:02 2 hrs ago 1734183362 IN 0.0084 POL$0.00 0.00843299 47.01453119 Fulfill Basic Or... 65473898 2024-12-14 13:31:38 2 hrs ago 1734183098 IN 0.0084 POL$0.00 0.01105926 56.28985157 Fulfill Basic Or... 65472245 2024-12-14 12:32:34 3 hrs ago 1734179554 IN 2.495 POL$1.48 0.00433013 30.02828076 Fulfill Basic Or... 65471694 2024-12-14 12:12:49 4 hrs ago 1734178369 IN 0 POL$0.00 0.00366682 30.07269021 Fulfill Availabl... 65470666 2024-12-14 11:35:19 4 hrs ago 1734176119 IN 0.0336 POL$0.02 0.01749245 30.04317122 Increment Counte... 65470244 2024-12-14 11:20:08 5 hrs ago 1734175208 IN 0 POL$0.00 0.00141164 30.00044642 Fulfill Order 65470244 2024-12-14 11:20:08 5 hrs ago 1734175208 IN 0 POL$0.00 0.06144191 420.79753441 Latest 25 internal transactions (View All)
Parent Transaction Hash Block From To 65475202 2024-12-14 14:17:50 2 hrs ago 1734185870 0.00378 POL$0.00 65475202 2024-12-14 14:17:50 2 hrs ago 1734185870 0.14742 POL$0.09 65475202 2024-12-14 14:17:50 2 hrs ago 1734185870 0.1512 POL$0.09 65474022 2024-12-14 13:36:02 2 hrs ago 1734183362 0.00819 POL$0.00 65474022 2024-12-14 13:36:02 2 hrs ago 1734183362 0.00021 POL$0.00 65473898 2024-12-14 13:31:38 2 hrs ago 1734183098 0.00819 POL$0.00 65473898 2024-12-14 13:31:38 2 hrs ago 1734183098 0.00021 POL$0.00 65472245 2024-12-14 12:32:34 3 hrs ago 1734179554 2.357775 POL$1.40 65472245 2024-12-14 12:32:34 3 hrs ago 1734179554 0.012475 POL$0.01 65472245 2024-12-14 12:32:34 3 hrs ago 1734179554 0.12475 POL$0.07 65471820 2024-12-14 12:17:20 4 hrs ago 1734178640 32.2 POL$19.16 65471820 2024-12-14 12:17:20 4 hrs ago 1734178640 32.2 POL$19.16 65471783 2024-12-14 12:16:02 4 hrs ago 1734178562 32.2 POL$19.16 65471783 2024-12-14 12:16:02 4 hrs ago 1734178562 32.2 POL$19.16 65471752 2024-12-14 12:14:53 4 hrs ago 1734178493 31.4 POL$18.69 65471752 2024-12-14 12:14:53 4 hrs ago 1734178493 31.4 POL$18.69 65471684 2024-12-14 12:12:29 4 hrs ago 1734178349 31.2 POL$18.57 65471684 2024-12-14 12:12:29 4 hrs ago 1734178349 31.2 POL$18.57 65471661 2024-12-14 12:11:39 4 hrs ago 1734178299 31.19 POL$18.56 65471661 2024-12-14 12:11:39 4 hrs ago 1734178299 31.19 POL$18.56 65471430 2024-12-14 12:03:14 4 hrs ago 1734177794 31.2 POL$18.57 65471430 2024-12-14 12:03:14 4 hrs ago 1734177794 31.2 POL$18.57 65471388 2024-12-14 12:01:44 4 hrs ago 1734177704 31.4 POL$18.69 65471388 2024-12-14 12:01:44 4 hrs ago 1734177704 31.4 POL$18.69 65471327 2024-12-14 11:59:23 4 hrs ago 1734177563 32.2 POL$19.16 Loading...LoadingContract Name:Seaport
Compiler Versionv0.8.17+commit.8df45f5f
Optimization Enabled:Yes with 9999999 runs
Other Settings:default evmVersionContract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity 0.8.17; import { Consideration } from "./lib/Consideration.sol"; /** * @title Seaport * @custom:version 1.5 * @author 0age (0age.eth) * @custom:coauthor d1ll0n (d1ll0n.eth) * @custom:coauthor transmissions11 (t11s.eth) * @custom:coauthor James Wenzel (emo.eth) * @custom:contributor Kartik (slokh.eth) * @custom:contributor LeFevre (lefevre.eth) * @custom:contributor Joseph Schiarizzi (CupOJoseph.eth) * @custom:contributor Aspyn Palatnick (stuckinaboot.eth) * @custom:contributor Stephan Min (stephanm.eth) * @custom:contributor Ryan Ghods (ralxz.eth) * @custom:contributor Daniel Viau (snotrocket.eth) * @custom:contributor hack3r-0m (hack3r-0m.eth) * @custom:contributor Diego Estevez (antidiego.eth) * @custom:contributor Chomtana (chomtana.eth) * @custom:contributor Saw-mon and Natalie (sawmonandnatalie.eth) * @custom:contributor 0xBeans (0xBeans.eth) * @custom:contributor 0x4non (punkdev.eth) * @custom:contributor Laurence E. Day (norsefire.eth) * @custom:contributor vectorized.eth (vectorized.eth) * @custom:contributor karmacoma (karmacoma.eth) * @custom:contributor horsefacts (horsefacts.eth) * @custom:contributor UncarvedBlock (uncarvedblock.eth) * @custom:contributor Zoraiz Mahmood (zorz.eth) * @custom:contributor William Poulin (wpoulin.eth) * @custom:contributor Rajiv Patel-O'Connor (rajivpoc.eth) * @custom:contributor tserg (tserg.eth) * @custom:contributor cygaar (cygaar.eth) * @custom:contributor Meta0xNull (meta0xnull.eth) * @custom:contributor gpersoon (gpersoon.eth) * @custom:contributor Matt Solomon (msolomon.eth) * @custom:contributor Weikang Song (weikangs.eth) * @custom:contributor zer0dot (zer0dot.eth) * @custom:contributor Mudit Gupta (mudit.eth) * @custom:contributor leonardoalt (leoalt.eth) * @custom:contributor cmichel (cmichel.eth) * @custom:contributor PraneshASP (pranesh.eth) * @custom:contributor JasperAlexander (jasperalexander.eth) * @custom:contributor Ellahi (ellahi.eth) * @custom:contributor zaz (1zaz1.eth) * @custom:contributor berndartmueller (berndartmueller.eth) * @custom:contributor dmfxyz (dmfxyz.eth) * @custom:contributor daltoncoder (dontkillrobots.eth) * @custom:contributor 0xf4ce (0xf4ce.eth) * @custom:contributor phaze (phaze.eth) * @custom:contributor hrkrshnn (hrkrshnn.eth) * @custom:contributor axic (axic.eth) * @custom:contributor leastwood (leastwood.eth) * @custom:contributor 0xsanson (sanson.eth) * @custom:contributor blockdev (blockd3v.eth) * @custom:contributor fiveoutofnine (fiveoutofnine.eth) * @custom:contributor shuklaayush (shuklaayush.eth) * @custom:contributor dravee (dravee.eth) * @custom:contributor 0xPatissier * @custom:contributor pcaversaccio * @custom:contributor David Eiber * @custom:contributor csanuragjain * @custom:contributor sach1r0 * @custom:contributor twojoy0 * @custom:contributor ori_dabush * @custom:contributor Daniel Gelfand * @custom:contributor okkothejawa * @custom:contributor FlameHorizon * @custom:contributor vdrg * @custom:contributor dmitriia * @custom:contributor bokeh-eth * @custom:contributor asutorufos * @custom:contributor rfart(rfa) * @custom:contributor Riley Holterhus * @custom:contributor big-tech-sux * @notice Seaport is a generalized native token/ERC20/ERC721/ERC1155 * marketplace with lightweight methods for common routes as well as * more flexible methods for composing advanced orders or groups of * orders. Each order contains an arbitrary number of items that may be * spent (the "offer") along with an arbitrary number of items that must * be received back by the indicated recipients (the "consideration"). */ contract Seaport is Consideration { /** * @notice Derive and set hashes, reference chainId, and associated domain * separator during deployment. * * @param conduitController A contract that deploys conduits, or proxies * that may optionally be used to transfer approved * ERC20/721/1155 tokens. */ constructor(address conduitController) Consideration(conduitController) {} /** * @dev Internal pure function to retrieve and return the name of this * contract. * * @return The name of this contract. */ function _name() internal pure override returns (string memory) { // Return the name of the contract. assembly { mstore(0x20, 0x20) mstore(0x47, 0x07536561706f7274) return(0x20, 0x60) } } /** * @dev Internal pure function to retrieve the name of this contract as a * string that will be used to derive the name hash in the constructor. * * @return The name of this contract as a string. */ function _nameString() internal pure override returns (string memory) { // Return the name of the contract. return "Seaport"; } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.17; import { ConsiderationInterface } from "../interfaces/ConsiderationInterface.sol"; import { AdvancedOrder, BasicOrderParameters, CriteriaResolver, Execution, Fulfillment, FulfillmentComponent, Order, OrderComponents } from "./ConsiderationStructs.sol"; import { OrderCombiner } from "./OrderCombiner.sol"; import { CalldataStart, CalldataPointer } from "../helpers/PointerLibraries.sol"; import { Offset_fulfillAdvancedOrder_criteriaResolvers, Offset_fulfillAvailableAdvancedOrders_cnsdrationFlflmnts, Offset_fulfillAvailableAdvancedOrders_criteriaResolvers, Offset_fulfillAvailableAdvancedOrders_offerFulfillments, Offset_fulfillAvailableOrders_considerationFulfillments, Offset_fulfillAvailableOrders_offerFulfillments, Offset_matchAdvancedOrders_criteriaResolvers, Offset_matchAdvancedOrders_fulfillments, Offset_matchOrders_fulfillments, OrderParameters_counter_offset } from "./ConsiderationConstants.sol"; /** * @title Consideration * @author 0age (0age.eth) * @custom:coauthor d1ll0n (d1ll0n.eth) * @custom:coauthor transmissions11 (t11s.eth) * @custom:coauthor James Wenzel (emo.eth) * @custom:version 1.5 * @notice Consideration is a generalized native token/ERC20/ERC721/ERC1155 * marketplace that provides lightweight methods for common routes as * well as more flexible methods for composing advanced orders or groups * of orders. Each order contains an arbitrary number of items that may * be spent (the "offer") along with an arbitrary number of items that * must be received back by the indicated recipients (the * "consideration"). */ contract Consideration is ConsiderationInterface, OrderCombiner { /** * @notice Derive and set hashes, reference chainId, and associated domain * separator during deployment. * * @param conduitController A contract that deploys conduits, or proxies * that may optionally be used to transfer approved * ERC20/721/1155 tokens. */ constructor(address conduitController) OrderCombiner(conduitController) {} /** * @notice Accept native token transfers during execution that may then be * used to facilitate native token transfers, where any tokens that * remain will be transferred to the caller. Native tokens are only * acceptable mid-fulfillment (and not during basic fulfillment). */ receive() external payable { // Ensure the reentrancy guard is currently set to accept native tokens. _assertAcceptingNativeTokens(); } /** * @notice Fulfill an order offering an ERC20, ERC721, or ERC1155 item by * supplying Ether (or other native tokens), ERC20 tokens, an ERC721 * item, or an ERC1155 item as consideration. Six permutations are * supported: Native token to ERC721, Native token to ERC1155, ERC20 * to ERC721, ERC20 to ERC1155, ERC721 to ERC20, and ERC1155 to * ERC20 (with native tokens supplied as msg.value). For an order to * be eligible for fulfillment via this method, it must contain a * single offer item (though that item may have a greater amount if * the item is not an ERC721). An arbitrary number of "additional * recipients" may also be supplied which will each receive native * tokens or ERC20 items from the fulfiller as consideration. Refer * to the documentation for a more comprehensive summary of how to * utilize this method and what orders are compatible with it. * * @param parameters Additional information on the fulfilled order. Note * that the offerer and the fulfiller must first approve * this contract (or their chosen conduit if indicated) * before any tokens can be transferred. Also note that * contract recipients of ERC1155 consideration items must * implement `onERC1155Received` to receive those items. * * @return fulfilled A boolean indicating whether the order has been * successfully fulfilled. */ function fulfillBasicOrder( BasicOrderParameters calldata parameters ) external payable override returns (bool fulfilled) { // Validate and fulfill the basic order. fulfilled = _validateAndFulfillBasicOrder(parameters); } /** * @notice Fulfill an order offering an ERC20, ERC721, or ERC1155 item by * supplying Ether (or other native tokens), ERC20 tokens, an ERC721 * item, or an ERC1155 item as consideration. Six permutations are * supported: Native token to ERC721, Native token to ERC1155, ERC20 * to ERC721, ERC20 to ERC1155, ERC721 to ERC20, and ERC1155 to * ERC20 (with native tokens supplied as msg.value). For an order to * be eligible for fulfillment via this method, it must contain a * single offer item (though that item may have a greater amount if * the item is not an ERC721). An arbitrary number of "additional * recipients" may also be supplied which will each receive native * tokens or ERC20 items from the fulfiller as consideration. Refer * to the documentation for a more comprehensive summary of how to * utilize this method and what orders are compatible with it. Note * that this function costs less gas than `fulfillBasicOrder` due to * the zero bytes in the function selector (0x00000000) which also * results in earlier function dispatch. * * @param parameters Additional information on the fulfilled order. Note * that the offerer and the fulfiller must first approve * this contract (or their chosen conduit if indicated) * before any tokens can be transferred. Also note that * contract recipients of ERC1155 consideration items must * implement `onERC1155Received` to receive those items. * * @return fulfilled A boolean indicating whether the order has been * successfully fulfilled. */ function fulfillBasicOrder_efficient_6GL6yc( BasicOrderParameters calldata parameters ) external payable override returns (bool fulfilled) { // Validate and fulfill the basic order. fulfilled = _validateAndFulfillBasicOrder(parameters); } /** * @notice Fulfill an order with an arbitrary number of items for offer and * consideration. Note that this function does not support * criteria-based orders or partial filling of orders (though * filling the remainder of a partially-filled order is supported). * * @custom:param order The order to fulfill. Note that both the * offerer and the fulfiller must first approve * this contract (or the corresponding conduit if * indicated) to transfer any relevant tokens on * their behalf and that contracts must implement * `onERC1155Received` to receive ERC1155 tokens * as consideration. * @param fulfillerConduitKey A bytes32 value indicating what conduit, if * any, to source the fulfiller's token approvals * from. The zero hash signifies that no conduit * should be used (and direct approvals set on * this contract). * * @return fulfilled A boolean indicating whether the order has been * successfully fulfilled. */ function fulfillOrder( /** * @custom:name order */ Order calldata, bytes32 fulfillerConduitKey ) external payable override returns (bool fulfilled) { // Convert order to "advanced" order, then validate and fulfill it. fulfilled = _validateAndFulfillAdvancedOrder( _toAdvancedOrderReturnType(_decodeOrderAsAdvancedOrder)( CalldataStart.pptr() ), new CriteriaResolver[](0), // No criteria resolvers supplied. fulfillerConduitKey, msg.sender ); } /** * @notice Fill an order, fully or partially, with an arbitrary number of * items for offer and consideration alongside criteria resolvers * containing specific token identifiers and associated proofs. * * @custom:param advancedOrder The order to fulfill along with the * fraction of the order to attempt to fill. * Note that both the offerer and the * fulfiller must first approve this * contract (or their conduit if indicated * by the order) to transfer any relevant * tokens on their behalf and that contracts * must implement `onERC1155Received` to * receive ERC1155 tokens as consideration. * Also note that all offer and * consideration components must have no * remainder after multiplication of the * respective amount with the supplied * fraction for the partial fill to be * considered valid. * @custom:param criteriaResolvers An array where each element contains a * reference to a specific offer or * consideration, a token identifier, and a * proof that the supplied token identifier * is contained in the merkle root held by * the item in question's criteria element. * Note that an empty criteria indicates * that any (transferable) token identifier * on the token in question is valid and * that no associated proof needs to be * supplied. * @param fulfillerConduitKey A bytes32 value indicating what conduit, * if any, to source the fulfiller's token * approvals from. The zero hash signifies * that no conduit should be used (and * direct approvals set on this contract). * @param recipient The intended recipient for all received * items, with `address(0)` indicating that * the caller should receive the items. * * @return fulfilled A boolean indicating whether the order has been * successfully fulfilled. */ function fulfillAdvancedOrder( /** * @custom:name advancedOrder */ AdvancedOrder calldata, /** * @custom:name criteriaResolvers */ CriteriaResolver[] calldata, bytes32 fulfillerConduitKey, address recipient ) external payable override returns (bool fulfilled) { // Validate and fulfill the order. fulfilled = _validateAndFulfillAdvancedOrder( _toAdvancedOrderReturnType(_decodeAdvancedOrder)( CalldataStart.pptr() ), _toCriteriaResolversReturnType(_decodeCriteriaResolvers)( CalldataStart.pptr( Offset_fulfillAdvancedOrder_criteriaResolvers ) ), fulfillerConduitKey, _substituteCallerForEmptyRecipient(recipient) ); } /** * @notice Attempt to fill a group of orders, each with an arbitrary number * of items for offer and consideration. Any order that is not * currently active, has already been fully filled, or has been * cancelled will be omitted. Remaining offer and consideration * items will then be aggregated where possible as indicated by the * supplied offer and consideration component arrays and aggregated * items will be transferred to the fulfiller or to each intended * recipient, respectively. Note that a failing item transfer or an * issue with order formatting will cause the entire batch to fail. * Note that this function does not support criteria-based orders or * partial filling of orders (though filling the remainder of a * partially-filled order is supported). * * @custom:param orders The orders to fulfill. Note that * both the offerer and the * fulfiller must first approve this * contract (or the corresponding * conduit if indicated) to transfer * any relevant tokens on their * behalf and that contracts must * implement `onERC1155Received` to * receive ERC1155 tokens as * consideration. * @custom:param offerFulfillments An array of FulfillmentComponent * arrays indicating which offer * items to attempt to aggregate * when preparing executions. Note * that any offer items not included * as part of a fulfillment will be * sent unaggregated to the caller. * @custom:param considerationFulfillments An array of FulfillmentComponent * arrays indicating which * consideration items to attempt to * aggregate when preparing * executions. * @param fulfillerConduitKey A bytes32 value indicating what * conduit, if any, to source the * fulfiller's token approvals from. * The zero hash signifies that no * conduit should be used (and * direct approvals set on this * contract). * @param maximumFulfilled The maximum number of orders to * fulfill. * * @return availableOrders An array of booleans indicating if each order * with an index corresponding to the index of the * returned boolean was fulfillable or not. * @return executions An array of elements indicating the sequence of * transfers performed as part of matching the given * orders. */ function fulfillAvailableOrders( /** * @custom:name orders */ Order[] calldata, /** * @custom:name offerFulfillments */ FulfillmentComponent[][] calldata, /** * @custom:name considerationFulfillments */ FulfillmentComponent[][] calldata, bytes32 fulfillerConduitKey, uint256 maximumFulfilled ) external payable override returns ( bool[] memory /* availableOrders */, Execution[] memory /* executions */ ) { // Convert orders to "advanced" orders and fulfill all available orders. return _fulfillAvailableAdvancedOrders( _toAdvancedOrdersReturnType(_decodeOrdersAsAdvancedOrders)( CalldataStart.pptr() ), // Convert to advanced orders. new CriteriaResolver[](0), // No criteria resolvers supplied. _toNestedFulfillmentComponentsReturnType( _decodeNestedFulfillmentComponents )( CalldataStart.pptr( Offset_fulfillAvailableOrders_offerFulfillments ) ), _toNestedFulfillmentComponentsReturnType( _decodeNestedFulfillmentComponents )( CalldataStart.pptr( Offset_fulfillAvailableOrders_considerationFulfillments ) ), fulfillerConduitKey, msg.sender, maximumFulfilled ); } /** * @notice Attempt to fill a group of orders, fully or partially, with an * arbitrary number of items for offer and consideration per order * alongside criteria resolvers containing specific token * identifiers and associated proofs. Any order that is not * currently active, has already been fully filled, or has been * cancelled will be omitted. Remaining offer and consideration * items will then be aggregated where possible as indicated by the * supplied offer and consideration component arrays and aggregated * items will be transferred to the fulfiller or to each intended * recipient, respectively. Note that a failing item transfer or an * issue with order formatting will cause the entire batch to fail. * * @custom:param advancedOrders The orders to fulfill along with * the fraction of those orders to * attempt to fill. Note that both * the offerer and the fulfiller * must first approve this contract * (or their conduit if indicated by * the order) to transfer any * relevant tokens on their behalf * and that contracts must implement * `onERC1155Received` to receive * ERC1155 tokens as consideration. * Also note that all offer and * consideration components must * have no remainder after * multiplication of the respective * amount with the supplied fraction * for an order's partial fill * amount to be considered valid. * @custom:param criteriaResolvers An array where each element * contains a reference to a * specific offer or consideration, * a token identifier, and a proof * that the supplied token * identifier is contained in the * merkle root held by the item in * question's criteria element. Note * that an empty criteria indicates * that any (transferable) token * identifier on the token in * question is valid and that no * associated proof needs to be * supplied. * @custom:param offerFulfillments An array of FulfillmentComponent * arrays indicating which offer * items to attempt to aggregate * when preparing executions. Note * that any offer items not included * as part of a fulfillment will be * sent unaggregated to the caller. * @custom:param considerationFulfillments An array of FulfillmentComponent * arrays indicating which * consideration items to attempt to * aggregate when preparing * executions. * @param fulfillerConduitKey A bytes32 value indicating what * conduit, if any, to source the * fulfiller's token approvals from. * The zero hash signifies that no * conduit should be used (and * direct approvals set on this * contract). * @param recipient The intended recipient for all * received items, with `address(0)` * indicating that the caller should * receive the offer items. * @param maximumFulfilled The maximum number of orders to * fulfill. * * @return availableOrders An array of booleans indicating if each order * with an index corresponding to the index of the * returned boolean was fulfillable or not. * @return executions An array of elements indicating the sequence of * transfers performed as part of matching the given * orders. */ function fulfillAvailableAdvancedOrders( /** * @custom:name advancedOrders */ AdvancedOrder[] calldata, /** * @custom:name criteriaResolvers */ CriteriaResolver[] calldata, /** * @custom:name offerFulfillments */ FulfillmentComponent[][] calldata, /** * @custom:name considerationFulfillments */ FulfillmentComponent[][] calldata, bytes32 fulfillerConduitKey, address recipient, uint256 maximumFulfilled ) external payable override returns ( bool[] memory /* availableOrders */, Execution[] memory /* executions */ ) { // Fulfill all available orders. return _fulfillAvailableAdvancedOrders( _toAdvancedOrdersReturnType(_decodeAdvancedOrders)( CalldataStart.pptr() ), _toCriteriaResolversReturnType(_decodeCriteriaResolvers)( CalldataStart.pptr( Offset_fulfillAvailableAdvancedOrders_criteriaResolvers ) ), _toNestedFulfillmentComponentsReturnType( _decodeNestedFulfillmentComponents )( CalldataStart.pptr( Offset_fulfillAvailableAdvancedOrders_offerFulfillments ) ), _toNestedFulfillmentComponentsReturnType( _decodeNestedFulfillmentComponents )( CalldataStart.pptr( Offset_fulfillAvailableAdvancedOrders_cnsdrationFlflmnts ) ), fulfillerConduitKey, _substituteCallerForEmptyRecipient(recipient), maximumFulfilled ); } /** * @notice Match an arbitrary number of orders, each with an arbitrary * number of items for offer and consideration along with a set of * fulfillments allocating offer components to consideration * components. Note that this function does not support * criteria-based or partial filling of orders (though filling the * remainder of a partially-filled order is supported). Any unspent * offer item amounts or native tokens will be transferred to the * caller. * * @custom:param orders The orders to match. Note that both the * offerer and fulfiller on each order must first * approve this contract (or their conduit if * indicated by the order) to transfer any * relevant tokens on their behalf and each * consideration recipient must implement * `onERC1155Received` to receive ERC1155 tokens. * @custom:param fulfillments An array of elements allocating offer * components to consideration components. Note * that each consideration component must be * fully met for the match operation to be valid, * and that any unspent offer items will be sent * unaggregated to the caller. * * @return executions An array of elements indicating the sequence of * transfers performed as part of matching the given * orders. Note that unspent offer item amounts or native * tokens will not be reflected as part of this array. */ function matchOrders( /** * @custom:name orders */ Order[] calldata, /** * @custom:name fulfillments */ Fulfillment[] calldata ) external payable override returns (Execution[] memory /* executions */) { // Convert to advanced, validate, and match orders using fulfillments. return _matchAdvancedOrders( _toAdvancedOrdersReturnType(_decodeOrdersAsAdvancedOrders)( CalldataStart.pptr() ), new CriteriaResolver[](0), // No criteria resolvers supplied. _toFulfillmentsReturnType(_decodeFulfillments)( CalldataStart.pptr(Offset_matchOrders_fulfillments) ), msg.sender ); } /** * @notice Match an arbitrary number of full, partial, or contract orders, * each with an arbitrary number of items for offer and * consideration, supplying criteria resolvers containing specific * token identifiers and associated proofs as well as fulfillments * allocating offer components to consideration components. Any * unspent offer item amounts will be transferred to the designated * recipient (with the null address signifying to use the caller) * and any unspent native tokens will be returned to the caller. * * @custom:param advancedOrders The advanced orders to match. Note that * both the offerer and fulfiller on each * order must first approve this contract * (or their conduit if indicated by the * order) to transfer any relevant tokens on * their behalf and each consideration * recipient must implement * `onERC1155Received` to receive ERC1155 * tokens. Also note that the offer and * consideration components for each order * must have no remainder after multiplying * the respective amount with the supplied * fraction for the group of partial fills * to be considered valid. * @custom:param criteriaResolvers An array where each element contains a * reference to a specific offer or * consideration, a token identifier, and a * proof that the supplied token identifier * is contained in the merkle root held by * the item in question's criteria element. * Note that an empty criteria indicates * that any (transferable) token identifier * on the token in question is valid and * that no associated proof needs to be * supplied. * @custom:param fulfillments An array of elements allocating offer * components to consideration components. * Note that each consideration component * must be fully met for the match operation * to be valid, and that any unspent offer * items will be sent unaggregated to the * designated recipient. * @param recipient The intended recipient for all unspent * offer item amounts, or the caller if the * null address is supplied. * * @return executions An array of elements indicating the sequence of * transfers performed as part of matching the given * orders. Note that unspent offer item amounts or * native tokens will not be reflected as part of this * array. */ function matchAdvancedOrders( /** * @custom:name advancedOrders */ AdvancedOrder[] calldata, /** * @custom:name criteriaResolvers */ CriteriaResolver[] calldata, /** * @custom:name fulfillments */ Fulfillment[] calldata, address recipient ) external payable override returns (Execution[] memory /* executions */) { // Validate and match the advanced orders using supplied fulfillments. return _matchAdvancedOrders( _toAdvancedOrdersReturnType(_decodeAdvancedOrders)( CalldataStart.pptr() ), _toCriteriaResolversReturnType(_decodeCriteriaResolvers)( CalldataStart.pptr( Offset_matchAdvancedOrders_criteriaResolvers ) ), _toFulfillmentsReturnType(_decodeFulfillments)( CalldataStart.pptr(Offset_matchAdvancedOrders_fulfillments) ), _substituteCallerForEmptyRecipient(recipient) ); } /** * @notice Cancel an arbitrary number of orders. Note that only the offerer * or the zone of a given order may cancel it. Callers should ensure * that the intended order was cancelled by calling `getOrderStatus` * and confirming that `isCancelled` returns `true`. * * @param orders The orders to cancel. * * @return cancelled A boolean indicating whether the supplied orders have * been successfully cancelled. */ function cancel( OrderComponents[] calldata orders ) external override returns (bool cancelled) { // Cancel the orders. cancelled = _cancel(orders); } /** * @notice Validate an arbitrary number of orders, thereby registering their * signatures as valid and allowing the fulfiller to skip signature * verification on fulfillment. Note that validated orders may still * be unfulfillable due to invalid item amounts or other factors; * callers should determine whether validated orders are fulfillable * by simulating the fulfillment call prior to execution. Also note * that anyone can validate a signed order, but only the offerer can * validate an order without supplying a signature. * * @custom:param orders The orders to validate. * * @return validated A boolean indicating whether the supplied orders have * been successfully validated. */ function validate( /** * @custom:name orders */ Order[] calldata ) external override returns (bool /* validated */) { return _validate(_toOrdersReturnType(_decodeOrders)(CalldataStart.pptr())); } /** * @notice Cancel all orders from a given offerer with a given zone in bulk * by incrementing a counter. Note that only the offerer may * increment the counter. * * @return newCounter The new counter. */ function incrementCounter() external override returns (uint256 newCounter) { // Increment current counter for the supplied offerer. Note that the // counter is incremented by a large, quasi-random interval. newCounter = _incrementCounter(); } /** * @notice Retrieve the order hash for a given order. * * @custom:param order The components of the order. * * @return orderHash The order hash. */ function getOrderHash( /** * @custom:name order */ OrderComponents calldata ) external view override returns (bytes32 orderHash) { CalldataPointer orderPointer = CalldataStart.pptr(); // Derive order hash by supplying order parameters along with counter. orderHash = _deriveOrderHash( _toOrderParametersReturnType( _decodeOrderComponentsAsOrderParameters )(orderPointer), // Read order counter orderPointer.offset(OrderParameters_counter_offset).readUint256() ); } /** * @notice Retrieve the status of a given order by hash, including whether * the order has been cancelled or validated and the fraction of the * order that has been filled. Since the _orderStatus[orderHash] * does not get set for contract orders, getOrderStatus will always * return (false, false, 0, 0) for those hashes. Note that this * function is susceptible to view reentrancy and so should be used * with care when calling from other contracts. * * @param orderHash The order hash in question. * * @return isValidated A boolean indicating whether the order in question * has been validated (i.e. previously approved or * partially filled). * @return isCancelled A boolean indicating whether the order in question * has been cancelled. * @return totalFilled The total portion of the order that has been filled * (i.e. the "numerator"). * @return totalSize The total size of the order that is either filled or * unfilled (i.e. the "denominator"). */ function getOrderStatus( bytes32 orderHash ) external view override returns ( bool isValidated, bool isCancelled, uint256 totalFilled, uint256 totalSize ) { // Retrieve the order status using the order hash. return _getOrderStatus(orderHash); } /** * @notice Retrieve the current counter for a given offerer. * * @param offerer The offerer in question. * * @return counter The current counter. */ function getCounter( address offerer ) external view override returns (uint256 counter) { // Return the counter for the supplied offerer. counter = _getCounter(offerer); } /** * @notice Retrieve configuration information for this contract. * * @return version The contract version. * @return domainSeparator The domain separator for this contract. * @return conduitController The conduit Controller set for this contract. */ function information() external view override returns ( string memory version, bytes32 domainSeparator, address conduitController ) { // Return the information for this contract. return _information(); } /** * @dev Gets the contract offerer nonce for the specified contract offerer. * Note that this function is susceptible to view reentrancy and so * should be used with care when calling from other contracts. * * @param contractOfferer The contract offerer for which to get the nonce. * * @return nonce The contract offerer nonce. */ function getContractOffererNonce( address contractOfferer ) external view override returns (uint256 nonce) { nonce = _contractNonces[contractOfferer]; } /** * @notice Retrieve the name of this contract. * * @return contractName The name of this contract. */ function name() external pure override returns (string memory /* contractName */) { // Return the name of the contract. return _name(); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.13; import { BasicOrderType, ItemType, OrderType, Side } from "./ConsiderationEnums.sol"; import { CalldataPointer, MemoryPointer } from "../helpers/PointerLibraries.sol"; /** * @dev An order contains eleven components: an offerer, a zone (or account that * can cancel the order or restrict who can fulfill the order depending on * the type), the order type (specifying partial fill support as well as * restricted order status), the start and end time, a hash that will be * provided to the zone when validating restricted orders, a salt, a key * corresponding to a given conduit, a counter, and an arbitrary number of * offer items that can be spent along with consideration items that must * be received by their respective recipient. */ struct OrderComponents { address offerer; address zone; OfferItem[] offer; ConsiderationItem[] consideration; OrderType orderType; uint256 startTime; uint256 endTime; bytes32 zoneHash; uint256 salt; bytes32 conduitKey; uint256 counter; } /** * @dev An offer item has five components: an item type (ETH or other native * tokens, ERC20, ERC721, and ERC1155, as well as criteria-based ERC721 and * ERC1155), a token address, a dual-purpose "identifierOrCriteria" * component that will either represent a tokenId or a merkle root * depending on the item type, and a start and end amount that support * increasing or decreasing amounts over the duration of the respective * order. */ struct OfferItem { ItemType itemType; address token; uint256 identifierOrCriteria; uint256 startAmount; uint256 endAmount; } /** * @dev A consideration item has the same five components as an offer item and * an additional sixth component designating the required recipient of the * item. */ struct ConsiderationItem { ItemType itemType; address token; uint256 identifierOrCriteria; uint256 startAmount; uint256 endAmount; address payable recipient; } /** * @dev A spent item is translated from a utilized offer item and has four * components: an item type (ETH or other native tokens, ERC20, ERC721, and * ERC1155), a token address, a tokenId, and an amount. */ struct SpentItem { ItemType itemType; address token; uint256 identifier; uint256 amount; } /** * @dev A received item is translated from a utilized consideration item and has * the same four components as a spent item, as well as an additional fifth * component designating the required recipient of the item. */ struct ReceivedItem { ItemType itemType; address token; uint256 identifier; uint256 amount; address payable recipient; } /** * @dev For basic orders involving ETH / native / ERC20 <=> ERC721 / ERC1155 * matching, a group of six functions may be called that only requires a * subset of the usual order arguments. Note the use of a "basicOrderType" * enum; this represents both the usual order type as well as the "route" * of the basic order (a simple derivation function for the basic order * type is `basicOrderType = orderType + (4 * basicOrderRoute)`.) */ struct BasicOrderParameters { // calldata offset address considerationToken; // 0x24 uint256 considerationIdentifier; // 0x44 uint256 considerationAmount; // 0x64 address payable offerer; // 0x84 address zone; // 0xa4 address offerToken; // 0xc4 uint256 offerIdentifier; // 0xe4 uint256 offerAmount; // 0x104 BasicOrderType basicOrderType; // 0x124 uint256 startTime; // 0x144 uint256 endTime; // 0x164 bytes32 zoneHash; // 0x184 uint256 salt; // 0x1a4 bytes32 offererConduitKey; // 0x1c4 bytes32 fulfillerConduitKey; // 0x1e4 uint256 totalOriginalAdditionalRecipients; // 0x204 AdditionalRecipient[] additionalRecipients; // 0x224 bytes signature; // 0x244 // Total length, excluding dynamic array data: 0x264 (580) } /** * @dev Basic orders can supply any number of additional recipients, with the * implied assumption that they are supplied from the offered ETH (or other * native token) or ERC20 token for the order. */ struct AdditionalRecipient { uint256 amount; address payable recipient; } /** * @dev The full set of order components, with the exception of the counter, * must be supplied when fulfilling more sophisticated orders or groups of * orders. The total number of original consideration items must also be * supplied, as the caller may specify additional consideration items. */ struct OrderParameters { address offerer; // 0x00 address zone; // 0x20 OfferItem[] offer; // 0x40 ConsiderationItem[] consideration; // 0x60 OrderType orderType; // 0x80 uint256 startTime; // 0xa0 uint256 endTime; // 0xc0 bytes32 zoneHash; // 0xe0 uint256 salt; // 0x100 bytes32 conduitKey; // 0x120 uint256 totalOriginalConsiderationItems; // 0x140 // offer.length // 0x160 } /** * @dev Orders require a signature in addition to the other order parameters. */ struct Order { OrderParameters parameters; bytes signature; } /** * @dev Advanced orders include a numerator (i.e. a fraction to attempt to fill) * and a denominator (the total size of the order) in addition to the * signature and other order parameters. It also supports an optional field * for supplying extra data; this data will be provided to the zone if the * order type is restricted and the zone is not the caller, or will be * provided to the offerer as context for contract order types. */ struct AdvancedOrder { OrderParameters parameters; uint120 numerator; uint120 denominator; bytes signature; bytes extraData; } /** * @dev Orders can be validated (either explicitly via `validate`, or as a * consequence of a full or partial fill), specifically cancelled (they can * also be cancelled in bulk via incrementing a per-zone counter), and * partially or fully filled (with the fraction filled represented by a * numerator and denominator). */ struct OrderStatus { bool isValidated; bool isCancelled; uint120 numerator; uint120 denominator; } /** * @dev A criteria resolver specifies an order, side (offer vs. consideration), * and item index. It then provides a chosen identifier (i.e. tokenId) * alongside a merkle proof demonstrating the identifier meets the required * criteria. */ struct CriteriaResolver { uint256 orderIndex; Side side; uint256 index; uint256 identifier; bytes32[] criteriaProof; } /** * @dev A fulfillment is applied to a group of orders. It decrements a series of * offer and consideration items, then generates a single execution * element. A given fulfillment can be applied to as many offer and * consideration items as desired, but must contain at least one offer and * at least one consideration that match. The fulfillment must also remain * consistent on all key parameters across all offer items (same offerer, * token, type, tokenId, and conduit preference) as well as across all * consideration items (token, type, tokenId, and recipient). */ struct Fulfillment { FulfillmentComponent[] offerComponents; FulfillmentComponent[] considerationComponents; } /** * @dev Each fulfillment component contains one index referencing a specific * order and another referencing a specific offer or consideration item. */ struct FulfillmentComponent { uint256 orderIndex; uint256 itemIndex; } /** * @dev An execution is triggered once all consideration items have been zeroed * out. It sends the item in question from the offerer to the item's * recipient, optionally sourcing approvals from either this contract * directly or from the offerer's chosen conduit if one is specified. An * execution is not provided as an argument, but rather is derived via * orders, criteria resolvers, and fulfillments (where the total number of * executions will be less than or equal to the total number of indicated * fulfillments) and returned as part of `matchOrders`. */ struct Execution { ReceivedItem item; address offerer; bytes32 conduitKey; } /** * @dev Restricted orders are validated post-execution by calling validateOrder * on the zone. This struct provides context about the order fulfillment * and any supplied extraData, as well as all order hashes fulfilled in a * call to a match or fulfillAvailable method. */ struct ZoneParameters { bytes32 orderHash; address fulfiller; address offerer; SpentItem[] offer; ReceivedItem[] consideration; bytes extraData; bytes32[] orderHashes; uint256 startTime; uint256 endTime; bytes32 zoneHash; } /** * @dev Zones and contract offerers can communicate which schemas they implement * along with any associated metadata related to each schema. */ struct Schema { uint256 id; bytes metadata; } using StructPointers for OrderComponents global; using StructPointers for OfferItem global; using StructPointers for ConsiderationItem global; using StructPointers for SpentItem global; using StructPointers for ReceivedItem global; using StructPointers for BasicOrderParameters global; using StructPointers for AdditionalRecipient global; using StructPointers for OrderParameters global; using StructPointers for Order global; using StructPointers for AdvancedOrder global; using StructPointers for OrderStatus global; using StructPointers for CriteriaResolver global; using StructPointers for Fulfillment global; using StructPointers for FulfillmentComponent global; using StructPointers for Execution global; using StructPointers for ZoneParameters global; /** * @dev This library provides a set of functions for converting structs to * pointers. */ library StructPointers { /** * @dev Get a MemoryPointer from OrderComponents. * * @param obj The OrderComponents object. * * @return ptr The MemoryPointer. */ function toMemoryPointer( OrderComponents memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Get a CalldataPointer from OrderComponents. * * @param obj The OrderComponents object. * * @return ptr The CalldataPointer. */ function toCalldataPointer( OrderComponents calldata obj ) internal pure returns (CalldataPointer ptr) { assembly { ptr := obj } } /** * @dev Get a MemoryPointer from OfferItem. * * @param obj The OfferItem object. * * @return ptr The MemoryPointer. */ function toMemoryPointer( OfferItem memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Get a CalldataPointer from OfferItem. * * @param obj The OfferItem object. * * @return ptr The CalldataPointer. */ function toCalldataPointer( OfferItem calldata obj ) internal pure returns (CalldataPointer ptr) { assembly { ptr := obj } } /** * @dev Get a MemoryPointer from ConsiderationItem. * * @param obj The ConsiderationItem object. * * @return ptr The MemoryPointer. */ function toMemoryPointer( ConsiderationItem memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Get a CalldataPointer from ConsiderationItem. * * @param obj The ConsiderationItem object. * * @return ptr The CalldataPointer. */ function toCalldataPointer( ConsiderationItem calldata obj ) internal pure returns (CalldataPointer ptr) { assembly { ptr := obj } } /** * @dev Get a MemoryPointer from SpentItem. * * @param obj The SpentItem object. * * @return ptr The MemoryPointer. */ function toMemoryPointer( SpentItem memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Get a CalldataPointer from SpentItem. * * @param obj The SpentItem object. * * @return ptr The CalldataPointer. */ function toCalldataPointer( SpentItem calldata obj ) internal pure returns (CalldataPointer ptr) { assembly { ptr := obj } } /** * @dev Get a MemoryPointer from ReceivedItem. * * @param obj The ReceivedItem object. * * @return ptr The MemoryPointer. */ function toMemoryPointer( ReceivedItem memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Get a CalldataPointer from ReceivedItem. * * @param obj The ReceivedItem object. * * @return ptr The CalldataPointer. */ function toCalldataPointer( ReceivedItem calldata obj ) internal pure returns (CalldataPointer ptr) { assembly { ptr := obj } } /** * @dev Get a MemoryPointer from BasicOrderParameters. * * @param obj The BasicOrderParameters object. * * @return ptr The MemoryPointer. */ function toMemoryPointer( BasicOrderParameters memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Get a CalldataPointer from BasicOrderParameters. * * @param obj The BasicOrderParameters object. * * @return ptr The CalldataPointer. */ function toCalldataPointer( BasicOrderParameters calldata obj ) internal pure returns (CalldataPointer ptr) { assembly { ptr := obj } } /** * @dev Get a MemoryPointer from AdditionalRecipient. * * @param obj The AdditionalRecipient object. * * @return ptr The MemoryPointer. */ function toMemoryPointer( AdditionalRecipient memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Get a CalldataPointer from AdditionalRecipient. * * @param obj The AdditionalRecipient object. * * @return ptr The CalldataPointer. */ function toCalldataPointer( AdditionalRecipient calldata obj ) internal pure returns (CalldataPointer ptr) { assembly { ptr := obj } } /** * @dev Get a MemoryPointer from OrderParameters. * * @param obj The OrderParameters object. * * @return ptr The MemoryPointer. */ function toMemoryPointer( OrderParameters memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Get a CalldataPointer from OrderParameters. * * @param obj The OrderParameters object. * * @return ptr The CalldataPointer. */ function toCalldataPointer( OrderParameters calldata obj ) internal pure returns (CalldataPointer ptr) { assembly { ptr := obj } } /** * @dev Get a MemoryPointer from Order. * * @param obj The Order object. * * @return ptr The MemoryPointer. */ function toMemoryPointer( Order memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Get a CalldataPointer from Order. * * @param obj The Order object. * * @return ptr The CalldataPointer. */ function toCalldataPointer( Order calldata obj ) internal pure returns (CalldataPointer ptr) { assembly { ptr := obj } } /** * @dev Get a MemoryPointer from AdvancedOrder. * * @param obj The AdvancedOrder object. * * @return ptr The MemoryPointer. */ function toMemoryPointer( AdvancedOrder memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Get a CalldataPointer from AdvancedOrder. * * @param obj The AdvancedOrder object. * * @return ptr The CalldataPointer. */ function toCalldataPointer( AdvancedOrder calldata obj ) internal pure returns (CalldataPointer ptr) { assembly { ptr := obj } } /** * @dev Get a MemoryPointer from OrderStatus. * * @param obj The OrderStatus object. * * @return ptr The MemoryPointer. */ function toMemoryPointer( OrderStatus memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Get a CalldataPointer from OrderStatus. * * @param obj The OrderStatus object. * * @return ptr The CalldataPointer. */ function toCalldataPointer( OrderStatus calldata obj ) internal pure returns (CalldataPointer ptr) { assembly { ptr := obj } } /** * @dev Get a MemoryPointer from CriteriaResolver. * * @param obj The CriteriaResolver object. * * @return ptr The MemoryPointer. */ function toMemoryPointer( CriteriaResolver memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Get a CalldataPointer from CriteriaResolver. * * @param obj The CriteriaResolver object. * * @return ptr The CalldataPointer. */ function toCalldataPointer( CriteriaResolver calldata obj ) internal pure returns (CalldataPointer ptr) { assembly { ptr := obj } } /** * @dev Get a MemoryPointer from Fulfillment. * * @param obj The Fulfillment object. * * @return ptr The MemoryPointer. */ function toMemoryPointer( Fulfillment memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Get a CalldataPointer from Fulfillment. * * @param obj The Fulfillment object. * * @return ptr The CalldataPointer. */ function toCalldataPointer( Fulfillment calldata obj ) internal pure returns (CalldataPointer ptr) { assembly { ptr := obj } } /** * @dev Get a MemoryPointer from FulfillmentComponent. * * @param obj The FulfillmentComponent object. * * @return ptr The MemoryPointer. */ function toMemoryPointer( FulfillmentComponent memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Get a CalldataPointer from FulfillmentComponent. * * @param obj The FulfillmentComponent object. * * @return ptr The CalldataPointer. */ function toCalldataPointer( FulfillmentComponent calldata obj ) internal pure returns (CalldataPointer ptr) { assembly { ptr := obj } } /** * @dev Get a MemoryPointer from Execution. * * @param obj The Execution object. * * @return ptr The MemoryPointer. */ function toMemoryPointer( Execution memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Get a CalldataPointer from Execution. * * @param obj The Execution object. * * @return ptr The CalldataPointer. */ function toCalldataPointer( Execution calldata obj ) internal pure returns (CalldataPointer ptr) { assembly { ptr := obj } } /** * @dev Get a MemoryPointer from ZoneParameters. * * @param obj The ZoneParameters object. * * @return ptr The MemoryPointer. */ function toMemoryPointer( ZoneParameters memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Get a CalldataPointer from ZoneParameters. * * @param obj The ZoneParameters object. * * @return ptr The CalldataPointer. */ function toCalldataPointer( ZoneParameters calldata obj ) internal pure returns (CalldataPointer ptr) { assembly { ptr := obj } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.13; import { AdvancedOrder, BasicOrderParameters, CriteriaResolver, Execution, Fulfillment, FulfillmentComponent, Order, OrderComponents } from "../lib/ConsiderationStructs.sol"; /** * @title ConsiderationInterface * @author 0age * @custom:version 1.5 * @notice Consideration is a generalized native token/ERC20/ERC721/ERC1155 * marketplace. It minimizes external calls to the greatest extent * possible and provides lightweight methods for common routes as well * as more flexible methods for composing advanced orders. * * @dev ConsiderationInterface contains all external function interfaces for * Consideration. */ interface ConsiderationInterface { /** * @notice Fulfill an order offering an ERC721 token by supplying Ether (or * the native token for the given chain) as consideration for the * order. An arbitrary number of "additional recipients" may also be * supplied which will each receive native tokens from the fulfiller * as consideration. * * @param parameters Additional information on the fulfilled order. Note * that the offerer must first approve this contract (or * their preferred conduit if indicated by the order) for * their offered ERC721 token to be transferred. * * @return fulfilled A boolean indicating whether the order has been * successfully fulfilled. */ function fulfillBasicOrder( BasicOrderParameters calldata parameters ) external payable returns (bool fulfilled); /** * @notice Fulfill an order with an arbitrary number of items for offer and * consideration. Note that this function does not support * criteria-based orders or partial filling of orders (though * filling the remainder of a partially-filled order is supported). * * @param order The order to fulfill. Note that both the * offerer and the fulfiller must first approve * this contract (or the corresponding conduit if * indicated) to transfer any relevant tokens on * their behalf and that contracts must implement * `onERC1155Received` to receive ERC1155 tokens * as consideration. * @param fulfillerConduitKey A bytes32 value indicating what conduit, if * any, to source the fulfiller's token approvals * from. The zero hash signifies that no conduit * should be used, with direct approvals set on * Consideration. * * @return fulfilled A boolean indicating whether the order has been * successfully fulfilled. */ function fulfillOrder( Order calldata order, bytes32 fulfillerConduitKey ) external payable returns (bool fulfilled); /** * @notice Fill an order, fully or partially, with an arbitrary number of * items for offer and consideration alongside criteria resolvers * containing specific token identifiers and associated proofs. * * @param advancedOrder The order to fulfill along with the fraction * of the order to attempt to fill. Note that * both the offerer and the fulfiller must first * approve this contract (or their preferred * conduit if indicated by the order) to transfer * any relevant tokens on their behalf and that * contracts must implement `onERC1155Received` * to receive ERC1155 tokens as consideration. * Also note that all offer and consideration * components must have no remainder after * multiplication of the respective amount with * the supplied fraction for the partial fill to * be considered valid. * @param criteriaResolvers An array where each element contains a * reference to a specific offer or * consideration, a token identifier, and a proof * that the supplied token identifier is * contained in the merkle root held by the item * in question's criteria element. Note that an * empty criteria indicates that any * (transferable) token identifier on the token * in question is valid and that no associated * proof needs to be supplied. * @param fulfillerConduitKey A bytes32 value indicating what conduit, if * any, to source the fulfiller's token approvals * from. The zero hash signifies that no conduit * should be used, with direct approvals set on * Consideration. * @param recipient The intended recipient for all received items, * with `address(0)` indicating that the caller * should receive the items. * * @return fulfilled A boolean indicating whether the order has been * successfully fulfilled. */ function fulfillAdvancedOrder( AdvancedOrder calldata advancedOrder, CriteriaResolver[] calldata criteriaResolvers, bytes32 fulfillerConduitKey, address recipient ) external payable returns (bool fulfilled); /** * @notice Attempt to fill a group of orders, each with an arbitrary number * of items for offer and consideration. Any order that is not * currently active, has already been fully filled, or has been * cancelled will be omitted. Remaining offer and consideration * items will then be aggregated where possible as indicated by the * supplied offer and consideration component arrays and aggregated * items will be transferred to the fulfiller or to each intended * recipient, respectively. Note that a failing item transfer or an * issue with order formatting will cause the entire batch to fail. * Note that this function does not support criteria-based orders or * partial filling of orders (though filling the remainder of a * partially-filled order is supported). * * @param orders The orders to fulfill. Note that both * the offerer and the fulfiller must first * approve this contract (or the * corresponding conduit if indicated) to * transfer any relevant tokens on their * behalf and that contracts must implement * `onERC1155Received` to receive ERC1155 * tokens as consideration. * @param offerFulfillments An array of FulfillmentComponent arrays * indicating which offer items to attempt * to aggregate when preparing executions. * @param considerationFulfillments An array of FulfillmentComponent arrays * indicating which consideration items to * attempt to aggregate when preparing * executions. * @param fulfillerConduitKey A bytes32 value indicating what conduit, * if any, to source the fulfiller's token * approvals from. The zero hash signifies * that no conduit should be used, with * direct approvals set on this contract. * @param maximumFulfilled The maximum number of orders to fulfill. * * @return availableOrders An array of booleans indicating if each order * with an index corresponding to the index of the * returned boolean was fulfillable or not. * @return executions An array of elements indicating the sequence of * transfers performed as part of matching the given * orders. Note that unspent offer item amounts or * native tokens will not be reflected as part of * this array. */ function fulfillAvailableOrders( Order[] calldata orders, FulfillmentComponent[][] calldata offerFulfillments, FulfillmentComponent[][] calldata considerationFulfillments, bytes32 fulfillerConduitKey, uint256 maximumFulfilled ) external payable returns (bool[] memory availableOrders, Execution[] memory executions); /** * @notice Attempt to fill a group of orders, fully or partially, with an * arbitrary number of items for offer and consideration per order * alongside criteria resolvers containing specific token * identifiers and associated proofs. Any order that is not * currently active, has already been fully filled, or has been * cancelled will be omitted. Remaining offer and consideration * items will then be aggregated where possible as indicated by the * supplied offer and consideration component arrays and aggregated * items will be transferred to the fulfiller or to each intended * recipient, respectively. Note that a failing item transfer or an * issue with order formatting will cause the entire batch to fail. * * @param advancedOrders The orders to fulfill along with the * fraction of those orders to attempt to * fill. Note that both the offerer and the * fulfiller must first approve this * contract (or their preferred conduit if * indicated by the order) to transfer any * relevant tokens on their behalf and that * contracts must implement * `onERC1155Received` to enable receipt of * ERC1155 tokens as consideration. Also * note that all offer and consideration * components must have no remainder after * multiplication of the respective amount * with the supplied fraction for an * order's partial fill amount to be * considered valid. * @param criteriaResolvers An array where each element contains a * reference to a specific offer or * consideration, a token identifier, and a * proof that the supplied token identifier * is contained in the merkle root held by * the item in question's criteria element. * Note that an empty criteria indicates * that any (transferable) token * identifier on the token in question is * valid and that no associated proof needs * to be supplied. * @param offerFulfillments An array of FulfillmentComponent arrays * indicating which offer items to attempt * to aggregate when preparing executions. * @param considerationFulfillments An array of FulfillmentComponent arrays * indicating which consideration items to * attempt to aggregate when preparing * executions. * @param fulfillerConduitKey A bytes32 value indicating what conduit, * if any, to source the fulfiller's token * approvals from. The zero hash signifies * that no conduit should be used, with * direct approvals set on this contract. * @param recipient The intended recipient for all received * items, with `address(0)` indicating that * the caller should receive the items. * @param maximumFulfilled The maximum number of orders to fulfill. * * @return availableOrders An array of booleans indicating if each order * with an index corresponding to the index of the * returned boolean was fulfillable or not. * @return executions An array of elements indicating the sequence of * transfers performed as part of matching the given * orders. Note that unspent offer item amounts or * native tokens will not be reflected as part of * this array. */ function fulfillAvailableAdvancedOrders( AdvancedOrder[] calldata advancedOrders, CriteriaResolver[] calldata criteriaResolvers, FulfillmentComponent[][] calldata offerFulfillments, FulfillmentComponent[][] calldata considerationFulfillments, bytes32 fulfillerConduitKey, address recipient, uint256 maximumFulfilled ) external payable returns (bool[] memory availableOrders, Execution[] memory executions); /** * @notice Match an arbitrary number of orders, each with an arbitrary * number of items for offer and consideration along with a set of * fulfillments allocating offer components to consideration * components. Note that this function does not support * criteria-based or partial filling of orders (though filling the * remainder of a partially-filled order is supported). Any unspent * offer item amounts or native tokens will be transferred to the * caller. * * @param orders The orders to match. Note that both the offerer and * fulfiller on each order must first approve this * contract (or their conduit if indicated by the order) * to transfer any relevant tokens on their behalf and * each consideration recipient must implement * `onERC1155Received` to enable ERC1155 token receipt. * @param fulfillments An array of elements allocating offer components to * consideration components. Note that each * consideration component must be fully met for the * match operation to be valid. * * @return executions An array of elements indicating the sequence of * transfers performed as part of matching the given * orders. Note that unspent offer item amounts or * native tokens will not be reflected as part of this * array. */ function matchOrders( Order[] calldata orders, Fulfillment[] calldata fulfillments ) external payable returns (Execution[] memory executions); /** * @notice Match an arbitrary number of full or partial orders, each with an * arbitrary number of items for offer and consideration, supplying * criteria resolvers containing specific token identifiers and * associated proofs as well as fulfillments allocating offer * components to consideration components. Any unspent offer item * amounts will be transferred to the designated recipient (with the * null address signifying to use the caller) and any unspent native * tokens will be returned to the caller. * * @param orders The advanced orders to match. Note that both the * offerer and fulfiller on each order must first * approve this contract (or a preferred conduit if * indicated by the order) to transfer any relevant * tokens on their behalf and each consideration * recipient must implement `onERC1155Received` in * order to receive ERC1155 tokens. Also note that * the offer and consideration components for each * order must have no remainder after multiplying * the respective amount with the supplied fraction * in order for the group of partial fills to be * considered valid. * @param criteriaResolvers An array where each element contains a reference * to a specific order as well as that order's * offer or consideration, a token identifier, and * a proof that the supplied token identifier is * contained in the order's merkle root. Note that * an empty root indicates that any (transferable) * token identifier is valid and that no associated * proof needs to be supplied. * @param fulfillments An array of elements allocating offer components * to consideration components. Note that each * consideration component must be fully met in * order for the match operation to be valid. * @param recipient The intended recipient for all unspent offer * item amounts, or the caller if the null address * is supplied. * * @return executions An array of elements indicating the sequence of * transfers performed as part of matching the given * orders. Note that unspent offer item amounts or native * tokens will not be reflected as part of this array. */ function matchAdvancedOrders( AdvancedOrder[] calldata orders, CriteriaResolver[] calldata criteriaResolvers, Fulfillment[] calldata fulfillments, address recipient ) external payable returns (Execution[] memory executions); /** * @notice Cancel an arbitrary number of orders. Note that only the offerer * or the zone of a given order may cancel it. Callers should ensure * that the intended order was cancelled by calling `getOrderStatus` * and confirming that `isCancelled` returns `true`. * * @param orders The orders to cancel. * * @return cancelled A boolean indicating whether the supplied orders have * been successfully cancelled. */ function cancel( OrderComponents[] calldata orders ) external returns (bool cancelled); /** * @notice Validate an arbitrary number of orders, thereby registering their * signatures as valid and allowing the fulfiller to skip signature * verification on fulfillment. Note that validated orders may still * be unfulfillable due to invalid item amounts or other factors; * callers should determine whether validated orders are fulfillable * by simulating the fulfillment call prior to execution. Also note * that anyone can validate a signed order, but only the offerer can * validate an order without supplying a signature. * * @param orders The orders to validate. * * @return validated A boolean indicating whether the supplied orders have * been successfully validated. */ function validate( Order[] calldata orders ) external returns (bool validated); /** * @notice Cancel all orders from a given offerer with a given zone in bulk * by incrementing a counter. Note that only the offerer may * increment the counter. * * @return newCounter The new counter. */ function incrementCounter() external returns (uint256 newCounter); /** * @notice Fulfill an order offering an ERC721 token by supplying Ether (or * the native token for the given chain) as consideration for the * order. An arbitrary number of "additional recipients" may also be * supplied which will each receive native tokens from the fulfiller * as consideration. Note that this function costs less gas than * `fulfillBasicOrder` due to the zero bytes in the function * selector (0x00000000) which also results in earlier function * dispatch. * * @param parameters Additional information on the fulfilled order. Note * that the offerer must first approve this contract (or * their preferred conduit if indicated by the order) for * their offered ERC721 token to be transferred. * * @return fulfilled A boolean indicating whether the order has been * successfully fulfilled. */ function fulfillBasicOrder_efficient_6GL6yc( BasicOrderParameters calldata parameters ) external payable returns (bool fulfilled); /** * @notice Retrieve the order hash for a given order. * * @param order The components of the order. * * @return orderHash The order hash. */ function getOrderHash( OrderComponents calldata order ) external view returns (bytes32 orderHash); /** * @notice Retrieve the status of a given order by hash, including whether * the order has been cancelled or validated and the fraction of the * order that has been filled. * * @param orderHash The order hash in question. * * @return isValidated A boolean indicating whether the order in question * has been validated (i.e. previously approved or * partially filled). * @return isCancelled A boolean indicating whether the order in question * has been cancelled. * @return totalFilled The total portion of the order that has been filled * (i.e. the "numerator"). * @return totalSize The total size of the order that is either filled or * unfilled (i.e. the "denominator"). */ function getOrderStatus( bytes32 orderHash ) external view returns ( bool isValidated, bool isCancelled, uint256 totalFilled, uint256 totalSize ); /** * @notice Retrieve the current counter for a given offerer. * * @param offerer The offerer in question. * * @return counter The current counter. */ function getCounter( address offerer ) external view returns (uint256 counter); /** * @notice Retrieve configuration information for this contract. * * @return version The contract version. * @return domainSeparator The domain separator for this contract. * @return conduitController The conduit Controller set for this contract. */ function information() external view returns ( string memory version, bytes32 domainSeparator, address conduitController ); function getContractOffererNonce( address contractOfferer ) external view returns (uint256 nonce); /** * @notice Retrieve the name of this contract. * * @return contractName The name of this contract. */ function name() external view returns (string memory contractName); }
// SPDX-License-Identifier: MIT pragma solidity 0.8.17; import { Side, ItemType, OrderType } from "./ConsiderationEnums.sol"; import { AdvancedOrder, ConsiderationItem, CriteriaResolver, Execution, Fulfillment, FulfillmentComponent, OfferItem, OrderParameters, ReceivedItem } from "./ConsiderationStructs.sol"; import { OrderFulfiller } from "./OrderFulfiller.sol"; import { FulfillmentApplier } from "./FulfillmentApplier.sol"; import { _revertConsiderationNotMet, _revertInsufficientNativeTokensSupplied, _revertInvalidNativeOfferItem, _revertNoSpecifiedOrdersAvailable } from "./ConsiderationErrors.sol"; import { AccumulatorDisarmed, ConsiderationItem_recipient_offset, Execution_offerer_offset, NonMatchSelector_InvalidErrorValue, NonMatchSelector_MagicMask, OneWord, OneWordShift, OrdersMatchedTopic0, ReceivedItem_amount_offset, ReceivedItem_recipient_offset, TwoWords } from "./ConsiderationConstants.sol"; /** * @title OrderCombiner * @author 0age * @notice OrderCombiner contains logic for fulfilling combinations of orders, * either by matching offer items to consideration items or by * fulfilling orders where available. */ contract OrderCombiner is OrderFulfiller, FulfillmentApplier { /** * @dev Derive and set hashes, reference chainId, and associated domain * separator during deployment. * * @param conduitController A contract that deploys conduits, or proxies * that may optionally be used to transfer approved * ERC20/721/1155 tokens. */ constructor(address conduitController) OrderFulfiller(conduitController) {} /** * @notice Internal function to attempt to fill a group of orders, fully or * partially, with an arbitrary number of items for offer and * consideration per order alongside criteria resolvers containing * specific token identifiers and associated proofs. Any order that * is not currently active, has already been fully filled, or has * been cancelled will be omitted. Remaining offer and consideration * items will then be aggregated where possible as indicated by the * supplied offer and consideration component arrays and aggregated * items will be transferred to the fulfiller or to each intended * recipient, respectively. Note that a failing item transfer or an * issue with order formatting will cause the entire batch to fail. * * @param advancedOrders The orders to fulfill along with the * fraction of those orders to attempt to * fill. Note that both the offerer and the * fulfiller must first approve this * contract (or a conduit if indicated by * the order) to transfer any relevant * tokens on their behalf and that * contracts must implement * `onERC1155Received` in order to receive * ERC1155 tokens as consideration. Also * note that all offer and consideration * components must have no remainder after * multiplication of the respective amount * with the supplied fraction for an * order's partial fill amount to be * considered valid. * @param criteriaResolvers An array where each element contains a * reference to a specific offer or * consideration, a token identifier, and a * proof that the supplied token identifier * is contained in the merkle root held by * the item in question's criteria element. * Note that an empty criteria indicates * that any (transferable) token * identifier on the token in question is * valid and that no associated proof needs * to be supplied. * @param offerFulfillments An array of FulfillmentComponent arrays * indicating which offer items to attempt * to aggregate when preparing executions. * @param considerationFulfillments An array of FulfillmentComponent arrays * indicating which consideration items to * attempt to aggregate when preparing * executions. * @param fulfillerConduitKey A bytes32 value indicating what conduit, * if any, to source the fulfiller's token * approvals from. The zero hash signifies * that no conduit should be used (and * direct approvals set on Consideration). * @param recipient The intended recipient for all received * items. * @param maximumFulfilled The maximum number of orders to fulfill. * * @return availableOrders An array of booleans indicating if each order * with an index corresponding to the index of the * returned boolean was fulfillable or not. * @return executions An array of elements indicating the sequence of * transfers performed as part of matching the given * orders. */ function _fulfillAvailableAdvancedOrders( AdvancedOrder[] memory advancedOrders, CriteriaResolver[] memory criteriaResolvers, FulfillmentComponent[][] memory offerFulfillments, FulfillmentComponent[][] memory considerationFulfillments, bytes32 fulfillerConduitKey, address recipient, uint256 maximumFulfilled ) internal returns ( bool[] memory /* availableOrders */, Execution[] memory /* executions */ ) { // Validate orders, apply amounts, & determine if they use conduits. ( bytes32[] memory orderHashes, bool containsNonOpen ) = _validateOrdersAndPrepareToFulfill( advancedOrders, criteriaResolvers, false, // Signifies that invalid orders should NOT revert. maximumFulfilled, recipient ); // Aggregate used offer and consideration items and execute transfers. return _executeAvailableFulfillments( advancedOrders, offerFulfillments, considerationFulfillments, fulfillerConduitKey, recipient, orderHashes, containsNonOpen ); } /** * @dev Internal function to validate a group of orders, update their * statuses, reduce amounts by their previously filled fractions, apply * criteria resolvers, and emit OrderFulfilled events. Note that this * function needs to be called before * _aggregateValidFulfillmentConsiderationItems to set the memory * layout that _aggregateValidFulfillmentConsiderationItems depends on. * * @param advancedOrders The advanced orders to validate and reduce by * their previously filled amounts. * @param criteriaResolvers An array where each element contains a reference * to a specific order as well as that order's * offer or consideration, a token identifier, and * a proof that the supplied token identifier is * contained in the order's merkle root. Note that * a root of zero indicates that any transferable * token identifier is valid and that no proof * needs to be supplied. * @param revertOnInvalid A boolean indicating whether to revert on any * order being invalid; setting this to false will * instead cause the invalid order to be skipped. * @param maximumFulfilled The maximum number of orders to fulfill. * @param recipient The intended recipient for all items that do not * already have a designated recipient and are not * already used as part of a provided fulfillment. * * @return orderHashes The hashes of the orders being fulfilled. * @return containsNonOpen A boolean indicating whether any restricted or * contract orders are present within the provided * array of advanced orders. */ function _validateOrdersAndPrepareToFulfill( AdvancedOrder[] memory advancedOrders, CriteriaResolver[] memory criteriaResolvers, bool revertOnInvalid, uint256 maximumFulfilled, address recipient ) internal returns (bytes32[] memory orderHashes, bool containsNonOpen) { // Ensure this function cannot be triggered during a reentrant call. _setReentrancyGuard(true); // Native tokens accepted during execution. // Declare an error buffer indicating status of any native offer items. // Native tokens may only be provided as part of contract orders or when // fulfilling via matchOrders or matchAdvancedOrders; if bits indicating // these conditions are not met have been set, throw. uint256 invalidNativeOfferItemErrorBuffer; // Use assembly to set the value for the second bit of the error buffer. assembly { /** * Use the 231st bit of the error buffer to indicate whether the * current function is not matchAdvancedOrders or matchOrders. * * sig func * ----------------------------------------------------------------- * 1010100000010111010001000 0 000100 matchOrders * 1111001011010001001010110 0 010010 matchAdvancedOrders * 1110110110011000101001010 1 110100 fulfillAvailableOrders * 1000011100100000000110110 1 000001 fulfillAvailableAdvancedOrders * ^ 7th bit */ invalidNativeOfferItemErrorBuffer := and( NonMatchSelector_MagicMask, calldataload(0) ) } // Declare variables for later use. AdvancedOrder memory advancedOrder; uint256 terminalMemoryOffset; unchecked { // Read length of orders array and place on the stack. uint256 totalOrders = advancedOrders.length; // Track the order hash for each order being fulfilled. orderHashes = new bytes32[](totalOrders); // Determine the memory offset to terminate on during loops. terminalMemoryOffset = (totalOrders + 1) << OneWordShift; } // Skip overflow checks as all for loops are indexed starting at zero. unchecked { // Declare inner variables. OfferItem[] memory offer; ConsiderationItem[] memory consideration; // Iterate over each order. for (uint256 i = OneWord; i < terminalMemoryOffset; i += OneWord) { // Retrieve order using assembly to bypass out-of-range check. assembly { advancedOrder := mload(add(advancedOrders, i)) } // Determine if max number orders have already been fulfilled. if (maximumFulfilled == 0) { // Mark fill fraction as zero as the order will not be used. advancedOrder.numerator = 0; // Continue iterating through the remaining orders. continue; } // Validate it, update status, and determine fraction to fill. ( bytes32 orderHash, uint256 numerator, uint256 denominator ) = _validateOrderAndUpdateStatus( advancedOrder, revertOnInvalid ); // Do not track hash or adjust prices if order is not fulfilled. if (numerator == 0) { // Mark fill fraction as zero if the order is not fulfilled. advancedOrder.numerator = 0; // Continue iterating through the remaining orders. continue; } // Otherwise, track the order hash in question. assembly { mstore(add(orderHashes, i), orderHash) } // Decrement the number of fulfilled orders. // Skip underflow check as the condition before // implies that maximumFulfilled > 0. --maximumFulfilled; // Place the start time for the order on the stack. uint256 startTime = advancedOrder.parameters.startTime; // Place the end time for the order on the stack. uint256 endTime = advancedOrder.parameters.endTime; // Retrieve array of offer items for the order in question. offer = advancedOrder.parameters.offer; // Read length of offer array and place on the stack. uint256 totalOfferItems = offer.length; { // Determine the order type, used to check for eligibility // for native token offer items as well as for the presence // of restricted and contract orders (or non-open orders). OrderType orderType = advancedOrder.parameters.orderType; // Utilize assembly to efficiently check for order types. // Note that these checks expect that there are no order // types beyond the current set (0-4) and will need to be // modified if more order types are added. assembly { // Declare a variable indicating if the order is not a // contract order. Cache in scratch space to avoid stack // depth errors. let isNonContract := lt(orderType, 4) mstore(0, isNonContract) // Update the variable indicating if the order is not an // open order, remaining set if it has been set already. containsNonOpen := or(containsNonOpen, gt(orderType, 1)) } } // Iterate over each offer item on the order. for (uint256 j = 0; j < totalOfferItems; ++j) { // Retrieve the offer item. OfferItem memory offerItem = offer[j]; // If the offer item is for the native token and the order // type is not a contract order type, set the first bit of // the error buffer to true. assembly { invalidNativeOfferItemErrorBuffer := or( invalidNativeOfferItemErrorBuffer, lt(mload(offerItem), mload(0)) ) } // Apply order fill fraction to offer item end amount. uint256 endAmount = _getFraction( numerator, denominator, offerItem.endAmount ); // Reuse same fraction if start and end amounts are equal. if (offerItem.startAmount == offerItem.endAmount) { // Apply derived amount to both start and end amount. offerItem.startAmount = endAmount; } else { // Apply order fill fraction to offer item start amount. offerItem.startAmount = _getFraction( numerator, denominator, offerItem.startAmount ); } // Adjust offer amount using current time; round down. uint256 currentAmount = _locateCurrentAmount( offerItem.startAmount, endAmount, startTime, endTime, false // round down ); // Update amounts in memory to match the current amount. // Note that the end amount is used to track spent amounts. offerItem.startAmount = currentAmount; offerItem.endAmount = currentAmount; } // Retrieve array of consideration items for order in question. consideration = (advancedOrder.parameters.consideration); // Read length of consideration array and place on the stack. uint256 totalConsiderationItems = consideration.length; // Iterate over each consideration item on the order. for (uint256 j = 0; j < totalConsiderationItems; ++j) { // Retrieve the consideration item. ConsiderationItem memory considerationItem = ( consideration[j] ); // Apply fraction to consideration item end amount. uint256 endAmount = _getFraction( numerator, denominator, considerationItem.endAmount ); // Reuse same fraction if start and end amounts are equal. if ( considerationItem.startAmount == considerationItem.endAmount ) { // Apply derived amount to both start and end amount. considerationItem.startAmount = endAmount; } else { // Apply fraction to consideration item start amount. considerationItem.startAmount = _getFraction( numerator, denominator, considerationItem.startAmount ); } // Adjust consideration amount using current time; round up. uint256 currentAmount = ( _locateCurrentAmount( considerationItem.startAmount, endAmount, startTime, endTime, true // round up ) ); considerationItem.startAmount = currentAmount; // Utilize assembly to manually "shift" the recipient value, // then to copy the start amount to the recipient. // Note that this sets up the memory layout that is // subsequently relied upon by // _aggregateValidFulfillmentConsiderationItems. assembly { // Derive the pointer to the recipient using the item // pointer along with the offset to the recipient. let considerationItemRecipientPtr := add( considerationItem, ConsiderationItem_recipient_offset // recipient ) // Write recipient to endAmount, as endAmount is not // used from this point on and can be repurposed to fit // the layout of a ReceivedItem. mstore( add( considerationItem, ReceivedItem_recipient_offset // old endAmount ), mload(considerationItemRecipientPtr) ) // Write startAmount to recipient, as recipient is not // used from this point on and can be repurposed to // track received amounts. mstore(considerationItemRecipientPtr, currentAmount) } } } } // If the first bit is set, a native offer item was encountered on an // order that is not a contract order. If the 231st bit is set in the // error buffer, the current function is not matchOrders or // matchAdvancedOrders. If the value is 1 + (1 << 230), then both the // 1st and 231st bits were set; in that case, revert with an error. if ( invalidNativeOfferItemErrorBuffer == NonMatchSelector_InvalidErrorValue ) { _revertInvalidNativeOfferItem(); } // Apply criteria resolvers to each order as applicable. _applyCriteriaResolvers(advancedOrders, criteriaResolvers); // Emit an event for each order signifying that it has been fulfilled. // Skip overflow checks as all for loops are indexed starting at zero. unchecked { bytes32 orderHash; // Iterate over each order. for (uint256 i = OneWord; i < terminalMemoryOffset; i += OneWord) { assembly { orderHash := mload(add(orderHashes, i)) } // Do not emit an event if no order hash is present. if (orderHash == bytes32(0)) { continue; } // Retrieve order using assembly to bypass out-of-range check. assembly { advancedOrder := mload(add(advancedOrders, i)) } // Retrieve parameters for the order in question. OrderParameters memory orderParameters = ( advancedOrder.parameters ); // Emit an OrderFulfilled event. _emitOrderFulfilledEvent( orderHash, orderParameters.offerer, orderParameters.zone, recipient, orderParameters.offer, orderParameters.consideration ); } } } /** * @dev Internal function to fulfill a group of validated orders, fully or * partially, with an arbitrary number of items for offer and * consideration per order and to execute transfers. Any order that is * not currently active, has already been fully filled, or has been * cancelled will be omitted. Remaining offer and consideration items * will then be aggregated where possible as indicated by the supplied * offer and consideration component arrays and aggregated items will * be transferred to the fulfiller or to each intended recipient, * respectively. Note that a failing item transfer or an issue with * order formatting will cause the entire batch to fail. * * @param advancedOrders The orders to fulfill along with the * fraction of those orders to attempt to * fill. Note that both the offerer and the * fulfiller must first approve this * contract (or the conduit if indicated by * the order) to transfer any relevant * tokens on their behalf and that * contracts must implement * `onERC1155Received` in order to receive * ERC1155 tokens as consideration. Also * note that all offer and consideration * components must have no remainder after * multiplication of the respective amount * with the supplied fraction for an * order's partial fill amount to be * considered valid. * @param offerFulfillments An array of FulfillmentComponent arrays * indicating which offer items to attempt * to aggregate when preparing executions. * @param considerationFulfillments An array of FulfillmentComponent arrays * indicating which consideration items to * attempt to aggregate when preparing * executions. * @param fulfillerConduitKey A bytes32 value indicating what conduit, * if any, to source the fulfiller's token * approvals from. The zero hash signifies * that no conduit should be used, with * direct approvals set on Consideration. * @param recipient The intended recipient for all items * that do not already have a designated * recipient and are not already used as * part of a provided fulfillment. * @param orderHashes An array of order hashes for each order. * @param containsNonOpen A boolean indicating whether any * restricted or contract orders are * present within the provided array of * advanced orders. * * @return availableOrders An array of booleans indicating if each order * with an index corresponding to the index of the * returned boolean was fulfillable or not. * @return executions An array of elements indicating the sequence of * transfers performed as part of matching the given * orders. */ function _executeAvailableFulfillments( AdvancedOrder[] memory advancedOrders, FulfillmentComponent[][] memory offerFulfillments, FulfillmentComponent[][] memory considerationFulfillments, bytes32 fulfillerConduitKey, address recipient, bytes32[] memory orderHashes, bool containsNonOpen ) internal returns (bool[] memory availableOrders, Execution[] memory executions) { // Retrieve length of offer fulfillments array and place on the stack. uint256 totalOfferFulfillments = offerFulfillments.length; // Retrieve length of consideration fulfillments array & place on stack. uint256 totalConsiderationFulfillments = ( considerationFulfillments.length ); // Allocate an execution for each offer and consideration fulfillment. executions = new Execution[]( totalOfferFulfillments + totalConsiderationFulfillments ); // Skip overflow checks as all for loops are indexed starting at zero. unchecked { // Track number of filtered executions. uint256 totalFilteredExecutions = 0; // Iterate over each offer fulfillment. for (uint256 i = 0; i < totalOfferFulfillments; ) { // Derive aggregated execution corresponding with fulfillment. Execution memory execution = _aggregateAvailable( advancedOrders, Side.OFFER, offerFulfillments[i], fulfillerConduitKey, recipient ); // If the execution is filterable... if (_isFilterableExecution(execution)) { // Increment total filtered executions. ++totalFilteredExecutions; } else { // Otherwise, assign the execution to the executions array. executions[i - totalFilteredExecutions] = execution; } // Increment iterator. ++i; } // Iterate over each consideration fulfillment. for (uint256 i = 0; i < totalConsiderationFulfillments; ) { // Derive aggregated execution corresponding with fulfillment. Execution memory execution = _aggregateAvailable( advancedOrders, Side.CONSIDERATION, considerationFulfillments[i], fulfillerConduitKey, address(0) // unused ); // If the execution is filterable... if (_isFilterableExecution(execution)) { // Increment total filtered executions. ++totalFilteredExecutions; } else { // Otherwise, assign the execution to the executions array. executions[ i + totalOfferFulfillments - totalFilteredExecutions ] = execution; } // Increment iterator. ++i; } // If some number of executions have been filtered... if (totalFilteredExecutions != 0) { // reduce the total length of the executions array. assembly { mstore( executions, sub(mload(executions), totalFilteredExecutions) ) } } } // Revert if no orders are available. if (executions.length == 0) { _revertNoSpecifiedOrdersAvailable(); } // Perform final checks and return. availableOrders = _performFinalChecksAndExecuteOrders( advancedOrders, executions, orderHashes, recipient, containsNonOpen ); return (availableOrders, executions); } /** * @dev Internal function to perform a final check that each consideration * item for an arbitrary number of fulfilled orders has been met and to * trigger associated executions, transferring the respective items. * * @param advancedOrders The orders to check and perform executions for. * @param executions An array of elements indicating the sequence of * transfers to perform when fulfilling the given * orders. * @param orderHashes An array of order hashes for each order. * @param recipient The intended recipient for all items that do not * already have a designated recipient and are not * used as part of a provided fulfillment. * @param containsNonOpen A boolean indicating whether any restricted or * contract orders are present within the provided * array of advanced orders. * * @return availableOrders An array of booleans indicating if each order * with an index corresponding to the index of the * returned boolean was fulfillable or not. */ function _performFinalChecksAndExecuteOrders( AdvancedOrder[] memory advancedOrders, Execution[] memory executions, bytes32[] memory orderHashes, address recipient, bool containsNonOpen ) internal returns (bool[] memory /* availableOrders */) { // Retrieve the length of the advanced orders array and place on stack. uint256 totalOrders = advancedOrders.length; // Initialize array for tracking available orders. bool[] memory availableOrders = new bool[](totalOrders); // Initialize an accumulator array. From this point forward, no new // memory regions can be safely allocated until the accumulator is no // longer being utilized, as the accumulator operates in an open-ended // fashion from this memory pointer; existing memory may still be // accessed and modified, however. bytes memory accumulator = new bytes(AccumulatorDisarmed); { // Declare a variable for the available native token balance. uint256 nativeTokenBalance; // Retrieve the length of the executions array and place on stack. uint256 totalExecutions = executions.length; // Iterate over each execution. for (uint256 i = 0; i < totalExecutions; ) { // Retrieve the execution and the associated received item. Execution memory execution = executions[i]; ReceivedItem memory item = execution.item; // If execution transfers native tokens, reduce value available. if (item.itemType == ItemType.NATIVE) { // Get the current available balance of native tokens. assembly { nativeTokenBalance := selfbalance() } // Ensure that sufficient native tokens are still available. if (item.amount > nativeTokenBalance) { _revertInsufficientNativeTokensSupplied(); } } // Transfer the item specified by the execution. _transfer( item, execution.offerer, execution.conduitKey, accumulator ); // Skip overflow check as for loop is indexed starting at zero. unchecked { ++i; } } } // Skip overflow checks as all for loops are indexed starting at zero. unchecked { // Iterate over each order. for (uint256 i = 0; i < totalOrders; ++i) { // Retrieve the order in question. AdvancedOrder memory advancedOrder = advancedOrders[i]; // Skip the order in question if not being not fulfilled. if (advancedOrder.numerator == 0) { // Explicitly set availableOrders at the given index to // guard against the possibility of dirtied memory. availableOrders[i] = false; continue; } // Mark the order as available. availableOrders[i] = true; // Retrieve the order parameters. OrderParameters memory parameters = advancedOrder.parameters; { // Retrieve offer items. OfferItem[] memory offer = parameters.offer; // Read length of offer array & place on the stack. uint256 totalOfferItems = offer.length; // Iterate over each offer item to restore it. for (uint256 j = 0; j < totalOfferItems; ++j) { // Retrieve the offer item in question. OfferItem memory offerItem = offer[j]; // Transfer to recipient if unspent amount is not zero. // Note that the transfer will not be reflected in the // executions array. if (offerItem.startAmount != 0) { // Replace the endAmount parameter with the recipient to // make offerItem compatible with the ReceivedItem input // to _transfer and cache the original endAmount so it // can be restored after the transfer. uint256 originalEndAmount = _replaceEndAmountWithRecipient( offerItem, recipient ); // Transfer excess offer item amount to recipient. _toOfferItemInput(_transfer)( offerItem, parameters.offerer, parameters.conduitKey, accumulator ); // Restore the original endAmount in offerItem. assembly { mstore( add( offerItem, ReceivedItem_recipient_offset ), originalEndAmount ) } } // Restore original amount on the offer item. offerItem.startAmount = offerItem.endAmount; } } { // Read consideration items & ensure they are fulfilled. ConsiderationItem[] memory consideration = ( parameters.consideration ); // Read length of consideration array & place on stack. uint256 totalConsiderationItems = consideration.length; // Iterate over each consideration item. for (uint256 j = 0; j < totalConsiderationItems; ++j) { ConsiderationItem memory considerationItem = ( consideration[j] ); // Retrieve remaining amount on consideration item. uint256 unmetAmount = considerationItem.startAmount; // Revert if the remaining amount is not zero. if (unmetAmount != 0) { _revertConsiderationNotMet(i, j, unmetAmount); } // Utilize assembly to restore the original value. assembly { // Write recipient to startAmount. mstore( add( considerationItem, ReceivedItem_amount_offset ), mload( add( considerationItem, ConsiderationItem_recipient_offset ) ) ) } } } } } // Trigger any accumulated transfers via call to the conduit. _triggerIfArmed(accumulator); // Determine whether any native token balance remains. uint256 remainingNativeTokenBalance; assembly { remainingNativeTokenBalance := selfbalance() } // Return any remaining native token balance to the caller. if (remainingNativeTokenBalance != 0) { _transferNativeTokens( payable(msg.sender), remainingNativeTokenBalance ); } // If any restricted or contract orders are present in the group of // orders being fulfilled, perform any validateOrder or ratifyOrder // calls after all executions and related transfers are complete. if (containsNonOpen) { // Iterate over each order a second time. for (uint256 i = 0; i < totalOrders; ) { // Ensure the order in question is being fulfilled. if (availableOrders[i]) { // Check restricted orders and contract orders. _assertRestrictedAdvancedOrderValidity( advancedOrders[i], orderHashes, orderHashes[i] ); } // Skip overflow checks as for loop is indexed starting at zero. unchecked { ++i; } } } // Clear the reentrancy guard. _clearReentrancyGuard(); // Return the array containing available orders. return availableOrders; } /** * @dev Internal function to emit an OrdersMatched event using the same * memory region as the existing order hash array. * * @param orderHashes An array of order hashes to include as an argument for * the OrdersMatched event. */ function _emitOrdersMatched(bytes32[] memory orderHashes) internal { assembly { // Load the array length from memory. let length := mload(orderHashes) // Get the full size of the event data - one word for the offset, // one for the array length and one per hash. let dataSize := add(TwoWords, shl(OneWordShift, length)) // Get pointer to start of data, reusing word before array length // for the offset. let dataPointer := sub(orderHashes, OneWord) // Cache the existing word in memory at the offset pointer. let cache := mload(dataPointer) // Write an offset of 32. mstore(dataPointer, OneWord) // Emit the OrdersMatched event. log1(dataPointer, dataSize, OrdersMatchedTopic0) // Restore the cached word. mstore(dataPointer, cache) } } /** * @dev Internal function to match an arbitrary number of full or partial * orders, each with an arbitrary number of items for offer and * consideration, supplying criteria resolvers containing specific * token identifiers and associated proofs as well as fulfillments * allocating offer components to consideration components. * * @param advancedOrders The advanced orders to match. Note that both the * offerer and fulfiller on each order must first * approve this contract (or their conduit if * indicated by the order) to transfer any relevant * tokens on their behalf and each consideration * recipient must implement `onERC1155Received` in * order to receive ERC1155 tokens. Also note that * the offer and consideration components for each * order must have no remainder after multiplying * the respective amount with the supplied fraction * in order for the group of partial fills to be * considered valid. * @param criteriaResolvers An array where each element contains a reference * to a specific order as well as that order's * offer or consideration, a token identifier, and * a proof that the supplied token identifier is * contained in the order's merkle root. Note that * an empty root indicates that any (transferable) * token identifier is valid and that no associated * proof needs to be supplied. * @param fulfillments An array of elements allocating offer components * to consideration components. Note that each * consideration component must be fully met in * order for the match operation to be valid. * @param recipient The intended recipient for all unspent offer * item amounts. * * @return executions An array of elements indicating the sequence of * transfers performed as part of matching the given * orders. */ function _matchAdvancedOrders( AdvancedOrder[] memory advancedOrders, CriteriaResolver[] memory criteriaResolvers, Fulfillment[] memory fulfillments, address recipient ) internal returns (Execution[] memory /* executions */) { // Validate orders, update order status, and determine item amounts. ( bytes32[] memory orderHashes, bool containsNonOpen ) = _validateOrdersAndPrepareToFulfill( advancedOrders, criteriaResolvers, true, // Signifies that invalid orders should revert. advancedOrders.length, recipient ); // Emit OrdersMatched event, providing an array of matched order hashes. _emitOrdersMatched(orderHashes); // Fulfill the orders using the supplied fulfillments and recipient. return _fulfillAdvancedOrders( advancedOrders, fulfillments, orderHashes, recipient, containsNonOpen ); } /** * @dev Internal function to fulfill an arbitrary number of orders, either * full or partial, after validating, adjusting amounts, and applying * criteria resolvers. * * @param advancedOrders The orders to match, including a fraction to * attempt to fill for each order. * @param fulfillments An array of elements allocating offer components * to consideration components. Note that the final * amount of each consideration component must be * zero for a match operation to be considered valid. * @param orderHashes An array of order hashes for each order. * @param recipient The intended recipient for all items that do not * already have a designated recipient and are not * used as part of a provided fulfillment. * @param containsNonOpen A boolean indicating whether any restricted or * contract orders are present within the provided * array of advanced orders. * * @return executions An array of elements indicating the sequence of * transfers performed as part of matching the given * orders. */ function _fulfillAdvancedOrders( AdvancedOrder[] memory advancedOrders, Fulfillment[] memory fulfillments, bytes32[] memory orderHashes, address recipient, bool containsNonOpen ) internal returns (Execution[] memory executions) { // Retrieve fulfillments array length and place on the stack. uint256 totalFulfillments = fulfillments.length; // Allocate executions by fulfillment and apply them to each execution. executions = new Execution[](totalFulfillments); // Skip overflow checks as all for loops are indexed starting at zero. unchecked { // Track number of filtered executions. uint256 totalFilteredExecutions = 0; // Iterate over each fulfillment. for (uint256 i = 0; i < totalFulfillments; ++i) { /// Retrieve the fulfillment in question. Fulfillment memory fulfillment = fulfillments[i]; // Derive the execution corresponding with the fulfillment. Execution memory execution = _applyFulfillment( advancedOrders, fulfillment.offerComponents, fulfillment.considerationComponents, i ); // If the execution is filterable... if (_isFilterableExecution(execution)) { // Increment total filtered executions. ++totalFilteredExecutions; } else { // Otherwise, assign the execution to the executions array. executions[i - totalFilteredExecutions] = execution; } } // If some number of executions have been filtered... if (totalFilteredExecutions != 0) { // reduce the total length of the executions array. assembly { mstore( executions, sub(mload(executions), totalFilteredExecutions) ) } } } // Perform final checks and execute orders. _performFinalChecksAndExecuteOrders( advancedOrders, executions, orderHashes, recipient, containsNonOpen ); // Return the executions array. return executions; } /** * @dev Internal pure function to determine whether a given execution is * filterable and may be removed from the executions array. The offerer * and the recipient must be the same address and the item type cannot * indicate a native token transfer. * * @param execution The execution to check for filterability. * * @return filterable A boolean indicating whether the execution in question * can be filtered from the executions array. */ function _isFilterableExecution( Execution memory execution ) internal pure returns (bool filterable) { // Utilize assembly to efficiently determine if execution is filterable. assembly { // Retrieve the received item referenced by the execution. let item := mload(execution) // Determine whether the execution is filterable. filterable := and( // Determine if offerer and recipient are the same address. eq( // Retrieve the recipient's address from the received item. mload(add(item, ReceivedItem_recipient_offset)), // Retrieve the offerer's address from the execution. mload(add(execution, Execution_offerer_offset)) ), // Determine if received item's item type is non-zero, thereby // indicating that the execution does not involve native tokens. iszero(iszero(mload(item))) ) } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.13; type CalldataPointer is uint256; type ReturndataPointer is uint256; type MemoryPointer is uint256; using CalldataPointerLib for CalldataPointer global; using MemoryPointerLib for MemoryPointer global; using ReturndataPointerLib for ReturndataPointer global; using CalldataReaders for CalldataPointer global; using ReturndataReaders for ReturndataPointer global; using MemoryReaders for MemoryPointer global; using MemoryWriters for MemoryPointer global; CalldataPointer constant CalldataStart = CalldataPointer.wrap(0x04); MemoryPointer constant FreeMemoryPPtr = MemoryPointer.wrap(0x40); uint256 constant IdentityPrecompileAddress = 0x4; uint256 constant OffsetOrLengthMask = 0xffffffff; uint256 constant _OneWord = 0x20; uint256 constant _FreeMemoryPointerSlot = 0x40; /// @dev Allocates `size` bytes in memory by increasing the free memory pointer /// and returns the memory pointer to the first byte of the allocated region. // (Free functions cannot have visibility.) // solhint-disable-next-line func-visibility function malloc(uint256 size) pure returns (MemoryPointer mPtr) { assembly { mPtr := mload(_FreeMemoryPointerSlot) mstore(_FreeMemoryPointerSlot, add(mPtr, size)) } } // (Free functions cannot have visibility.) // solhint-disable-next-line func-visibility function getFreeMemoryPointer() pure returns (MemoryPointer mPtr) { mPtr = FreeMemoryPPtr.readMemoryPointer(); } // (Free functions cannot have visibility.) // solhint-disable-next-line func-visibility function setFreeMemoryPointer(MemoryPointer mPtr) pure { FreeMemoryPPtr.write(mPtr); } library CalldataPointerLib { function lt( CalldataPointer a, CalldataPointer b ) internal pure returns (bool c) { assembly { c := lt(a, b) } } function gt( CalldataPointer a, CalldataPointer b ) internal pure returns (bool c) { assembly { c := gt(a, b) } } function eq( CalldataPointer a, CalldataPointer b ) internal pure returns (bool c) { assembly { c := eq(a, b) } } function isNull(CalldataPointer a) internal pure returns (bool b) { assembly { b := iszero(a) } } /// @dev Resolves an offset stored at `cdPtr + headOffset` to a calldata. /// pointer `cdPtr` must point to some parent object with a dynamic /// type's head stored at `cdPtr + headOffset`. function pptr( CalldataPointer cdPtr, uint256 headOffset ) internal pure returns (CalldataPointer cdPtrChild) { cdPtrChild = cdPtr.offset( cdPtr.offset(headOffset).readUint256() & OffsetOrLengthMask ); } /// @dev Resolves an offset stored at `cdPtr` to a calldata pointer. /// `cdPtr` must point to some parent object with a dynamic type as its /// first member, e.g. `struct { bytes data; }` function pptr( CalldataPointer cdPtr ) internal pure returns (CalldataPointer cdPtrChild) { cdPtrChild = cdPtr.offset(cdPtr.readUint256() & OffsetOrLengthMask); } /// @dev Returns the calldata pointer one word after `cdPtr`. function next( CalldataPointer cdPtr ) internal pure returns (CalldataPointer cdPtrNext) { assembly { cdPtrNext := add(cdPtr, _OneWord) } } /// @dev Returns the calldata pointer `_offset` bytes after `cdPtr`. function offset( CalldataPointer cdPtr, uint256 _offset ) internal pure returns (CalldataPointer cdPtrNext) { assembly { cdPtrNext := add(cdPtr, _offset) } } /// @dev Copies `size` bytes from calldata starting at `src` to memory at /// `dst`. function copy( CalldataPointer src, MemoryPointer dst, uint256 size ) internal pure { assembly { calldatacopy(dst, src, size) } } } library ReturndataPointerLib { function lt( ReturndataPointer a, ReturndataPointer b ) internal pure returns (bool c) { assembly { c := lt(a, b) } } function gt( ReturndataPointer a, ReturndataPointer b ) internal pure returns (bool c) { assembly { c := gt(a, b) } } function eq( ReturndataPointer a, ReturndataPointer b ) internal pure returns (bool c) { assembly { c := eq(a, b) } } function isNull(ReturndataPointer a) internal pure returns (bool b) { assembly { b := iszero(a) } } /// @dev Resolves an offset stored at `rdPtr + headOffset` to a returndata /// pointer. `rdPtr` must point to some parent object with a dynamic /// type's head stored at `rdPtr + headOffset`. function pptr( ReturndataPointer rdPtr, uint256 headOffset ) internal pure returns (ReturndataPointer rdPtrChild) { rdPtrChild = rdPtr.offset( rdPtr.offset(headOffset).readUint256() & OffsetOrLengthMask ); } /// @dev Resolves an offset stored at `rdPtr` to a returndata pointer. /// `rdPtr` must point to some parent object with a dynamic type as its /// first member, e.g. `struct { bytes data; }` function pptr( ReturndataPointer rdPtr ) internal pure returns (ReturndataPointer rdPtrChild) { rdPtrChild = rdPtr.offset(rdPtr.readUint256() & OffsetOrLengthMask); } /// @dev Returns the returndata pointer one word after `cdPtr`. function next( ReturndataPointer rdPtr ) internal pure returns (ReturndataPointer rdPtrNext) { assembly { rdPtrNext := add(rdPtr, _OneWord) } } /// @dev Returns the returndata pointer `_offset` bytes after `cdPtr`. function offset( ReturndataPointer rdPtr, uint256 _offset ) internal pure returns (ReturndataPointer rdPtrNext) { assembly { rdPtrNext := add(rdPtr, _offset) } } /// @dev Copies `size` bytes from returndata starting at `src` to memory at /// `dst`. function copy( ReturndataPointer src, MemoryPointer dst, uint256 size ) internal pure { assembly { returndatacopy(dst, src, size) } } } library MemoryPointerLib { function copy( MemoryPointer src, MemoryPointer dst, uint256 size ) internal view { assembly { let success := staticcall( gas(), IdentityPrecompileAddress, src, size, dst, size ) if or(iszero(returndatasize()), iszero(success)) { revert(0, 0) } } } function lt( MemoryPointer a, MemoryPointer b ) internal pure returns (bool c) { assembly { c := lt(a, b) } } function gt( MemoryPointer a, MemoryPointer b ) internal pure returns (bool c) { assembly { c := gt(a, b) } } function eq( MemoryPointer a, MemoryPointer b ) internal pure returns (bool c) { assembly { c := eq(a, b) } } function isNull(MemoryPointer a) internal pure returns (bool b) { assembly { b := iszero(a) } } function hash( MemoryPointer ptr, uint256 length ) internal pure returns (bytes32 _hash) { assembly { _hash := keccak256(ptr, length) } } /// @dev Returns the memory pointer one word after `mPtr`. function next( MemoryPointer mPtr ) internal pure returns (MemoryPointer mPtrNext) { assembly { mPtrNext := add(mPtr, _OneWord) } } /// @dev Returns the memory pointer `_offset` bytes after `mPtr`. function offset( MemoryPointer mPtr, uint256 _offset ) internal pure returns (MemoryPointer mPtrNext) { assembly { mPtrNext := add(mPtr, _offset) } } /// @dev Resolves a pointer at `mPtr + headOffset` to a memory /// pointer. `mPtr` must point to some parent object with a dynamic /// type's pointer stored at `mPtr + headOffset`. function pptr( MemoryPointer mPtr, uint256 headOffset ) internal pure returns (MemoryPointer mPtrChild) { mPtrChild = mPtr.offset(headOffset).readMemoryPointer(); } /// @dev Resolves a pointer stored at `mPtr` to a memory pointer. /// `mPtr` must point to some parent object with a dynamic type as its /// first member, e.g. `struct { bytes data; }` function pptr( MemoryPointer mPtr ) internal pure returns (MemoryPointer mPtrChild) { mPtrChild = mPtr.readMemoryPointer(); } } library CalldataReaders { /// @dev Reads the value at `cdPtr` and applies a mask to return only the /// last 4 bytes. function readMaskedUint256( CalldataPointer cdPtr ) internal pure returns (uint256 value) { value = cdPtr.readUint256() & OffsetOrLengthMask; } /// @dev Reads the bool at `cdPtr` in calldata. function readBool( CalldataPointer cdPtr ) internal pure returns (bool value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the address at `cdPtr` in calldata. function readAddress( CalldataPointer cdPtr ) internal pure returns (address value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes1 at `cdPtr` in calldata. function readBytes1( CalldataPointer cdPtr ) internal pure returns (bytes1 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes2 at `cdPtr` in calldata. function readBytes2( CalldataPointer cdPtr ) internal pure returns (bytes2 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes3 at `cdPtr` in calldata. function readBytes3( CalldataPointer cdPtr ) internal pure returns (bytes3 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes4 at `cdPtr` in calldata. function readBytes4( CalldataPointer cdPtr ) internal pure returns (bytes4 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes5 at `cdPtr` in calldata. function readBytes5( CalldataPointer cdPtr ) internal pure returns (bytes5 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes6 at `cdPtr` in calldata. function readBytes6( CalldataPointer cdPtr ) internal pure returns (bytes6 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes7 at `cdPtr` in calldata. function readBytes7( CalldataPointer cdPtr ) internal pure returns (bytes7 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes8 at `cdPtr` in calldata. function readBytes8( CalldataPointer cdPtr ) internal pure returns (bytes8 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes9 at `cdPtr` in calldata. function readBytes9( CalldataPointer cdPtr ) internal pure returns (bytes9 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes10 at `cdPtr` in calldata. function readBytes10( CalldataPointer cdPtr ) internal pure returns (bytes10 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes11 at `cdPtr` in calldata. function readBytes11( CalldataPointer cdPtr ) internal pure returns (bytes11 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes12 at `cdPtr` in calldata. function readBytes12( CalldataPointer cdPtr ) internal pure returns (bytes12 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes13 at `cdPtr` in calldata. function readBytes13( CalldataPointer cdPtr ) internal pure returns (bytes13 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes14 at `cdPtr` in calldata. function readBytes14( CalldataPointer cdPtr ) internal pure returns (bytes14 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes15 at `cdPtr` in calldata. function readBytes15( CalldataPointer cdPtr ) internal pure returns (bytes15 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes16 at `cdPtr` in calldata. function readBytes16( CalldataPointer cdPtr ) internal pure returns (bytes16 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes17 at `cdPtr` in calldata. function readBytes17( CalldataPointer cdPtr ) internal pure returns (bytes17 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes18 at `cdPtr` in calldata. function readBytes18( CalldataPointer cdPtr ) internal pure returns (bytes18 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes19 at `cdPtr` in calldata. function readBytes19( CalldataPointer cdPtr ) internal pure returns (bytes19 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes20 at `cdPtr` in calldata. function readBytes20( CalldataPointer cdPtr ) internal pure returns (bytes20 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes21 at `cdPtr` in calldata. function readBytes21( CalldataPointer cdPtr ) internal pure returns (bytes21 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes22 at `cdPtr` in calldata. function readBytes22( CalldataPointer cdPtr ) internal pure returns (bytes22 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes23 at `cdPtr` in calldata. function readBytes23( CalldataPointer cdPtr ) internal pure returns (bytes23 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes24 at `cdPtr` in calldata. function readBytes24( CalldataPointer cdPtr ) internal pure returns (bytes24 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes25 at `cdPtr` in calldata. function readBytes25( CalldataPointer cdPtr ) internal pure returns (bytes25 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes26 at `cdPtr` in calldata. function readBytes26( CalldataPointer cdPtr ) internal pure returns (bytes26 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes27 at `cdPtr` in calldata. function readBytes27( CalldataPointer cdPtr ) internal pure returns (bytes27 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes28 at `cdPtr` in calldata. function readBytes28( CalldataPointer cdPtr ) internal pure returns (bytes28 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes29 at `cdPtr` in calldata. function readBytes29( CalldataPointer cdPtr ) internal pure returns (bytes29 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes30 at `cdPtr` in calldata. function readBytes30( CalldataPointer cdPtr ) internal pure returns (bytes30 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes31 at `cdPtr` in calldata. function readBytes31( CalldataPointer cdPtr ) internal pure returns (bytes31 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes32 at `cdPtr` in calldata. function readBytes32( CalldataPointer cdPtr ) internal pure returns (bytes32 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint8 at `cdPtr` in calldata. function readUint8( CalldataPointer cdPtr ) internal pure returns (uint8 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint16 at `cdPtr` in calldata. function readUint16( CalldataPointer cdPtr ) internal pure returns (uint16 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint24 at `cdPtr` in calldata. function readUint24( CalldataPointer cdPtr ) internal pure returns (uint24 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint32 at `cdPtr` in calldata. function readUint32( CalldataPointer cdPtr ) internal pure returns (uint32 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint40 at `cdPtr` in calldata. function readUint40( CalldataPointer cdPtr ) internal pure returns (uint40 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint48 at `cdPtr` in calldata. function readUint48( CalldataPointer cdPtr ) internal pure returns (uint48 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint56 at `cdPtr` in calldata. function readUint56( CalldataPointer cdPtr ) internal pure returns (uint56 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint64 at `cdPtr` in calldata. function readUint64( CalldataPointer cdPtr ) internal pure returns (uint64 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint72 at `cdPtr` in calldata. function readUint72( CalldataPointer cdPtr ) internal pure returns (uint72 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint80 at `cdPtr` in calldata. function readUint80( CalldataPointer cdPtr ) internal pure returns (uint80 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint88 at `cdPtr` in calldata. function readUint88( CalldataPointer cdPtr ) internal pure returns (uint88 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint96 at `cdPtr` in calldata. function readUint96( CalldataPointer cdPtr ) internal pure returns (uint96 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint104 at `cdPtr` in calldata. function readUint104( CalldataPointer cdPtr ) internal pure returns (uint104 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint112 at `cdPtr` in calldata. function readUint112( CalldataPointer cdPtr ) internal pure returns (uint112 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint120 at `cdPtr` in calldata. function readUint120( CalldataPointer cdPtr ) internal pure returns (uint120 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint128 at `cdPtr` in calldata. function readUint128( CalldataPointer cdPtr ) internal pure returns (uint128 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint136 at `cdPtr` in calldata. function readUint136( CalldataPointer cdPtr ) internal pure returns (uint136 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint144 at `cdPtr` in calldata. function readUint144( CalldataPointer cdPtr ) internal pure returns (uint144 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint152 at `cdPtr` in calldata. function readUint152( CalldataPointer cdPtr ) internal pure returns (uint152 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint160 at `cdPtr` in calldata. function readUint160( CalldataPointer cdPtr ) internal pure returns (uint160 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint168 at `cdPtr` in calldata. function readUint168( CalldataPointer cdPtr ) internal pure returns (uint168 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint176 at `cdPtr` in calldata. function readUint176( CalldataPointer cdPtr ) internal pure returns (uint176 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint184 at `cdPtr` in calldata. function readUint184( CalldataPointer cdPtr ) internal pure returns (uint184 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint192 at `cdPtr` in calldata. function readUint192( CalldataPointer cdPtr ) internal pure returns (uint192 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint200 at `cdPtr` in calldata. function readUint200( CalldataPointer cdPtr ) internal pure returns (uint200 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint208 at `cdPtr` in calldata. function readUint208( CalldataPointer cdPtr ) internal pure returns (uint208 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint216 at `cdPtr` in calldata. function readUint216( CalldataPointer cdPtr ) internal pure returns (uint216 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint224 at `cdPtr` in calldata. function readUint224( CalldataPointer cdPtr ) internal pure returns (uint224 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint232 at `cdPtr` in calldata. function readUint232( CalldataPointer cdPtr ) internal pure returns (uint232 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint240 at `cdPtr` in calldata. function readUint240( CalldataPointer cdPtr ) internal pure returns (uint240 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint248 at `cdPtr` in calldata. function readUint248( CalldataPointer cdPtr ) internal pure returns (uint248 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint256 at `cdPtr` in calldata. function readUint256( CalldataPointer cdPtr ) internal pure returns (uint256 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int8 at `cdPtr` in calldata. function readInt8( CalldataPointer cdPtr ) internal pure returns (int8 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int16 at `cdPtr` in calldata. function readInt16( CalldataPointer cdPtr ) internal pure returns (int16 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int24 at `cdPtr` in calldata. function readInt24( CalldataPointer cdPtr ) internal pure returns (int24 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int32 at `cdPtr` in calldata. function readInt32( CalldataPointer cdPtr ) internal pure returns (int32 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int40 at `cdPtr` in calldata. function readInt40( CalldataPointer cdPtr ) internal pure returns (int40 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int48 at `cdPtr` in calldata. function readInt48( CalldataPointer cdPtr ) internal pure returns (int48 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int56 at `cdPtr` in calldata. function readInt56( CalldataPointer cdPtr ) internal pure returns (int56 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int64 at `cdPtr` in calldata. function readInt64( CalldataPointer cdPtr ) internal pure returns (int64 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int72 at `cdPtr` in calldata. function readInt72( CalldataPointer cdPtr ) internal pure returns (int72 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int80 at `cdPtr` in calldata. function readInt80( CalldataPointer cdPtr ) internal pure returns (int80 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int88 at `cdPtr` in calldata. function readInt88( CalldataPointer cdPtr ) internal pure returns (int88 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int96 at `cdPtr` in calldata. function readInt96( CalldataPointer cdPtr ) internal pure returns (int96 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int104 at `cdPtr` in calldata. function readInt104( CalldataPointer cdPtr ) internal pure returns (int104 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int112 at `cdPtr` in calldata. function readInt112( CalldataPointer cdPtr ) internal pure returns (int112 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int120 at `cdPtr` in calldata. function readInt120( CalldataPointer cdPtr ) internal pure returns (int120 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int128 at `cdPtr` in calldata. function readInt128( CalldataPointer cdPtr ) internal pure returns (int128 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int136 at `cdPtr` in calldata. function readInt136( CalldataPointer cdPtr ) internal pure returns (int136 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int144 at `cdPtr` in calldata. function readInt144( CalldataPointer cdPtr ) internal pure returns (int144 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int152 at `cdPtr` in calldata. function readInt152( CalldataPointer cdPtr ) internal pure returns (int152 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int160 at `cdPtr` in calldata. function readInt160( CalldataPointer cdPtr ) internal pure returns (int160 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int168 at `cdPtr` in calldata. function readInt168( CalldataPointer cdPtr ) internal pure returns (int168 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int176 at `cdPtr` in calldata. function readInt176( CalldataPointer cdPtr ) internal pure returns (int176 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int184 at `cdPtr` in calldata. function readInt184( CalldataPointer cdPtr ) internal pure returns (int184 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int192 at `cdPtr` in calldata. function readInt192( CalldataPointer cdPtr ) internal pure returns (int192 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int200 at `cdPtr` in calldata. function readInt200( CalldataPointer cdPtr ) internal pure returns (int200 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int208 at `cdPtr` in calldata. function readInt208( CalldataPointer cdPtr ) internal pure returns (int208 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int216 at `cdPtr` in calldata. function readInt216( CalldataPointer cdPtr ) internal pure returns (int216 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int224 at `cdPtr` in calldata. function readInt224( CalldataPointer cdPtr ) internal pure returns (int224 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int232 at `cdPtr` in calldata. function readInt232( CalldataPointer cdPtr ) internal pure returns (int232 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int240 at `cdPtr` in calldata. function readInt240( CalldataPointer cdPtr ) internal pure returns (int240 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int248 at `cdPtr` in calldata. function readInt248( CalldataPointer cdPtr ) internal pure returns (int248 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int256 at `cdPtr` in calldata. function readInt256( CalldataPointer cdPtr ) internal pure returns (int256 value) { assembly { value := calldataload(cdPtr) } } } library ReturndataReaders { /// @dev Reads value at `rdPtr` & applies a mask to return only last 4 bytes function readMaskedUint256( ReturndataPointer rdPtr ) internal pure returns (uint256 value) { value = rdPtr.readUint256() & OffsetOrLengthMask; } /// @dev Reads the bool at `rdPtr` in returndata. function readBool( ReturndataPointer rdPtr ) internal pure returns (bool value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the address at `rdPtr` in returndata. function readAddress( ReturndataPointer rdPtr ) internal pure returns (address value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes1 at `rdPtr` in returndata. function readBytes1( ReturndataPointer rdPtr ) internal pure returns (bytes1 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes2 at `rdPtr` in returndata. function readBytes2( ReturndataPointer rdPtr ) internal pure returns (bytes2 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes3 at `rdPtr` in returndata. function readBytes3( ReturndataPointer rdPtr ) internal pure returns (bytes3 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes4 at `rdPtr` in returndata. function readBytes4( ReturndataPointer rdPtr ) internal pure returns (bytes4 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes5 at `rdPtr` in returndata. function readBytes5( ReturndataPointer rdPtr ) internal pure returns (bytes5 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes6 at `rdPtr` in returndata. function readBytes6( ReturndataPointer rdPtr ) internal pure returns (bytes6 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes7 at `rdPtr` in returndata. function readBytes7( ReturndataPointer rdPtr ) internal pure returns (bytes7 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes8 at `rdPtr` in returndata. function readBytes8( ReturndataPointer rdPtr ) internal pure returns (bytes8 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes9 at `rdPtr` in returndata. function readBytes9( ReturndataPointer rdPtr ) internal pure returns (bytes9 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes10 at `rdPtr` in returndata. function readBytes10( ReturndataPointer rdPtr ) internal pure returns (bytes10 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes11 at `rdPtr` in returndata. function readBytes11( ReturndataPointer rdPtr ) internal pure returns (bytes11 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes12 at `rdPtr` in returndata. function readBytes12( ReturndataPointer rdPtr ) internal pure returns (bytes12 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes13 at `rdPtr` in returndata. function readBytes13( ReturndataPointer rdPtr ) internal pure returns (bytes13 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes14 at `rdPtr` in returndata. function readBytes14( ReturndataPointer rdPtr ) internal pure returns (bytes14 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes15 at `rdPtr` in returndata. function readBytes15( ReturndataPointer rdPtr ) internal pure returns (bytes15 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes16 at `rdPtr` in returndata. function readBytes16( ReturndataPointer rdPtr ) internal pure returns (bytes16 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes17 at `rdPtr` in returndata. function readBytes17( ReturndataPointer rdPtr ) internal pure returns (bytes17 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes18 at `rdPtr` in returndata. function readBytes18( ReturndataPointer rdPtr ) internal pure returns (bytes18 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes19 at `rdPtr` in returndata. function readBytes19( ReturndataPointer rdPtr ) internal pure returns (bytes19 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes20 at `rdPtr` in returndata. function readBytes20( ReturndataPointer rdPtr ) internal pure returns (bytes20 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes21 at `rdPtr` in returndata. function readBytes21( ReturndataPointer rdPtr ) internal pure returns (bytes21 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes22 at `rdPtr` in returndata. function readBytes22( ReturndataPointer rdPtr ) internal pure returns (bytes22 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes23 at `rdPtr` in returndata. function readBytes23( ReturndataPointer rdPtr ) internal pure returns (bytes23 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes24 at `rdPtr` in returndata. function readBytes24( ReturndataPointer rdPtr ) internal pure returns (bytes24 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes25 at `rdPtr` in returndata. function readBytes25( ReturndataPointer rdPtr ) internal pure returns (bytes25 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes26 at `rdPtr` in returndata. function readBytes26( ReturndataPointer rdPtr ) internal pure returns (bytes26 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes27 at `rdPtr` in returndata. function readBytes27( ReturndataPointer rdPtr ) internal pure returns (bytes27 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes28 at `rdPtr` in returndata. function readBytes28( ReturndataPointer rdPtr ) internal pure returns (bytes28 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes29 at `rdPtr` in returndata. function readBytes29( ReturndataPointer rdPtr ) internal pure returns (bytes29 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes30 at `rdPtr` in returndata. function readBytes30( ReturndataPointer rdPtr ) internal pure returns (bytes30 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes31 at `rdPtr` in returndata. function readBytes31( ReturndataPointer rdPtr ) internal pure returns (bytes31 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes32 at `rdPtr` in returndata. function readBytes32( ReturndataPointer rdPtr ) internal pure returns (bytes32 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint8 at `rdPtr` in returndata. function readUint8( ReturndataPointer rdPtr ) internal pure returns (uint8 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint16 at `rdPtr` in returndata. function readUint16( ReturndataPointer rdPtr ) internal pure returns (uint16 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint24 at `rdPtr` in returndata. function readUint24( ReturndataPointer rdPtr ) internal pure returns (uint24 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint32 at `rdPtr` in returndata. function readUint32( ReturndataPointer rdPtr ) internal pure returns (uint32 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint40 at `rdPtr` in returndata. function readUint40( ReturndataPointer rdPtr ) internal pure returns (uint40 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint48 at `rdPtr` in returndata. function readUint48( ReturndataPointer rdPtr ) internal pure returns (uint48 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint56 at `rdPtr` in returndata. function readUint56( ReturndataPointer rdPtr ) internal pure returns (uint56 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint64 at `rdPtr` in returndata. function readUint64( ReturndataPointer rdPtr ) internal pure returns (uint64 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint72 at `rdPtr` in returndata. function readUint72( ReturndataPointer rdPtr ) internal pure returns (uint72 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint80 at `rdPtr` in returndata. function readUint80( ReturndataPointer rdPtr ) internal pure returns (uint80 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint88 at `rdPtr` in returndata. function readUint88( ReturndataPointer rdPtr ) internal pure returns (uint88 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint96 at `rdPtr` in returndata. function readUint96( ReturndataPointer rdPtr ) internal pure returns (uint96 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint104 at `rdPtr` in returndata. function readUint104( ReturndataPointer rdPtr ) internal pure returns (uint104 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint112 at `rdPtr` in returndata. function readUint112( ReturndataPointer rdPtr ) internal pure returns (uint112 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint120 at `rdPtr` in returndata. function readUint120( ReturndataPointer rdPtr ) internal pure returns (uint120 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint128 at `rdPtr` in returndata. function readUint128( ReturndataPointer rdPtr ) internal pure returns (uint128 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint136 at `rdPtr` in returndata. function readUint136( ReturndataPointer rdPtr ) internal pure returns (uint136 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint144 at `rdPtr` in returndata. function readUint144( ReturndataPointer rdPtr ) internal pure returns (uint144 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint152 at `rdPtr` in returndata. function readUint152( ReturndataPointer rdPtr ) internal pure returns (uint152 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint160 at `rdPtr` in returndata. function readUint160( ReturndataPointer rdPtr ) internal pure returns (uint160 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint168 at `rdPtr` in returndata. function readUint168( ReturndataPointer rdPtr ) internal pure returns (uint168 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint176 at `rdPtr` in returndata. function readUint176( ReturndataPointer rdPtr ) internal pure returns (uint176 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint184 at `rdPtr` in returndata. function readUint184( ReturndataPointer rdPtr ) internal pure returns (uint184 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint192 at `rdPtr` in returndata. function readUint192( ReturndataPointer rdPtr ) internal pure returns (uint192 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint200 at `rdPtr` in returndata. function readUint200( ReturndataPointer rdPtr ) internal pure returns (uint200 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint208 at `rdPtr` in returndata. function readUint208( ReturndataPointer rdPtr ) internal pure returns (uint208 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint216 at `rdPtr` in returndata. function readUint216( ReturndataPointer rdPtr ) internal pure returns (uint216 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint224 at `rdPtr` in returndata. function readUint224( ReturndataPointer rdPtr ) internal pure returns (uint224 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint232 at `rdPtr` in returndata. function readUint232( ReturndataPointer rdPtr ) internal pure returns (uint232 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint240 at `rdPtr` in returndata. function readUint240( ReturndataPointer rdPtr ) internal pure returns (uint240 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint248 at `rdPtr` in returndata. function readUint248( ReturndataPointer rdPtr ) internal pure returns (uint248 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint256 at `rdPtr` in returndata. function readUint256( ReturndataPointer rdPtr ) internal pure returns (uint256 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int8 at `rdPtr` in returndata. function readInt8( ReturndataPointer rdPtr ) internal pure returns (int8 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int16 at `rdPtr` in returndata. function readInt16( ReturndataPointer rdPtr ) internal pure returns (int16 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int24 at `rdPtr` in returndata. function readInt24( ReturndataPointer rdPtr ) internal pure returns (int24 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int32 at `rdPtr` in returndata. function readInt32( ReturndataPointer rdPtr ) internal pure returns (int32 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int40 at `rdPtr` in returndata. function readInt40( ReturndataPointer rdPtr ) internal pure returns (int40 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int48 at `rdPtr` in returndata. function readInt48( ReturndataPointer rdPtr ) internal pure returns (int48 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int56 at `rdPtr` in returndata. function readInt56( ReturndataPointer rdPtr ) internal pure returns (int56 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int64 at `rdPtr` in returndata. function readInt64( ReturndataPointer rdPtr ) internal pure returns (int64 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int72 at `rdPtr` in returndata. function readInt72( ReturndataPointer rdPtr ) internal pure returns (int72 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int80 at `rdPtr` in returndata. function readInt80( ReturndataPointer rdPtr ) internal pure returns (int80 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int88 at `rdPtr` in returndata. function readInt88( ReturndataPointer rdPtr ) internal pure returns (int88 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int96 at `rdPtr` in returndata. function readInt96( ReturndataPointer rdPtr ) internal pure returns (int96 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int104 at `rdPtr` in returndata. function readInt104( ReturndataPointer rdPtr ) internal pure returns (int104 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int112 at `rdPtr` in returndata. function readInt112( ReturndataPointer rdPtr ) internal pure returns (int112 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int120 at `rdPtr` in returndata. function readInt120( ReturndataPointer rdPtr ) internal pure returns (int120 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int128 at `rdPtr` in returndata. function readInt128( ReturndataPointer rdPtr ) internal pure returns (int128 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int136 at `rdPtr` in returndata. function readInt136( ReturndataPointer rdPtr ) internal pure returns (int136 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int144 at `rdPtr` in returndata. function readInt144( ReturndataPointer rdPtr ) internal pure returns (int144 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int152 at `rdPtr` in returndata. function readInt152( ReturndataPointer rdPtr ) internal pure returns (int152 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int160 at `rdPtr` in returndata. function readInt160( ReturndataPointer rdPtr ) internal pure returns (int160 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int168 at `rdPtr` in returndata. function readInt168( ReturndataPointer rdPtr ) internal pure returns (int168 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int176 at `rdPtr` in returndata. function readInt176( ReturndataPointer rdPtr ) internal pure returns (int176 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int184 at `rdPtr` in returndata. function readInt184( ReturndataPointer rdPtr ) internal pure returns (int184 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int192 at `rdPtr` in returndata. function readInt192( ReturndataPointer rdPtr ) internal pure returns (int192 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int200 at `rdPtr` in returndata. function readInt200( ReturndataPointer rdPtr ) internal pure returns (int200 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int208 at `rdPtr` in returndata. function readInt208( ReturndataPointer rdPtr ) internal pure returns (int208 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int216 at `rdPtr` in returndata. function readInt216( ReturndataPointer rdPtr ) internal pure returns (int216 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int224 at `rdPtr` in returndata. function readInt224( ReturndataPointer rdPtr ) internal pure returns (int224 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int232 at `rdPtr` in returndata. function readInt232( ReturndataPointer rdPtr ) internal pure returns (int232 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int240 at `rdPtr` in returndata. function readInt240( ReturndataPointer rdPtr ) internal pure returns (int240 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int248 at `rdPtr` in returndata. function readInt248( ReturndataPointer rdPtr ) internal pure returns (int248 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int256 at `rdPtr` in returndata. function readInt256( ReturndataPointer rdPtr ) internal pure returns (int256 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } } library MemoryReaders { /// @dev Reads the memory pointer at `mPtr` in memory. function readMemoryPointer( MemoryPointer mPtr ) internal pure returns (MemoryPointer value) { assembly { value := mload(mPtr) } } /// @dev Reads value at `mPtr` & applies a mask to return only last 4 bytes function readMaskedUint256( MemoryPointer mPtr ) internal pure returns (uint256 value) { value = mPtr.readUint256() & OffsetOrLengthMask; } /// @dev Reads the bool at `mPtr` in memory. function readBool(MemoryPointer mPtr) internal pure returns (bool value) { assembly { value := mload(mPtr) } } /// @dev Reads the address at `mPtr` in memory. function readAddress( MemoryPointer mPtr ) internal pure returns (address value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes1 at `mPtr` in memory. function readBytes1( MemoryPointer mPtr ) internal pure returns (bytes1 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes2 at `mPtr` in memory. function readBytes2( MemoryPointer mPtr ) internal pure returns (bytes2 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes3 at `mPtr` in memory. function readBytes3( MemoryPointer mPtr ) internal pure returns (bytes3 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes4 at `mPtr` in memory. function readBytes4( MemoryPointer mPtr ) internal pure returns (bytes4 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes5 at `mPtr` in memory. function readBytes5( MemoryPointer mPtr ) internal pure returns (bytes5 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes6 at `mPtr` in memory. function readBytes6( MemoryPointer mPtr ) internal pure returns (bytes6 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes7 at `mPtr` in memory. function readBytes7( MemoryPointer mPtr ) internal pure returns (bytes7 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes8 at `mPtr` in memory. function readBytes8( MemoryPointer mPtr ) internal pure returns (bytes8 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes9 at `mPtr` in memory. function readBytes9( MemoryPointer mPtr ) internal pure returns (bytes9 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes10 at `mPtr` in memory. function readBytes10( MemoryPointer mPtr ) internal pure returns (bytes10 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes11 at `mPtr` in memory. function readBytes11( MemoryPointer mPtr ) internal pure returns (bytes11 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes12 at `mPtr` in memory. function readBytes12( MemoryPointer mPtr ) internal pure returns (bytes12 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes13 at `mPtr` in memory. function readBytes13( MemoryPointer mPtr ) internal pure returns (bytes13 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes14 at `mPtr` in memory. function readBytes14( MemoryPointer mPtr ) internal pure returns (bytes14 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes15 at `mPtr` in memory. function readBytes15( MemoryPointer mPtr ) internal pure returns (bytes15 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes16 at `mPtr` in memory. function readBytes16( MemoryPointer mPtr ) internal pure returns (bytes16 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes17 at `mPtr` in memory. function readBytes17( MemoryPointer mPtr ) internal pure returns (bytes17 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes18 at `mPtr` in memory. function readBytes18( MemoryPointer mPtr ) internal pure returns (bytes18 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes19 at `mPtr` in memory. function readBytes19( MemoryPointer mPtr ) internal pure returns (bytes19 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes20 at `mPtr` in memory. function readBytes20( MemoryPointer mPtr ) internal pure returns (bytes20 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes21 at `mPtr` in memory. function readBytes21( MemoryPointer mPtr ) internal pure returns (bytes21 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes22 at `mPtr` in memory. function readBytes22( MemoryPointer mPtr ) internal pure returns (bytes22 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes23 at `mPtr` in memory. function readBytes23( MemoryPointer mPtr ) internal pure returns (bytes23 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes24 at `mPtr` in memory. function readBytes24( MemoryPointer mPtr ) internal pure returns (bytes24 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes25 at `mPtr` in memory. function readBytes25( MemoryPointer mPtr ) internal pure returns (bytes25 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes26 at `mPtr` in memory. function readBytes26( MemoryPointer mPtr ) internal pure returns (bytes26 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes27 at `mPtr` in memory. function readBytes27( MemoryPointer mPtr ) internal pure returns (bytes27 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes28 at `mPtr` in memory. function readBytes28( MemoryPointer mPtr ) internal pure returns (bytes28 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes29 at `mPtr` in memory. function readBytes29( MemoryPointer mPtr ) internal pure returns (bytes29 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes30 at `mPtr` in memory. function readBytes30( MemoryPointer mPtr ) internal pure returns (bytes30 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes31 at `mPtr` in memory. function readBytes31( MemoryPointer mPtr ) internal pure returns (bytes31 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes32 at `mPtr` in memory. function readBytes32( MemoryPointer mPtr ) internal pure returns (bytes32 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint8 at `mPtr` in memory. function readUint8(MemoryPointer mPtr) internal pure returns (uint8 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint16 at `mPtr` in memory. function readUint16( MemoryPointer mPtr ) internal pure returns (uint16 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint24 at `mPtr` in memory. function readUint24( MemoryPointer mPtr ) internal pure returns (uint24 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint32 at `mPtr` in memory. function readUint32( MemoryPointer mPtr ) internal pure returns (uint32 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint40 at `mPtr` in memory. function readUint40( MemoryPointer mPtr ) internal pure returns (uint40 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint48 at `mPtr` in memory. function readUint48( MemoryPointer mPtr ) internal pure returns (uint48 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint56 at `mPtr` in memory. function readUint56( MemoryPointer mPtr ) internal pure returns (uint56 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint64 at `mPtr` in memory. function readUint64( MemoryPointer mPtr ) internal pure returns (uint64 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint72 at `mPtr` in memory. function readUint72( MemoryPointer mPtr ) internal pure returns (uint72 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint80 at `mPtr` in memory. function readUint80( MemoryPointer mPtr ) internal pure returns (uint80 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint88 at `mPtr` in memory. function readUint88( MemoryPointer mPtr ) internal pure returns (uint88 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint96 at `mPtr` in memory. function readUint96( MemoryPointer mPtr ) internal pure returns (uint96 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint104 at `mPtr` in memory. function readUint104( MemoryPointer mPtr ) internal pure returns (uint104 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint112 at `mPtr` in memory. function readUint112( MemoryPointer mPtr ) internal pure returns (uint112 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint120 at `mPtr` in memory. function readUint120( MemoryPointer mPtr ) internal pure returns (uint120 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint128 at `mPtr` in memory. function readUint128( MemoryPointer mPtr ) internal pure returns (uint128 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint136 at `mPtr` in memory. function readUint136( MemoryPointer mPtr ) internal pure returns (uint136 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint144 at `mPtr` in memory. function readUint144( MemoryPointer mPtr ) internal pure returns (uint144 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint152 at `mPtr` in memory. function readUint152( MemoryPointer mPtr ) internal pure returns (uint152 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint160 at `mPtr` in memory. function readUint160( MemoryPointer mPtr ) internal pure returns (uint160 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint168 at `mPtr` in memory. function readUint168( MemoryPointer mPtr ) internal pure returns (uint168 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint176 at `mPtr` in memory. function readUint176( MemoryPointer mPtr ) internal pure returns (uint176 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint184 at `mPtr` in memory. function readUint184( MemoryPointer mPtr ) internal pure returns (uint184 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint192 at `mPtr` in memory. function readUint192( MemoryPointer mPtr ) internal pure returns (uint192 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint200 at `mPtr` in memory. function readUint200( MemoryPointer mPtr ) internal pure returns (uint200 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint208 at `mPtr` in memory. function readUint208( MemoryPointer mPtr ) internal pure returns (uint208 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint216 at `mPtr` in memory. function readUint216( MemoryPointer mPtr ) internal pure returns (uint216 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint224 at `mPtr` in memory. function readUint224( MemoryPointer mPtr ) internal pure returns (uint224 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint232 at `mPtr` in memory. function readUint232( MemoryPointer mPtr ) internal pure returns (uint232 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint240 at `mPtr` in memory. function readUint240( MemoryPointer mPtr ) internal pure returns (uint240 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint248 at `mPtr` in memory. function readUint248( MemoryPointer mPtr ) internal pure returns (uint248 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint256 at `mPtr` in memory. function readUint256( MemoryPointer mPtr ) internal pure returns (uint256 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int8 at `mPtr` in memory. function readInt8(MemoryPointer mPtr) internal pure returns (int8 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int16 at `mPtr` in memory. function readInt16(MemoryPointer mPtr) internal pure returns (int16 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int24 at `mPtr` in memory. function readInt24(MemoryPointer mPtr) internal pure returns (int24 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int32 at `mPtr` in memory. function readInt32(MemoryPointer mPtr) internal pure returns (int32 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int40 at `mPtr` in memory. function readInt40(MemoryPointer mPtr) internal pure returns (int40 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int48 at `mPtr` in memory. function readInt48(MemoryPointer mPtr) internal pure returns (int48 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int56 at `mPtr` in memory. function readInt56(MemoryPointer mPtr) internal pure returns (int56 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int64 at `mPtr` in memory. function readInt64(MemoryPointer mPtr) internal pure returns (int64 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int72 at `mPtr` in memory. function readInt72(MemoryPointer mPtr) internal pure returns (int72 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int80 at `mPtr` in memory. function readInt80(MemoryPointer mPtr) internal pure returns (int80 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int88 at `mPtr` in memory. function readInt88(MemoryPointer mPtr) internal pure returns (int88 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int96 at `mPtr` in memory. function readInt96(MemoryPointer mPtr) internal pure returns (int96 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int104 at `mPtr` in memory. function readInt104( MemoryPointer mPtr ) internal pure returns (int104 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int112 at `mPtr` in memory. function readInt112( MemoryPointer mPtr ) internal pure returns (int112 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int120 at `mPtr` in memory. function readInt120( MemoryPointer mPtr ) internal pure returns (int120 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int128 at `mPtr` in memory. function readInt128( MemoryPointer mPtr ) internal pure returns (int128 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int136 at `mPtr` in memory. function readInt136( MemoryPointer mPtr ) internal pure returns (int136 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int144 at `mPtr` in memory. function readInt144( MemoryPointer mPtr ) internal pure returns (int144 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int152 at `mPtr` in memory. function readInt152( MemoryPointer mPtr ) internal pure returns (int152 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int160 at `mPtr` in memory. function readInt160( MemoryPointer mPtr ) internal pure returns (int160 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int168 at `mPtr` in memory. function readInt168( MemoryPointer mPtr ) internal pure returns (int168 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int176 at `mPtr` in memory. function readInt176( MemoryPointer mPtr ) internal pure returns (int176 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int184 at `mPtr` in memory. function readInt184( MemoryPointer mPtr ) internal pure returns (int184 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int192 at `mPtr` in memory. function readInt192( MemoryPointer mPtr ) internal pure returns (int192 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int200 at `mPtr` in memory. function readInt200( MemoryPointer mPtr ) internal pure returns (int200 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int208 at `mPtr` in memory. function readInt208( MemoryPointer mPtr ) internal pure returns (int208 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int216 at `mPtr` in memory. function readInt216( MemoryPointer mPtr ) internal pure returns (int216 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int224 at `mPtr` in memory. function readInt224( MemoryPointer mPtr ) internal pure returns (int224 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int232 at `mPtr` in memory. function readInt232( MemoryPointer mPtr ) internal pure returns (int232 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int240 at `mPtr` in memory. function readInt240( MemoryPointer mPtr ) internal pure returns (int240 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int248 at `mPtr` in memory. function readInt248( MemoryPointer mPtr ) internal pure returns (int248 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int256 at `mPtr` in memory. function readInt256( MemoryPointer mPtr ) internal pure returns (int256 value) { assembly { value := mload(mPtr) } } } library MemoryWriters { /// @dev Writes `valuePtr` to memory at `mPtr`. function write(MemoryPointer mPtr, MemoryPointer valuePtr) internal pure { assembly { mstore(mPtr, valuePtr) } } /// @dev Writes a boolean `value` to `mPtr` in memory. function write(MemoryPointer mPtr, bool value) internal pure { assembly { mstore(mPtr, value) } } /// @dev Writes an address `value` to `mPtr` in memory. function write(MemoryPointer mPtr, address value) internal pure { assembly { mstore(mPtr, value) } } /// @dev Writes a bytes32 `value` to `mPtr` in memory. /// Separate name to disambiguate literal write parameters. function writeBytes32(MemoryPointer mPtr, bytes32 value) internal pure { assembly { mstore(mPtr, value) } } /// @dev Writes a uint256 `value` to `mPtr` in memory. function write(MemoryPointer mPtr, uint256 value) internal pure { assembly { mstore(mPtr, value) } } /// @dev Writes an int256 `value` to `mPtr` in memory. /// Separate name to disambiguate literal write parameters. function writeInt(MemoryPointer mPtr, int256 value) internal pure { assembly { mstore(mPtr, value) } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.13; /* * -------------------------- Disambiguation & Other Notes --------------------- * - The term "head" is used as it is in the documentation for ABI encoding, * but only in reference to dynamic types, i.e. it always refers to the * offset or pointer to the body of a dynamic type. In calldata, the head * is always an offset (relative to the parent object), while in memory, * the head is always the pointer to the body. More information found here: * https://docs.soliditylang.org/en/v0.8.17/abi-spec.html#argument-encoding * - Note that the length of an array is separate from and precedes the * head of the array. * * - The term "body" is used in place of the term "head" used in the ABI * documentation. It refers to the start of the data for a dynamic type, * e.g. the first word of a struct or the first word of the first element * in an array. * * - The term "pointer" is used to describe the absolute position of a value * and never an offset relative to another value. * - The suffix "_ptr" refers to a memory pointer. * - The suffix "_cdPtr" refers to a calldata pointer. * * - The term "offset" is used to describe the position of a value relative * to some parent value. For example, OrderParameters_conduit_offset is the * offset to the "conduit" value in the OrderParameters struct relative to * the start of the body. * - Note: Offsets are used to derive pointers. * * - Some structs have pointers defined for all of their fields in this file. * Lines which are commented out are fields that are not used in the * codebase but have been left in for readability. */ // Declare constants for name, version, and reentrancy sentinel values. // Name is right padded, so it touches the length which is left padded. This // enables writing both values at once. Length goes at byte 95 in memory, and // name fills bytes 96-109, so both values can be written left-padded to 77. uint256 constant NameLengthPtr = 0x4D; uint256 constant NameWithLength = 0x0d436F6E73696465726174696F6E; uint256 constant information_version_offset = 0; uint256 constant information_version_cd_offset = 0x60; uint256 constant information_domainSeparator_offset = 0x20; uint256 constant information_conduitController_offset = 0x40; uint256 constant information_versionLengthPtr = 0x63; uint256 constant information_versionWithLength = 0x03312e35; // 1.5 uint256 constant information_length = 0xa0; uint256 constant _NOT_ENTERED = 1; uint256 constant _ENTERED = 2; uint256 constant _ENTERED_AND_ACCEPTING_NATIVE_TOKENS = 3; uint256 constant Offset_fulfillAdvancedOrder_criteriaResolvers = 0x20; uint256 constant Offset_fulfillAvailableOrders_offerFulfillments = 0x20; uint256 constant Offset_fulfillAvailableOrders_considerationFulfillments = 0x40; uint256 constant Offset_fulfillAvailableAdvancedOrders_criteriaResolvers = 0x20; uint256 constant Offset_fulfillAvailableAdvancedOrders_offerFulfillments = 0x40; uint256 constant Offset_fulfillAvailableAdvancedOrders_cnsdrationFlflmnts = ( 0x60 ); uint256 constant Offset_matchOrders_fulfillments = 0x20; uint256 constant Offset_matchAdvancedOrders_criteriaResolvers = 0x20; uint256 constant Offset_matchAdvancedOrders_fulfillments = 0x40; // Common Offsets // Offsets for identically positioned fields shared by: // OfferItem, ConsiderationItem, SpentItem, ReceivedItem uint256 constant Selector_length = 0x4; uint256 constant Common_token_offset = 0x20; uint256 constant Common_identifier_offset = 0x40; uint256 constant Common_amount_offset = 0x60; uint256 constant Common_endAmount_offset = 0x80; uint256 constant SpentItem_size = 0x80; uint256 constant SpentItem_size_shift = 0x7; uint256 constant OfferItem_size = 0xa0; uint256 constant OfferItem_size_with_length = 0xc0; uint256 constant ReceivedItem_size_excluding_recipient = 0x80; uint256 constant ReceivedItem_size = 0xa0; uint256 constant ReceivedItem_amount_offset = 0x60; uint256 constant ReceivedItem_recipient_offset = 0x80; uint256 constant ReceivedItem_CommonParams_size = 0x60; uint256 constant ConsiderationItem_size = 0xc0; uint256 constant ConsiderationItem_size_with_length = 0xe0; uint256 constant ConsiderationItem_recipient_offset = 0xa0; // Store the same constant in an abbreviated format for a line length fix. uint256 constant ConsiderItem_recipient_offset = 0xa0; uint256 constant Execution_offerer_offset = 0x20; uint256 constant Execution_conduit_offset = 0x40; // uint256 constant OrderParameters_offerer_offset = 0x00; uint256 constant OrderParameters_zone_offset = 0x20; uint256 constant OrderParameters_offer_head_offset = 0x40; uint256 constant OrderParameters_consideration_head_offset = 0x60; // uint256 constant OrderParameters_orderType_offset = 0x80; uint256 constant OrderParameters_startTime_offset = 0xa0; uint256 constant OrderParameters_endTime_offset = 0xc0; uint256 constant OrderParameters_zoneHash_offset = 0xe0; // uint256 constant OrderParameters_salt_offset = 0x100; uint256 constant OrderParameters_conduit_offset = 0x120; uint256 constant OrderParameters_counter_offset = 0x140; uint256 constant Fulfillment_itemIndex_offset = 0x20; uint256 constant AdvancedOrder_head_size = 0xa0; uint256 constant AdvancedOrder_numerator_offset = 0x20; uint256 constant AdvancedOrder_denominator_offset = 0x40; uint256 constant AdvancedOrder_signature_offset = 0x60; uint256 constant AdvancedOrder_extraData_offset = 0x80; uint256 constant OrderStatus_ValidatedAndNotCancelled = 1; uint256 constant OrderStatus_filledNumerator_offset = 0x10; uint256 constant OrderStatus_filledDenominator_offset = 0x88; uint256 constant ThirtyOneBytes = 0x1f; uint256 constant OneWord = 0x20; uint256 constant TwoWords = 0x40; uint256 constant ThreeWords = 0x60; uint256 constant FourWords = 0x80; uint256 constant FiveWords = 0xa0; uint256 constant OneWordShift = 0x5; uint256 constant TwoWordsShift = 0x6; uint256 constant SixtyThreeBytes = 0x3f; uint256 constant OnlyFullWordMask = 0xffffffe0; uint256 constant FreeMemoryPointerSlot = 0x40; uint256 constant ZeroSlot = 0x60; uint256 constant DefaultFreeMemoryPointer = 0x80; uint256 constant Slot0x80 = 0x80; uint256 constant Slot0xA0 = 0xa0; // uint256 constant BasicOrder_endAmount_cdPtr = 0x104; uint256 constant BasicOrder_common_params_size = 0xa0; uint256 constant BasicOrder_considerationHashesArray_ptr = 0x160; uint256 constant BasicOrder_receivedItemByteMap = ( 0x0000010102030000000000000000000000000000000000000000000000000000 ); uint256 constant BasicOrder_offeredItemByteMap = ( 0x0203020301010000000000000000000000000000000000000000000000000000 ); bytes32 constant OrdersMatchedTopic0 = ( 0x4b9f2d36e1b4c93de62cc077b00b1a91d84b6c31b4a14e012718dcca230689e7 ); uint256 constant EIP712_Order_size = 0x180; uint256 constant EIP712_OfferItem_size = 0xc0; uint256 constant EIP712_ConsiderationItem_size = 0xe0; uint256 constant AdditionalRecipient_size = 0x40; uint256 constant AdditionalRecipient_size_shift = 0x6; uint256 constant EIP712_DomainSeparator_offset = 0x02; uint256 constant EIP712_OrderHash_offset = 0x22; uint256 constant EIP712_DigestPayload_size = 0x42; uint256 constant EIP712_domainData_nameHash_offset = 0x20; uint256 constant EIP712_domainData_versionHash_offset = 0x40; uint256 constant EIP712_domainData_chainId_offset = 0x60; uint256 constant EIP712_domainData_verifyingContract_offset = 0x80; uint256 constant EIP712_domainData_size = 0xa0; // Minimum BulkOrder proof size: 64 bytes for signature + 3 for key + 32 for 1 // sibling. Maximum BulkOrder proof size: 65 bytes for signature + 3 for key + // 768 for 24 siblings. uint256 constant BulkOrderProof_minSize = 0x63; uint256 constant BulkOrderProof_rangeSize = 0x2e2; uint256 constant BulkOrderProof_lengthAdjustmentBeforeMask = 0x1d; uint256 constant BulkOrderProof_lengthRangeAfterMask = 0x2; uint256 constant BulkOrderProof_keyShift = 0xe8; uint256 constant BulkOrderProof_keySize = 0x3; uint256 constant BulkOrder_Typehash_Height_One = ( 0x3ca2711d29384747a8f61d60aad3c450405f7aaff5613541dee28df2d6986d32 ); uint256 constant BulkOrder_Typehash_Height_Two = ( 0xbf8e29b89f29ed9b529c154a63038ffca562f8d7cd1e2545dda53a1b582dde30 ); uint256 constant BulkOrder_Typehash_Height_Three = ( 0x53c6f6856e13104584dd0797ca2b2779202dc2597c6066a42e0d8fe990b0024d ); uint256 constant BulkOrder_Typehash_Height_Four = ( 0xa02eb7ff164c884e5e2c336dc85f81c6a93329d8e9adf214b32729b894de2af1 ); uint256 constant BulkOrder_Typehash_Height_Five = ( 0x39c9d33c18e050dda0aeb9a8086fb16fc12d5d64536780e1da7405a800b0b9f6 ); uint256 constant BulkOrder_Typehash_Height_Six = ( 0x1c19f71958cdd8f081b4c31f7caf5c010b29d12950be2fa1c95070dc47e30b55 ); uint256 constant BulkOrder_Typehash_Height_Seven = ( 0xca74fab2fece9a1d58234a274220ad05ca096a92ef6a1ca1750b9d90c948955c ); uint256 constant BulkOrder_Typehash_Height_Eight = ( 0x7ff98d9d4e55d876c5cfac10b43c04039522f3ddfb0ea9bfe70c68cfb5c7cc14 ); uint256 constant BulkOrder_Typehash_Height_Nine = ( 0xbed7be92d41c56f9e59ac7a6272185299b815ddfabc3f25deb51fe55fe2f9e8a ); uint256 constant BulkOrder_Typehash_Height_Ten = ( 0xd1d97d1ef5eaa37a4ee5fbf234e6f6d64eb511eb562221cd7edfbdde0848da05 ); uint256 constant BulkOrder_Typehash_Height_Eleven = ( 0x896c3f349c4da741c19b37fec49ed2e44d738e775a21d9c9860a69d67a3dae53 ); uint256 constant BulkOrder_Typehash_Height_Twelve = ( 0xbb98d87cc12922b83759626c5f07d72266da9702d19ffad6a514c73a89002f5f ); uint256 constant BulkOrder_Typehash_Height_Thirteen = ( 0xe6ae19322608dd1f8a8d56aab48ed9c28be489b689f4b6c91268563efc85f20e ); uint256 constant BulkOrder_Typehash_Height_Fourteen = ( 0x6b5b04cbae4fcb1a9d78e7b2dfc51a36933d023cf6e347e03d517b472a852590 ); uint256 constant BulkOrder_Typehash_Height_Fifteen = ( 0xd1eb68309202b7106b891e109739dbbd334a1817fe5d6202c939e75cf5e35ca9 ); uint256 constant BulkOrder_Typehash_Height_Sixteen = ( 0x1da3eed3ecef6ebaa6e5023c057ec2c75150693fd0dac5c90f4a142f9879fde8 ); uint256 constant BulkOrder_Typehash_Height_Seventeen = ( 0xeee9a1392aa395c7002308119a58f2582777a75e54e0c1d5d5437bd2e8bf6222 ); uint256 constant BulkOrder_Typehash_Height_Eighteen = ( 0xc3939feff011e53ab8c35ca3370aad54c5df1fc2938cd62543174fa6e7d85877 ); uint256 constant BulkOrder_Typehash_Height_Nineteen = ( 0x0efca7572ac20f5ae84db0e2940674f7eca0a4726fa1060ffc2d18cef54b203d ); uint256 constant BulkOrder_Typehash_Height_Twenty = ( 0x5a4f867d3d458dabecad65f6201ceeaba0096df2d0c491cc32e6ea4e64350017 ); uint256 constant BulkOrder_Typehash_Height_TwentyOne = ( 0x80987079d291feebf21c2230e69add0f283cee0b8be492ca8050b4185a2ff719 ); uint256 constant BulkOrder_Typehash_Height_TwentyTwo = ( 0x3bd8cff538aba49a9c374c806d277181e9651624b3e31111bc0624574f8bca1d ); uint256 constant BulkOrder_Typehash_Height_TwentyThree = ( 0x5d6a3f098a0bc373f808c619b1bb4028208721b3c4f8d6bc8a874d659814eb76 ); uint256 constant BulkOrder_Typehash_Height_TwentyFour = ( 0x1d51df90cba8de7637ca3e8fe1e3511d1dc2f23487d05dbdecb781860c21ac1c ); uint256 constant receivedItemsHash_ptr = 0x60; /* * Memory layout in _prepareBasicFulfillmentFromCalldata of * data for OrderFulfilled * * event OrderFulfilled( * bytes32 orderHash, * address indexed offerer, * address indexed zone, * address fulfiller, * SpentItem[] offer, * > (itemType, token, id, amount) * ReceivedItem[] consideration * > (itemType, token, id, amount, recipient) * ) * * - 0x00: orderHash * - 0x20: fulfiller * - 0x40: offer offset (0x80) * - 0x60: consideration offset (0x120) * - 0x80: offer.length (1) * - 0xa0: offerItemType * - 0xc0: offerToken * - 0xe0: offerIdentifier * - 0x100: offerAmount * - 0x120: consideration.length (1 + additionalRecipients.length) * - 0x140: considerationItemType * - 0x160: considerationToken * - 0x180: considerationIdentifier * - 0x1a0: considerationAmount * - 0x1c0: considerationRecipient * - ... */ // Minimum length of the OrderFulfilled event data. // Must be added to the size of the ReceivedItem array for additionalRecipients // (0xa0 * additionalRecipients.length) to calculate full size of the buffer. uint256 constant OrderFulfilled_baseSize = 0x1e0; uint256 constant OrderFulfilled_selector = ( 0x9d9af8e38d66c62e2c12f0225249fd9d721c54b83f48d9352c97c6cacdcb6f31 ); // Minimum offset in memory to OrderFulfilled event data. // Must be added to the size of the EIP712 hash array for additionalRecipients // (32 * additionalRecipients.length) to calculate the pointer to event data. uint256 constant OrderFulfilled_baseOffset = 0x180; uint256 constant OrderFulfilled_consideration_length_baseOffset = 0x2a0; uint256 constant OrderFulfilled_offer_length_baseOffset = 0x200; // Related constants used for restricted order checks on basic orders. uint256 constant OrderFulfilled_baseDataSize = 0x160; // uint256 constant ValidateOrder_offerDataOffset = 0x184; // uint256 constant RatifyOrder_offerDataOffset = 0xc4; // uint256 constant OrderFulfilled_orderHash_offset = 0x00; uint256 constant OrderFulfilled_fulfiller_offset = 0x20; uint256 constant OrderFulfilled_offer_head_offset = 0x40; uint256 constant OrderFulfilled_offer_body_offset = 0x80; uint256 constant OrderFulfilled_consideration_head_offset = 0x60; uint256 constant OrderFulfilled_consideration_body_offset = 0x120; // BasicOrderParameters uint256 constant BasicOrder_parameters_cdPtr = 0x04; uint256 constant BasicOrder_considerationToken_cdPtr = 0x24; uint256 constant BasicOrder_considerationIdentifier_cdPtr = 0x44; uint256 constant BasicOrder_considerationAmount_cdPtr = 0x64; uint256 constant BasicOrder_offerer_cdPtr = 0x84; uint256 constant BasicOrder_zone_cdPtr = 0xa4; uint256 constant BasicOrder_offerToken_cdPtr = 0xc4; uint256 constant BasicOrder_offerIdentifier_cdPtr = 0xe4; uint256 constant BasicOrder_offerAmount_cdPtr = 0x104; uint256 constant BasicOrder_basicOrderType_cdPtr = 0x124; uint256 constant BasicOrder_startTime_cdPtr = 0x144; uint256 constant BasicOrder_endTime_cdPtr = 0x164; // uint256 constant BasicOrder_zoneHash_cdPtr = 0x184; // uint256 constant BasicOrder_salt_cdPtr = 0x1a4; uint256 constant BasicOrder_offererConduit_cdPtr = 0x1c4; uint256 constant BasicOrder_fulfillerConduit_cdPtr = 0x1e4; uint256 constant BasicOrder_totalOriginalAdditionalRecipients_cdPtr = 0x204; uint256 constant BasicOrder_additionalRecipients_head_cdPtr = 0x224; uint256 constant BasicOrder_signature_cdPtr = 0x244; uint256 constant BasicOrder_additionalRecipients_length_cdPtr = 0x264; uint256 constant BasicOrder_additionalRecipients_data_cdPtr = 0x284; uint256 constant BasicOrder_parameters_ptr = 0x20; uint256 constant BasicOrder_basicOrderType_range = 0x18; // 24 values /* * Memory layout in _prepareBasicFulfillmentFromCalldata of * EIP712 data for ConsiderationItem * - 0x80: ConsiderationItem EIP-712 typehash (constant) * - 0xa0: itemType * - 0xc0: token * - 0xe0: identifier * - 0x100: startAmount * - 0x120: endAmount * - 0x140: recipient */ uint256 constant BasicOrder_considerationItem_typeHash_ptr = 0x80; // memoryPtr uint256 constant BasicOrder_considerationItem_itemType_ptr = 0xa0; uint256 constant BasicOrder_considerationItem_token_ptr = 0xc0; uint256 constant BasicOrder_considerationItem_identifier_ptr = 0xe0; uint256 constant BasicOrder_considerationItem_startAmount_ptr = 0x100; uint256 constant BasicOrder_considerationItem_endAmount_ptr = 0x120; // uint256 constant BasicOrder_considerationItem_recipient_ptr = 0x140; /* * Memory layout in _prepareBasicFulfillmentFromCalldata of * EIP712 data for OfferItem * - 0x80: OfferItem EIP-712 typehash (constant) * - 0xa0: itemType * - 0xc0: token * - 0xe0: identifier (reused for offeredItemsHash) * - 0x100: startAmount * - 0x120: endAmount */ uint256 constant BasicOrder_offerItem_typeHash_ptr = 0x80; uint256 constant BasicOrder_offerItem_itemType_ptr = 0xa0; uint256 constant BasicOrder_offerItem_token_ptr = 0xc0; // uint256 constant BasicOrder_offerItem_identifier_ptr = 0xe0; // uint256 constant BasicOrder_offerItem_startAmount_ptr = 0x100; uint256 constant BasicOrder_offerItem_endAmount_ptr = 0x120; /* * Memory layout in _prepareBasicFulfillmentFromCalldata of * EIP712 data for Order * - 0x80: Order EIP-712 typehash (constant) * - 0xa0: orderParameters.offerer * - 0xc0: orderParameters.zone * - 0xe0: keccak256(abi.encodePacked(offerHashes)) * - 0x100: keccak256(abi.encodePacked(considerationHashes)) * - 0x120: orderType * - 0x140: startTime * - 0x160: endTime * - 0x180: zoneHash * - 0x1a0: salt * - 0x1c0: conduit * - 0x1e0: _counters[orderParameters.offerer] (from storage) */ uint256 constant BasicOrder_order_typeHash_ptr = 0x80; uint256 constant BasicOrder_order_offerer_ptr = 0xa0; // uint256 constant BasicOrder_order_zone_ptr = 0xc0; uint256 constant BasicOrder_order_offerHashes_ptr = 0xe0; uint256 constant BasicOrder_order_considerationHashes_ptr = 0x100; uint256 constant BasicOrder_order_orderType_ptr = 0x120; uint256 constant BasicOrder_order_startTime_ptr = 0x140; // uint256 constant BasicOrder_order_endTime_ptr = 0x160; // uint256 constant BasicOrder_order_zoneHash_ptr = 0x180; // uint256 constant BasicOrder_order_salt_ptr = 0x1a0; // uint256 constant BasicOrder_order_conduitKey_ptr = 0x1c0; uint256 constant BasicOrder_order_counter_ptr = 0x1e0; uint256 constant BasicOrder_additionalRecipients_head_ptr = 0x240; uint256 constant BasicOrder_signature_ptr = 0x260; uint256 constant BasicOrder_startTimeThroughZoneHash_size = 0x60; uint256 constant ContractOrder_orderHash_offerer_shift = 0x60; uint256 constant Counter_blockhash_shift = 0x80; // Signature-related bytes32 constant EIP2098_allButHighestBitMask = ( 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff ); bytes32 constant ECDSA_twentySeventhAndTwentyEighthBytesSet = ( 0x0000000000000000000000000000000000000000000000000000000101000000 ); uint256 constant ECDSA_MaxLength = 65; uint256 constant ECDSA_signature_s_offset = 0x40; uint256 constant ECDSA_signature_v_offset = 0x60; bytes32 constant EIP1271_isValidSignature_selector = ( 0x1626ba7e00000000000000000000000000000000000000000000000000000000 ); uint256 constant EIP1271_isValidSignature_digest_negativeOffset = 0x40; uint256 constant EIP1271_isValidSignature_selector_negativeOffset = 0x44; uint256 constant EIP1271_isValidSignature_calldata_baseLength = 0x64; uint256 constant EIP1271_isValidSignature_signature_head_offset = 0x40; uint256 constant EIP_712_PREFIX = ( 0x1901000000000000000000000000000000000000000000000000000000000000 ); uint256 constant ExtraGasBuffer = 0x20; uint256 constant CostPerWord = 0x3; uint256 constant MemoryExpansionCoefficientShift = 0x9; uint256 constant Create2AddressDerivation_ptr = 0x0b; uint256 constant Create2AddressDerivation_length = 0x55; uint256 constant MaskOverByteTwelve = ( 0x0000000000000000000000ff0000000000000000000000000000000000000000 ); uint256 constant MaskOverLastTwentyBytes = ( 0x000000000000000000000000ffffffffffffffffffffffffffffffffffffffff ); uint256 constant AddressDirtyUpperBitThreshold = ( 0x0000000000000000000000010000000000000000000000000000000000000000 ); uint256 constant MaskOverFirstFourBytes = ( 0xffffffff00000000000000000000000000000000000000000000000000000000 ); uint256 constant Conduit_execute_signature = ( 0x4ce34aa200000000000000000000000000000000000000000000000000000000 ); uint256 constant MaxUint8 = 0xff; uint256 constant MaxUint120 = 0xffffffffffffffffffffffffffffff; uint256 constant Conduit_execute_ConduitTransfer_ptr = 0x20; uint256 constant Conduit_execute_ConduitTransfer_length = 0x01; uint256 constant Conduit_execute_ConduitTransfer_offset_ptr = 0x04; uint256 constant Conduit_execute_ConduitTransfer_length_ptr = 0x24; uint256 constant Conduit_execute_transferItemType_ptr = 0x44; uint256 constant Conduit_execute_transferToken_ptr = 0x64; uint256 constant Conduit_execute_transferFrom_ptr = 0x84; uint256 constant Conduit_execute_transferTo_ptr = 0xa4; uint256 constant Conduit_execute_transferIdentifier_ptr = 0xc4; uint256 constant Conduit_execute_transferAmount_ptr = 0xe4; uint256 constant OneConduitExecute_size = 0x104; // Sentinel value to indicate that the conduit accumulator is not armed. uint256 constant AccumulatorDisarmed = 0x20; uint256 constant AccumulatorArmed = 0x40; uint256 constant Accumulator_conduitKey_ptr = 0x20; uint256 constant Accumulator_selector_ptr = 0x40; uint256 constant Accumulator_array_offset_ptr = 0x44; uint256 constant Accumulator_array_length_ptr = 0x64; uint256 constant Accumulator_itemSizeOffsetDifference = 0x3c; uint256 constant Accumulator_array_offset = 0x20; uint256 constant Conduit_transferItem_size = 0xc0; uint256 constant Conduit_transferItem_token_ptr = 0x20; uint256 constant Conduit_transferItem_from_ptr = 0x40; uint256 constant Conduit_transferItem_to_ptr = 0x60; uint256 constant Conduit_transferItem_identifier_ptr = 0x80; uint256 constant Conduit_transferItem_amount_ptr = 0xa0; uint256 constant Ecrecover_precompile = 0x1; uint256 constant Ecrecover_args_size = 0x80; uint256 constant Signature_lower_v = 27; // Bitmask that only gives a non-zero value if masked with a non-match selector. uint256 constant NonMatchSelector_MagicMask = ( 0x4000000000000000000000000000000000000000000000000000000000 ); // First bit indicates that a NATIVE offer items has been used and the 231st bit // indicates that a non match selector has been called. uint256 constant NonMatchSelector_InvalidErrorValue = ( 0x4000000000000000000000000000000000000000000000000000000001 ); /** * @dev Selector and offsets for generateOrder * * function generateOrder( * address fulfiller, * SpentItem[] calldata minimumReceived, * SpentItem[] calldata maximumSpent, * bytes calldata context * ) */ uint256 constant generateOrder_selector = 0x98919765; uint256 constant generateOrder_selector_offset = 0x1c; uint256 constant generateOrder_head_offset = 0x04; uint256 constant generateOrder_minimumReceived_head_offset = 0x20; uint256 constant generateOrder_maximumSpent_head_offset = 0x40; uint256 constant generateOrder_context_head_offset = 0x60; uint256 constant generateOrder_base_tail_offset = 0x80; uint256 constant generateOrder_maximum_returndatasize = 0xffff; uint256 constant ratifyOrder_selector = 0xf4dd92ce; uint256 constant ratifyOrder_selector_offset = 0x1c; uint256 constant ratifyOrder_head_offset = 0x04; // uint256 constant ratifyOrder_offer_head_offset = 0x00; uint256 constant ratifyOrder_consideration_head_offset = 0x20; uint256 constant ratifyOrder_context_head_offset = 0x40; uint256 constant ratifyOrder_orderHashes_head_offset = 0x60; uint256 constant ratifyOrder_contractNonce_offset = 0x80; uint256 constant ratifyOrder_base_tail_offset = 0xa0; uint256 constant validateOrder_selector = 0x17b1f942; uint256 constant validateOrder_selector_offset = 0x1c; uint256 constant validateOrder_head_offset = 0x04; uint256 constant validateOrder_zoneParameters_offset = 0x20; // uint256 constant ZoneParameters_orderHash_offset = 0x00; uint256 constant ZoneParameters_fulfiller_offset = 0x20; uint256 constant ZoneParameters_offerer_offset = 0x40; uint256 constant ZoneParameters_offer_head_offset = 0x60; uint256 constant ZoneParameters_consideration_head_offset = 0x80; uint256 constant ZoneParameters_extraData_head_offset = 0xa0; uint256 constant ZoneParameters_orderHashes_head_offset = 0xc0; uint256 constant ZoneParameters_startTime_offset = 0xe0; uint256 constant ZoneParameters_endTime_offset = 0x100; uint256 constant ZoneParameters_zoneHash_offset = 0x120; uint256 constant ZoneParameters_base_tail_offset = 0x140; uint256 constant ZoneParameters_selectorAndPointer_length = 0x24; uint256 constant ZoneParameters_basicOrderFixedElements_length = 0x64; // ConsiderationDecoder Constants uint256 constant OrderParameters_head_size = 0x0160; uint256 constant OrderParameters_totalOriginalConsiderationItems_offset = ( 0x0140 ); uint256 constant AdvancedOrderPlusOrderParameters_head_size = 0x0200; uint256 constant Order_signature_offset = 0x20; uint256 constant Order_head_size = 0x40; uint256 constant AdvancedOrder_fixed_segment_0 = 0x40; uint256 constant CriteriaResolver_head_size = 0xa0; uint256 constant CriteriaResolver_fixed_segment_0 = 0x80; uint256 constant CriteriaResolver_criteriaProof_offset = 0x80; uint256 constant FulfillmentComponent_mem_tail_size = 0x40; uint256 constant FulfillmentComponent_mem_tail_size_shift = 0x6; uint256 constant Fulfillment_head_size = 0x40; uint256 constant Fulfillment_considerationComponents_offset = 0x20; uint256 constant OrderComponents_OrderParameters_common_head_size = 0x0140;
// SPDX-License-Identifier: MIT pragma solidity ^0.8.13; enum OrderType { // 0: no partial fills, anyone can execute FULL_OPEN, // 1: partial fills supported, anyone can execute PARTIAL_OPEN, // 2: no partial fills, only offerer or zone can execute FULL_RESTRICTED, // 3: partial fills supported, only offerer or zone can execute PARTIAL_RESTRICTED, // 4: contract order type CONTRACT } enum BasicOrderType { // 0: no partial fills, anyone can execute ETH_TO_ERC721_FULL_OPEN, // 1: partial fills supported, anyone can execute ETH_TO_ERC721_PARTIAL_OPEN, // 2: no partial fills, only offerer or zone can execute ETH_TO_ERC721_FULL_RESTRICTED, // 3: partial fills supported, only offerer or zone can execute ETH_TO_ERC721_PARTIAL_RESTRICTED, // 4: no partial fills, anyone can execute ETH_TO_ERC1155_FULL_OPEN, // 5: partial fills supported, anyone can execute ETH_TO_ERC1155_PARTIAL_OPEN, // 6: no partial fills, only offerer or zone can execute ETH_TO_ERC1155_FULL_RESTRICTED, // 7: partial fills supported, only offerer or zone can execute ETH_TO_ERC1155_PARTIAL_RESTRICTED, // 8: no partial fills, anyone can execute ERC20_TO_ERC721_FULL_OPEN, // 9: partial fills supported, anyone can execute ERC20_TO_ERC721_PARTIAL_OPEN, // 10: no partial fills, only offerer or zone can execute ERC20_TO_ERC721_FULL_RESTRICTED, // 11: partial fills supported, only offerer or zone can execute ERC20_TO_ERC721_PARTIAL_RESTRICTED, // 12: no partial fills, anyone can execute ERC20_TO_ERC1155_FULL_OPEN, // 13: partial fills supported, anyone can execute ERC20_TO_ERC1155_PARTIAL_OPEN, // 14: no partial fills, only offerer or zone can execute ERC20_TO_ERC1155_FULL_RESTRICTED, // 15: partial fills supported, only offerer or zone can execute ERC20_TO_ERC1155_PARTIAL_RESTRICTED, // 16: no partial fills, anyone can execute ERC721_TO_ERC20_FULL_OPEN, // 17: partial fills supported, anyone can execute ERC721_TO_ERC20_PARTIAL_OPEN, // 18: no partial fills, only offerer or zone can execute ERC721_TO_ERC20_FULL_RESTRICTED, // 19: partial fills supported, only offerer or zone can execute ERC721_TO_ERC20_PARTIAL_RESTRICTED, // 20: no partial fills, anyone can execute ERC1155_TO_ERC20_FULL_OPEN, // 21: partial fills supported, anyone can execute ERC1155_TO_ERC20_PARTIAL_OPEN, // 22: no partial fills, only offerer or zone can execute ERC1155_TO_ERC20_FULL_RESTRICTED, // 23: partial fills supported, only offerer or zone can execute ERC1155_TO_ERC20_PARTIAL_RESTRICTED } enum BasicOrderRouteType { // 0: provide Ether (or other native token) to receive offered ERC721 item. ETH_TO_ERC721, // 1: provide Ether (or other native token) to receive offered ERC1155 item. ETH_TO_ERC1155, // 2: provide ERC20 item to receive offered ERC721 item. ERC20_TO_ERC721, // 3: provide ERC20 item to receive offered ERC1155 item. ERC20_TO_ERC1155, // 4: provide ERC721 item to receive offered ERC20 item. ERC721_TO_ERC20, // 5: provide ERC1155 item to receive offered ERC20 item. ERC1155_TO_ERC20 } enum ItemType { // 0: ETH on mainnet, MATIC on polygon, etc. NATIVE, // 1: ERC20 items (ERC777 and ERC20 analogues could also technically work) ERC20, // 2: ERC721 items ERC721, // 3: ERC1155 items ERC1155, // 4: ERC721 items where a number of tokenIds are supported ERC721_WITH_CRITERIA, // 5: ERC1155 items where a number of ids are supported ERC1155_WITH_CRITERIA } enum Side { // 0: Items that can be spent OFFER, // 1: Items that must be received CONSIDERATION }
// SPDX-License-Identifier: MIT pragma solidity 0.8.17; import { Side } from "./ConsiderationEnums.sol"; import { BadFraction_error_length, BadFraction_error_selector, CannotCancelOrder_error_length, CannotCancelOrder_error_selector, ConsiderationLengthNotEqualToTotalOriginal_error_length, ConsiderationLengthNotEqualToTotalOriginal_error_selector, ConsiderationNotMet_error_considerationIndex_ptr, ConsiderationNotMet_error_length, ConsiderationNotMet_error_orderIndex_ptr, ConsiderationNotMet_error_selector, ConsiderationNotMet_error_shortfallAmount_ptr, CriteriaNotEnabledForItem_error_length, CriteriaNotEnabledForItem_error_selector, Error_selector_offset, InsufficientNativeTokensSupplied_error_length, InsufficientNativeTokensSupplied_error_selector, InvalidBasicOrderParameterEncoding_error_length, InvalidBasicOrderParameterEncoding_error_selector, InvalidCallToConduit_error_conduit_ptr, InvalidCallToConduit_error_length, InvalidCallToConduit_error_selector, InvalidConduit_error_conduit_ptr, InvalidConduit_error_conduitKey_ptr, InvalidConduit_error_length, InvalidConduit_error_selector, InvalidContractOrder_error_length, InvalidContractOrder_error_orderHash_ptr, InvalidContractOrder_error_selector, InvalidERC721TransferAmount_error_amount_ptr, InvalidERC721TransferAmount_error_length, InvalidERC721TransferAmount_error_selector, InvalidMsgValue_error_length, InvalidMsgValue_error_selector, InvalidMsgValue_error_value_ptr, InvalidNativeOfferItem_error_length, InvalidNativeOfferItem_error_selector, InvalidProof_error_length, InvalidProof_error_selector, InvalidTime_error_endTime_ptr, InvalidTime_error_length, InvalidTime_error_selector, InvalidTime_error_startTime_ptr, MismatchedOfferAndConsiderationComponents_error_idx_ptr, MismatchedOfferAndConsiderationComponents_error_length, MismatchedOfferAndConsiderationComponents_error_selector, MissingFulfillmentComponentOnAggregation_error_length, MissingFulfillmentComponentOnAggregation_error_selector, MissingFulfillmentComponentOnAggregation_error_side_ptr, MissingOriginalConsiderationItems_error_length, MissingOriginalConsiderationItems_error_selector, NoReentrantCalls_error_length, NoReentrantCalls_error_selector, NoSpecifiedOrdersAvailable_error_length, NoSpecifiedOrdersAvailable_error_selector, OfferAndConsiderationRequiredOnFulfillment_error_length, OfferAndConsiderationRequiredOnFulfillment_error_selector, OrderAlreadyFilled_error_length, OrderAlreadyFilled_error_orderHash_ptr, OrderAlreadyFilled_error_selector, OrderCriteriaResolverOutOfRange_error_length, OrderCriteriaResolverOutOfRange_error_selector, OrderCriteriaResolverOutOfRange_error_side_ptr, OrderIsCancelled_error_length, OrderIsCancelled_error_orderHash_ptr, OrderIsCancelled_error_selector, OrderPartiallyFilled_error_length, OrderPartiallyFilled_error_orderHash_ptr, OrderPartiallyFilled_error_selector, PartialFillsNotEnabledForOrder_error_length, PartialFillsNotEnabledForOrder_error_selector, UnresolvedConsiderationCriteria_error_considerationIdx_ptr, UnresolvedConsiderationCriteria_error_length, UnresolvedConsiderationCriteria_error_orderIndex_ptr, UnresolvedConsiderationCriteria_error_selector, UnresolvedOfferCriteria_error_length, UnresolvedOfferCriteria_error_offerIndex_ptr, UnresolvedOfferCriteria_error_orderIndex_ptr, UnresolvedOfferCriteria_error_selector, UnusedItemParameters_error_length, UnusedItemParameters_error_selector } from "./ConsiderationErrorConstants.sol"; /** * @dev Reverts the current transaction with a "BadFraction" error message. */ function _revertBadFraction() pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, BadFraction_error_selector) // revert(abi.encodeWithSignature("BadFraction()")) revert(Error_selector_offset, BadFraction_error_length) } } /** * @dev Reverts the current transaction with a "ConsiderationNotMet" error * message, including the provided order index, consideration index, and * shortfall amount. * * @param orderIndex The index of the order that did not meet the * consideration criteria. * @param considerationIndex The index of the consideration item that did not * meet its criteria. * @param shortfallAmount The amount by which the consideration criteria were * not met. */ function _revertConsiderationNotMet( uint256 orderIndex, uint256 considerationIndex, uint256 shortfallAmount ) pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, ConsiderationNotMet_error_selector) // Store arguments. mstore(ConsiderationNotMet_error_orderIndex_ptr, orderIndex) mstore( ConsiderationNotMet_error_considerationIndex_ptr, considerationIndex ) mstore(ConsiderationNotMet_error_shortfallAmount_ptr, shortfallAmount) // revert(abi.encodeWithSignature( // "ConsiderationNotMet(uint256,uint256,uint256)", // orderIndex, // considerationIndex, // shortfallAmount // )) revert(Error_selector_offset, ConsiderationNotMet_error_length) } } /** * @dev Reverts the current transaction with a "CriteriaNotEnabledForItem" error * message. */ function _revertCriteriaNotEnabledForItem() pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, CriteriaNotEnabledForItem_error_selector) // revert(abi.encodeWithSignature("CriteriaNotEnabledForItem()")) revert(Error_selector_offset, CriteriaNotEnabledForItem_error_length) } } /** * @dev Reverts the current transaction with an * "InsufficientNativeTokensSupplied" error message. */ function _revertInsufficientNativeTokensSupplied() pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, InsufficientNativeTokensSupplied_error_selector) // revert(abi.encodeWithSignature("InsufficientNativeTokensSupplied()")) revert( Error_selector_offset, InsufficientNativeTokensSupplied_error_length ) } } /** * @dev Reverts the current transaction with an * "InvalidBasicOrderParameterEncoding" error message. */ function _revertInvalidBasicOrderParameterEncoding() pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, InvalidBasicOrderParameterEncoding_error_selector) // revert(abi.encodeWithSignature( // "InvalidBasicOrderParameterEncoding()" // )) revert( Error_selector_offset, InvalidBasicOrderParameterEncoding_error_length ) } } /** * @dev Reverts the current transaction with an "InvalidCallToConduit" error * message, including the provided address of the conduit that was called * improperly. * * @param conduit The address of the conduit that was called improperly. */ function _revertInvalidCallToConduit(address conduit) pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, InvalidCallToConduit_error_selector) // Store argument. mstore(InvalidCallToConduit_error_conduit_ptr, conduit) // revert(abi.encodeWithSignature( // "InvalidCallToConduit(address)", // conduit // )) revert(Error_selector_offset, InvalidCallToConduit_error_length) } } /** * @dev Reverts the current transaction with an "CannotCancelOrder" error * message. */ function _revertCannotCancelOrder() pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, CannotCancelOrder_error_selector) // revert(abi.encodeWithSignature("CannotCancelOrder()")) revert(Error_selector_offset, CannotCancelOrder_error_length) } } /** * @dev Reverts the current transaction with an "InvalidConduit" error message, * including the provided key and address of the invalid conduit. * * @param conduitKey The key of the invalid conduit. * @param conduit The address of the invalid conduit. */ function _revertInvalidConduit(bytes32 conduitKey, address conduit) pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, InvalidConduit_error_selector) // Store arguments. mstore(InvalidConduit_error_conduitKey_ptr, conduitKey) mstore(InvalidConduit_error_conduit_ptr, conduit) // revert(abi.encodeWithSignature( // "InvalidConduit(bytes32,address)", // conduitKey, // conduit // )) revert(Error_selector_offset, InvalidConduit_error_length) } } /** * @dev Reverts the current transaction with an "InvalidERC721TransferAmount" * error message. * * @param amount The invalid amount. */ function _revertInvalidERC721TransferAmount(uint256 amount) pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, InvalidERC721TransferAmount_error_selector) // Store argument. mstore(InvalidERC721TransferAmount_error_amount_ptr, amount) // revert(abi.encodeWithSignature( // "InvalidERC721TransferAmount(uint256)", // amount // )) revert(Error_selector_offset, InvalidERC721TransferAmount_error_length) } } /** * @dev Reverts the current transaction with an "InvalidMsgValue" error message, * including the invalid value that was sent in the transaction's * `msg.value` field. * * @param value The invalid value that was sent in the transaction's `msg.value` * field. */ function _revertInvalidMsgValue(uint256 value) pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, InvalidMsgValue_error_selector) // Store argument. mstore(InvalidMsgValue_error_value_ptr, value) // revert(abi.encodeWithSignature("InvalidMsgValue(uint256)", value)) revert(Error_selector_offset, InvalidMsgValue_error_length) } } /** * @dev Reverts the current transaction with an "InvalidNativeOfferItem" error * message. */ function _revertInvalidNativeOfferItem() pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, InvalidNativeOfferItem_error_selector) // revert(abi.encodeWithSignature("InvalidNativeOfferItem()")) revert(Error_selector_offset, InvalidNativeOfferItem_error_length) } } /** * @dev Reverts the current transaction with an "InvalidProof" error message. */ function _revertInvalidProof() pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, InvalidProof_error_selector) // revert(abi.encodeWithSignature("InvalidProof()")) revert(Error_selector_offset, InvalidProof_error_length) } } /** * @dev Reverts the current transaction with an "InvalidContractOrder" error * message. * * @param orderHash The hash of the contract order that caused the error. */ function _revertInvalidContractOrder(bytes32 orderHash) pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, InvalidContractOrder_error_selector) // Store arguments. mstore(InvalidContractOrder_error_orderHash_ptr, orderHash) // revert(abi.encodeWithSignature( // "InvalidContractOrder(bytes32)", // orderHash // )) revert(Error_selector_offset, InvalidContractOrder_error_length) } } /** * @dev Reverts the current transaction with an "InvalidTime" error message. * * @param startTime The time at which the order becomes active. * @param endTime The time at which the order becomes inactive. */ function _revertInvalidTime(uint256 startTime, uint256 endTime) pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, InvalidTime_error_selector) // Store arguments. mstore(InvalidTime_error_startTime_ptr, startTime) mstore(InvalidTime_error_endTime_ptr, endTime) // revert(abi.encodeWithSignature( // "InvalidTime(uint256,uint256)", // startTime, // endTime // )) revert(Error_selector_offset, InvalidTime_error_length) } } /** * @dev Reverts execution with a * "MismatchedFulfillmentOfferAndConsiderationComponents" error message. * * @param fulfillmentIndex The index of the fulfillment that caused the * error. */ function _revertMismatchedFulfillmentOfferAndConsiderationComponents( uint256 fulfillmentIndex ) pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, MismatchedOfferAndConsiderationComponents_error_selector) // Store fulfillment index argument. mstore( MismatchedOfferAndConsiderationComponents_error_idx_ptr, fulfillmentIndex ) // revert(abi.encodeWithSignature( // "MismatchedFulfillmentOfferAndConsiderationComponents(uint256)", // fulfillmentIndex // )) revert( Error_selector_offset, MismatchedOfferAndConsiderationComponents_error_length ) } } /** * @dev Reverts execution with a "MissingFulfillmentComponentOnAggregation" * error message. * * @param side The side of the fulfillment component that is missing (0 for * offer, 1 for consideration). * */ function _revertMissingFulfillmentComponentOnAggregation(Side side) pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, MissingFulfillmentComponentOnAggregation_error_selector) // Store argument. mstore(MissingFulfillmentComponentOnAggregation_error_side_ptr, side) // revert(abi.encodeWithSignature( // "MissingFulfillmentComponentOnAggregation(uint8)", // side // )) revert( Error_selector_offset, MissingFulfillmentComponentOnAggregation_error_length ) } } /** * @dev Reverts execution with a "MissingOriginalConsiderationItems" error * message. */ function _revertMissingOriginalConsiderationItems() pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, MissingOriginalConsiderationItems_error_selector) // revert(abi.encodeWithSignature( // "MissingOriginalConsiderationItems()" // )) revert( Error_selector_offset, MissingOriginalConsiderationItems_error_length ) } } /** * @dev Reverts execution with a "NoReentrantCalls" error message. */ function _revertNoReentrantCalls() pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, NoReentrantCalls_error_selector) // revert(abi.encodeWithSignature("NoReentrantCalls()")) revert(Error_selector_offset, NoReentrantCalls_error_length) } } /** * @dev Reverts execution with a "NoSpecifiedOrdersAvailable" error message. */ function _revertNoSpecifiedOrdersAvailable() pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, NoSpecifiedOrdersAvailable_error_selector) // revert(abi.encodeWithSignature("NoSpecifiedOrdersAvailable()")) revert(Error_selector_offset, NoSpecifiedOrdersAvailable_error_length) } } /** * @dev Reverts execution with a "OfferAndConsiderationRequiredOnFulfillment" * error message. */ function _revertOfferAndConsiderationRequiredOnFulfillment() pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, OfferAndConsiderationRequiredOnFulfillment_error_selector) // revert(abi.encodeWithSignature( // "OfferAndConsiderationRequiredOnFulfillment()" // )) revert( Error_selector_offset, OfferAndConsiderationRequiredOnFulfillment_error_length ) } } /** * @dev Reverts execution with an "OrderAlreadyFilled" error message. * * @param orderHash The hash of the order that has already been filled. */ function _revertOrderAlreadyFilled(bytes32 orderHash) pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, OrderAlreadyFilled_error_selector) // Store argument. mstore(OrderAlreadyFilled_error_orderHash_ptr, orderHash) // revert(abi.encodeWithSignature( // "OrderAlreadyFilled(bytes32)", // orderHash // )) revert(Error_selector_offset, OrderAlreadyFilled_error_length) } } /** * @dev Reverts execution with an "OrderCriteriaResolverOutOfRange" error * message. * * @param side The side of the criteria that is missing (0 for offer, 1 for * consideration). * */ function _revertOrderCriteriaResolverOutOfRange(Side side) pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, OrderCriteriaResolverOutOfRange_error_selector) // Store argument. mstore(OrderCriteriaResolverOutOfRange_error_side_ptr, side) // revert(abi.encodeWithSignature( // "OrderCriteriaResolverOutOfRange(uint8)", // side // )) revert( Error_selector_offset, OrderCriteriaResolverOutOfRange_error_length ) } } /** * @dev Reverts execution with an "OrderIsCancelled" error message. * * @param orderHash The hash of the order that has already been cancelled. */ function _revertOrderIsCancelled(bytes32 orderHash) pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, OrderIsCancelled_error_selector) // Store argument. mstore(OrderIsCancelled_error_orderHash_ptr, orderHash) // revert(abi.encodeWithSignature( // "OrderIsCancelled(bytes32)", // orderHash // )) revert(Error_selector_offset, OrderIsCancelled_error_length) } } /** * @dev Reverts execution with an "OrderPartiallyFilled" error message. * * @param orderHash The hash of the order that has already been partially * filled. */ function _revertOrderPartiallyFilled(bytes32 orderHash) pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, OrderPartiallyFilled_error_selector) // Store argument. mstore(OrderPartiallyFilled_error_orderHash_ptr, orderHash) // revert(abi.encodeWithSignature( // "OrderPartiallyFilled(bytes32)", // orderHash // )) revert(Error_selector_offset, OrderPartiallyFilled_error_length) } } /** * @dev Reverts execution with a "PartialFillsNotEnabledForOrder" error message. */ function _revertPartialFillsNotEnabledForOrder() pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, PartialFillsNotEnabledForOrder_error_selector) // revert(abi.encodeWithSignature("PartialFillsNotEnabledForOrder()")) revert( Error_selector_offset, PartialFillsNotEnabledForOrder_error_length ) } } /** * @dev Reverts execution with an "UnresolvedConsiderationCriteria" error * message. */ function _revertUnresolvedConsiderationCriteria( uint256 orderIndex, uint256 considerationIndex ) pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, UnresolvedConsiderationCriteria_error_selector) // Store orderIndex and considerationIndex arguments. mstore(UnresolvedConsiderationCriteria_error_orderIndex_ptr, orderIndex) mstore( UnresolvedConsiderationCriteria_error_considerationIdx_ptr, considerationIndex ) // revert(abi.encodeWithSignature( // "UnresolvedConsiderationCriteria(uint256, uint256)", // orderIndex, // considerationIndex // )) revert( Error_selector_offset, UnresolvedConsiderationCriteria_error_length ) } } /** * @dev Reverts execution with an "UnresolvedOfferCriteria" error message. */ function _revertUnresolvedOfferCriteria( uint256 orderIndex, uint256 offerIndex ) pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, UnresolvedOfferCriteria_error_selector) // Store arguments. mstore(UnresolvedOfferCriteria_error_orderIndex_ptr, orderIndex) mstore(UnresolvedOfferCriteria_error_offerIndex_ptr, offerIndex) // revert(abi.encodeWithSignature( // "UnresolvedOfferCriteria(uint256, uint256)", // orderIndex, // offerIndex // )) revert(Error_selector_offset, UnresolvedOfferCriteria_error_length) } } /** * @dev Reverts execution with an "UnusedItemParameters" error message. */ function _revertUnusedItemParameters() pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, UnusedItemParameters_error_selector) // revert(abi.encodeWithSignature("UnusedItemParameters()")) revert(Error_selector_offset, UnusedItemParameters_error_length) } } /** * @dev Reverts execution with a "ConsiderationLengthNotEqualToTotalOriginal" * error message. */ function _revertConsiderationLengthNotEqualToTotalOriginal() pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, ConsiderationLengthNotEqualToTotalOriginal_error_selector) // revert(abi.encodeWithSignature( // "ConsiderationLengthNotEqualToTotalOriginal()" // )) revert( Error_selector_offset, ConsiderationLengthNotEqualToTotalOriginal_error_length ) } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.17; import { ItemType, Side } from "./ConsiderationEnums.sol"; import { AdvancedOrder, Execution, FulfillmentComponent, ReceivedItem } from "./ConsiderationStructs.sol"; import { _revertMismatchedFulfillmentOfferAndConsiderationComponents, _revertMissingFulfillmentComponentOnAggregation, _revertOfferAndConsiderationRequiredOnFulfillment } from "./ConsiderationErrors.sol"; import { FulfillmentApplicationErrors } from "../interfaces/FulfillmentApplicationErrors.sol"; import { AdvancedOrder_numerator_offset, Common_amount_offset, Common_identifier_offset, Common_token_offset, Execution_conduit_offset, Execution_offerer_offset, Fulfillment_itemIndex_offset, OneWord, OneWordShift, OrderParameters_conduit_offset, OrderParameters_consideration_head_offset, OrderParameters_offer_head_offset, ReceivedItem_CommonParams_size, ReceivedItem_recipient_offset, ReceivedItem_size } from "./ConsiderationConstants.sol"; import { Error_selector_offset, InvalidFulfillmentComponentData_error_length, InvalidFulfillmentComponentData_error_selector, MissingItemAmount_error_length, MissingItemAmount_error_selector, Panic_arithmetic, Panic_error_code_ptr, Panic_error_length, Panic_error_selector } from "./ConsiderationErrorConstants.sol"; /** * @title FulfillmentApplier * @author 0age * @notice FulfillmentApplier contains logic related to applying fulfillments, * both as part of order matching (where offer items are matched to * consideration items) as well as fulfilling available orders (where * order items and consideration items are independently aggregated). */ contract FulfillmentApplier is FulfillmentApplicationErrors { /** * @dev Internal pure function to match offer items to consideration items * on a group of orders via a supplied fulfillment. * * @param advancedOrders The orders to match. * @param offerComponents An array designating offer components to * match to consideration components. * @param considerationComponents An array designating consideration * components to match to offer components. * Note that each consideration amount must * be zero in order for the match operation * to be valid. * @param fulfillmentIndex The index of the fulfillment being * applied. * * @return execution The transfer performed as a result of the fulfillment. */ function _applyFulfillment( AdvancedOrder[] memory advancedOrders, FulfillmentComponent[] memory offerComponents, FulfillmentComponent[] memory considerationComponents, uint256 fulfillmentIndex ) internal pure returns (Execution memory execution) { // Ensure 1+ of both offer and consideration components are supplied. if ( offerComponents.length == 0 || considerationComponents.length == 0 ) { _revertOfferAndConsiderationRequiredOnFulfillment(); } // Declare a new Execution struct. Execution memory considerationExecution; // Validate & aggregate consideration items to new Execution object. _aggregateValidFulfillmentConsiderationItems( advancedOrders, considerationComponents, considerationExecution ); // Retrieve the consideration item from the execution struct. ReceivedItem memory considerationItem = considerationExecution.item; // Skip aggregating offer items if no consideration items are available. if (considerationItem.amount == 0) { // Set the offerer and recipient to null address and the item type // to a non-native item type if the execution amount is zero. This // will cause the execution item to be skipped. considerationExecution.offerer = address(0); considerationExecution.item.recipient = payable(0); considerationExecution.item.itemType = ItemType.ERC20; return considerationExecution; } // Recipient does not need to be specified because it will always be set // to that of the consideration. // Validate & aggregate offer items to Execution object. _aggregateValidFulfillmentOfferItems( advancedOrders, offerComponents, execution ); // Ensure offer & consideration item types, tokens, & identifiers match. // (a != b || c != d || e != f) == (((a ^ b) | (c ^ d) | (e ^ f)) != 0), // but the second expression requires less gas to evaluate. if ( ((uint8(execution.item.itemType) ^ uint8(considerationItem.itemType)) | (uint160(execution.item.token) ^ uint160(considerationItem.token)) | (execution.item.identifier ^ considerationItem.identifier)) != 0 ) { _revertMismatchedFulfillmentOfferAndConsiderationComponents( fulfillmentIndex ); } // If total consideration amount exceeds the offer amount... if (considerationItem.amount > execution.item.amount) { // Retrieve the first consideration component from the fulfillment. FulfillmentComponent memory targetComponent = ( considerationComponents[0] ); // Skip underflow check as the conditional being true implies that // considerationItem.amount > execution.item.amount. unchecked { // Add excess consideration item amount to original order array. advancedOrders[targetComponent.orderIndex] .parameters .consideration[targetComponent.itemIndex] .startAmount = (considerationItem.amount - execution.item.amount); } } else { // Retrieve the first offer component from the fulfillment. FulfillmentComponent memory targetComponent = offerComponents[0]; // Skip underflow check as the conditional being false implies that // execution.item.amount >= considerationItem.amount. unchecked { // Add excess offer item amount to the original array of orders. advancedOrders[targetComponent.orderIndex] .parameters .offer[targetComponent.itemIndex] .startAmount = (execution.item.amount - considerationItem.amount); } // Reduce total offer amount to equal the consideration amount. execution.item.amount = considerationItem.amount; } // Reuse consideration recipient. execution.item.recipient = considerationItem.recipient; // Return the final execution that will be triggered for relevant items. return execution; // Execution(considerationItem, offerer, conduitKey); } /** * @dev Internal view function to aggregate offer or consideration items * from a group of orders into a single execution via a supplied array * of fulfillment components. Items that are not available to aggregate * will not be included in the aggregated execution. * * @param advancedOrders The orders to aggregate. * @param side The side (i.e. offer or consideration). * @param fulfillmentComponents An array designating item components to * aggregate if part of an available order. * @param fulfillerConduitKey A bytes32 value indicating what conduit, if * any, to source the fulfiller's token * approvals from. The zero hash signifies that * no conduit should be used, with approvals * set directly on this contract. * @param recipient The intended recipient for all received * items. * * @return execution The transfer performed as a result of the fulfillment. */ function _aggregateAvailable( AdvancedOrder[] memory advancedOrders, Side side, FulfillmentComponent[] memory fulfillmentComponents, bytes32 fulfillerConduitKey, address recipient ) internal view returns (Execution memory execution) { // Skip overflow / underflow checks; conditions checked or unreachable. unchecked { // Retrieve fulfillment components array length and place on stack. // Ensure at least one fulfillment component has been supplied. if (fulfillmentComponents.length == 0) { _revertMissingFulfillmentComponentOnAggregation(side); } // Retrieve the received item on the execution being returned. ReceivedItem memory item = execution.item; // If the fulfillment components are offer components... if (side == Side.OFFER) { // Set the supplied recipient on the execution item. item.recipient = payable(recipient); // Return execution for aggregated items provided by offerer. _aggregateValidFulfillmentOfferItems( advancedOrders, fulfillmentComponents, execution ); } else { // Otherwise, fulfillment components are consideration // components. Return execution for aggregated items provided by // the fulfiller. _aggregateValidFulfillmentConsiderationItems( advancedOrders, fulfillmentComponents, execution ); // Set the caller as the offerer on the execution. execution.offerer = msg.sender; // Set fulfiller conduit key as the conduit key on execution. execution.conduitKey = fulfillerConduitKey; } // Set the offerer and recipient to null address and the item type // to a non-native item type if the execution amount is zero. This // will cause the execution item to be skipped. if (item.amount == 0) { execution.offerer = address(0); item.recipient = payable(0); item.itemType = ItemType.ERC20; } } } /** * @dev Internal pure function to aggregate a group of offer items using * supplied directives on which component items are candidates for * aggregation, skipping items on orders that are not available. * * @param advancedOrders The orders to aggregate offer items from. * @param offerComponents An array of FulfillmentComponent structs * indicating the order index and item index of each * candidate offer item for aggregation. * @param execution The execution to apply the aggregation to. */ function _aggregateValidFulfillmentOfferItems( AdvancedOrder[] memory advancedOrders, FulfillmentComponent[] memory offerComponents, Execution memory execution ) internal pure { assembly { // Declare a variable for the final aggregated item amount. let amount // Declare a variable to track errors encountered with amount. let errorBuffer // Declare a variable for the hash of itemType, token, & identifier. let dataHash // Iterate over each offer component. for { // Create variable to track position in offerComponents head. let fulfillmentHeadPtr := offerComponents // Get position one word past last element in head of array. let endPtr := add( offerComponents, shl(OneWordShift, mload(offerComponents)) ) } lt(fulfillmentHeadPtr, endPtr) { } { // Increment position in considerationComponents head. fulfillmentHeadPtr := add(fulfillmentHeadPtr, OneWord) // Retrieve the order index using the fulfillment pointer. let orderIndex := mload(mload(fulfillmentHeadPtr)) // Ensure that the order index is not out of range. if iszero(lt(orderIndex, mload(advancedOrders))) { throwInvalidFulfillmentComponentData() } // Read advancedOrders[orderIndex] pointer from its array head. let orderPtr := mload( // Calculate head position of advancedOrders[orderIndex]. add( add(advancedOrders, OneWord), shl(OneWordShift, orderIndex) ) ) // Read the pointer to OrderParameters from the AdvancedOrder. let paramsPtr := mload(orderPtr) // Retrieve item index using an offset of fulfillment pointer. let itemIndex := mload( add(mload(fulfillmentHeadPtr), Fulfillment_itemIndex_offset) ) let offerItemPtr { // Load the offer array pointer. let offerArrPtr := mload( add(paramsPtr, OrderParameters_offer_head_offset) ) // If the offer item index is out of range or the numerator // is zero, skip this item. if or( iszero(lt(itemIndex, mload(offerArrPtr))), iszero( mload(add(orderPtr, AdvancedOrder_numerator_offset)) ) ) { continue } // Retrieve offer item pointer using the item index. offerItemPtr := mload( add( // Get pointer to beginning of receivedItem. add(offerArrPtr, OneWord), // Calculate offset to pointer for desired order. shl(OneWordShift, itemIndex) ) ) } // Declare a separate scope for the amount update. { // Retrieve amount pointer using consideration item pointer. let amountPtr := add(offerItemPtr, Common_amount_offset) // Add offer item amount to execution amount. let newAmount := add(amount, mload(amountPtr)) // Update error buffer: // 1 = zero amount, 2 = overflow, 3 = both. errorBuffer := or( errorBuffer, or( shl(1, lt(newAmount, amount)), iszero(mload(amountPtr)) ) ) // Update the amount to the new, summed amount. amount := newAmount // Zero out amount on original item to indicate it is spent. mstore(amountPtr, 0) } // Retrieve ReceivedItem pointer from Execution. let receivedItem := mload(execution) // Check if this is the first valid fulfillment item. switch iszero(dataHash) case 1 { // On first valid item, populate the received item in memory // for later comparison. // Set the item type on the received item. mstore(receivedItem, mload(offerItemPtr)) // Set the token on the received item. mstore( add(receivedItem, Common_token_offset), mload(add(offerItemPtr, Common_token_offset)) ) // Set the identifier on the received item. mstore( add(receivedItem, Common_identifier_offset), mload(add(offerItemPtr, Common_identifier_offset)) ) // Set offerer on returned execution using order pointer. mstore( add(execution, Execution_offerer_offset), mload(paramsPtr) ) // Set execution conduitKey via order pointer offset. mstore( add(execution, Execution_conduit_offset), mload(add(paramsPtr, OrderParameters_conduit_offset)) ) // Calculate the hash of (itemType, token, identifier). dataHash := keccak256( receivedItem, ReceivedItem_CommonParams_size ) // If component index > 0, swap component pointer with // pointer to first component so that any remainder after // fulfillment can be added back to the first item. let firstFulfillmentHeadPtr := add(offerComponents, OneWord) if xor(firstFulfillmentHeadPtr, fulfillmentHeadPtr) { let firstFulfillmentPtr := mload( firstFulfillmentHeadPtr ) let fulfillmentPtr := mload(fulfillmentHeadPtr) mstore(firstFulfillmentHeadPtr, fulfillmentPtr) } } default { // Compare every subsequent item to the first. if or( or( // The offerer must match on both items. xor( mload(paramsPtr), mload(add(execution, Execution_offerer_offset)) ), // The conduit key must match on both items. xor( mload( add( paramsPtr, OrderParameters_conduit_offset ) ), mload(add(execution, Execution_conduit_offset)) ) ), // The itemType, token, and identifier must match. xor( dataHash, keccak256( offerItemPtr, ReceivedItem_CommonParams_size ) ) ) { // Throw if any of the requirements are not met. throwInvalidFulfillmentComponentData() } } } // Write final amount to execution. mstore(add(mload(execution), Common_amount_offset), amount) // Determine whether the error buffer contains a nonzero error code. if errorBuffer { // If errorBuffer is 1, an item had an amount of zero. if eq(errorBuffer, 1) { // Store left-padded selector with push4 (reduces bytecode) // mem[28:32] = selector mstore(0, MissingItemAmount_error_selector) // revert(abi.encodeWithSignature("MissingItemAmount()")) revert( Error_selector_offset, MissingItemAmount_error_length ) } // If errorBuffer is not 1 or 0, the sum overflowed. // Panic! throwOverflow() } // Declare function for reverts on invalid fulfillment data. function throwInvalidFulfillmentComponentData() { // Store left-padded selector (uses push4 and reduces code size) mstore(0, InvalidFulfillmentComponentData_error_selector) // revert(abi.encodeWithSignature( // "InvalidFulfillmentComponentData()" // )) revert( Error_selector_offset, InvalidFulfillmentComponentData_error_length ) } // Declare function for reverts due to arithmetic overflows. function throwOverflow() { // Store the Panic error signature. mstore(0, Panic_error_selector) // Store the arithmetic (0x11) panic code. mstore(Panic_error_code_ptr, Panic_arithmetic) // revert(abi.encodeWithSignature("Panic(uint256)", 0x11)) revert(Error_selector_offset, Panic_error_length) } } } /** * @dev Internal pure function to aggregate a group of consideration items * using supplied directives on which component items are candidates * for aggregation, skipping items on orders that are not available. * Note that this function depends on memory layout affected by an * earlier call to _validateOrdersAndPrepareToFulfill. The memory for * the consideration arrays needs to be updated before calling * _aggregateValidFulfillmentConsiderationItems. * _validateOrdersAndPrepareToFulfill is called in _matchAdvancedOrders * and _fulfillAvailableAdvancedOrders in the current version. * * @param advancedOrders The orders to aggregate consideration * items from. * @param considerationComponents An array of FulfillmentComponent structs * indicating the order index and item index * of each candidate consideration item for * aggregation. * @param execution The execution to apply the aggregation to. */ function _aggregateValidFulfillmentConsiderationItems( AdvancedOrder[] memory advancedOrders, FulfillmentComponent[] memory considerationComponents, Execution memory execution ) internal pure { // Utilize assembly in order to efficiently aggregate the items. assembly { // Declare a variable for the final aggregated item amount. let amount // Create variable to track errors encountered with amount. let errorBuffer // Declare variable for hash(itemType, token, identifier, recipient) let dataHash // Iterate over each consideration component. for { // Track position in considerationComponents head. let fulfillmentHeadPtr := considerationComponents // Get position one word past last element in head of array. let endPtr := add( considerationComponents, shl(OneWordShift, mload(considerationComponents)) ) } lt(fulfillmentHeadPtr, endPtr) { } { // Increment position in considerationComponents head. fulfillmentHeadPtr := add(fulfillmentHeadPtr, OneWord) // Retrieve the order index using the fulfillment pointer. let orderIndex := mload(mload(fulfillmentHeadPtr)) // Ensure that the order index is not out of range. if iszero(lt(orderIndex, mload(advancedOrders))) { throwInvalidFulfillmentComponentData() } // Read advancedOrders[orderIndex] pointer from its array head. let orderPtr := mload( // Calculate head position of advancedOrders[orderIndex]. add( add(advancedOrders, OneWord), shl(OneWordShift, orderIndex) ) ) // Retrieve item index using an offset of fulfillment pointer. let itemIndex := mload( add(mload(fulfillmentHeadPtr), Fulfillment_itemIndex_offset) ) let considerationItemPtr { // Load consideration array pointer. let considerationArrPtr := mload( add( // Read OrderParameters pointer from AdvancedOrder. mload(orderPtr), OrderParameters_consideration_head_offset ) ) // If the consideration item index is out of range or the // numerator is zero, skip this item. if or( iszero(lt(itemIndex, mload(considerationArrPtr))), iszero( mload(add(orderPtr, AdvancedOrder_numerator_offset)) ) ) { continue } // Retrieve consideration item pointer using the item index. considerationItemPtr := mload( add( // Get pointer to beginning of receivedItem. add(considerationArrPtr, OneWord), // Calculate offset to pointer for desired order. shl(OneWordShift, itemIndex) ) ) } // Declare a separate scope for the amount update. { // Retrieve amount pointer using consideration item pointer. let amountPtr := add( considerationItemPtr, Common_amount_offset ) // Add consideration item amount to execution amount. let newAmount := add(amount, mload(amountPtr)) // Update error buffer: // 1 = zero amount, 2 = overflow, 3 = both. errorBuffer := or( errorBuffer, or( shl(1, lt(newAmount, amount)), iszero(mload(amountPtr)) ) ) // Update the amount to the new, summed amount. amount := newAmount // Zero out original item amount to indicate it is credited. mstore(amountPtr, 0) } // Retrieve ReceivedItem pointer from Execution. let receivedItem := mload(execution) switch iszero(dataHash) case 1 { // On first valid item, populate the received item in // memory for later comparison. // Set the item type on the received item. mstore(receivedItem, mload(considerationItemPtr)) // Set the token on the received item. mstore( add(receivedItem, Common_token_offset), mload(add(considerationItemPtr, Common_token_offset)) ) // Set the identifier on the received item. mstore( add(receivedItem, Common_identifier_offset), mload( add(considerationItemPtr, Common_identifier_offset) ) ) // Set the recipient on the received item. Note that this // depends on the memory layout established by the // _validateOrdersAndPrepareToFulfill function. mstore( add(receivedItem, ReceivedItem_recipient_offset), mload( add( considerationItemPtr, ReceivedItem_recipient_offset ) ) ) // Calculate the hash of (itemType, token, identifier, // recipient). This is run after amount is set to zero, so // there will be one blank word after identifier included in // the hash buffer. dataHash := keccak256( considerationItemPtr, ReceivedItem_size ) // If component index > 0, swap component pointer with // pointer to first component so that any remainder after // fulfillment can be added back to the first item. let firstFulfillmentHeadPtr := add( considerationComponents, OneWord ) if xor(firstFulfillmentHeadPtr, fulfillmentHeadPtr) { let firstFulfillmentPtr := mload( firstFulfillmentHeadPtr ) let fulfillmentPtr := mload(fulfillmentHeadPtr) mstore(firstFulfillmentHeadPtr, fulfillmentPtr) } } default { // Compare every subsequent item to the first; the item // type, token, identifier and recipient must match. if xor( dataHash, // Calculate the hash of (itemType, token, identifier, // recipient). This is run after amount is set to zero, // so there will be one blank word after identifier // included in the hash buffer. keccak256(considerationItemPtr, ReceivedItem_size) ) { // Throw if any of the requirements are not met. throwInvalidFulfillmentComponentData() } } } // Retrieve ReceivedItem pointer from Execution. let receivedItem := mload(execution) // Write final amount to execution. mstore(add(receivedItem, Common_amount_offset), amount) // Determine whether the error buffer contains a nonzero error code. if errorBuffer { // If errorBuffer is 1, an item had an amount of zero. if eq(errorBuffer, 1) { // Store left-padded selector with push4, mem[28:32] mstore(0, MissingItemAmount_error_selector) // revert(abi.encodeWithSignature("MissingItemAmount()")) revert( Error_selector_offset, MissingItemAmount_error_length ) } // If errorBuffer is not 1 or 0, `amount` overflowed. // Panic! throwOverflow() } // Declare function for reverts on invalid fulfillment data. function throwInvalidFulfillmentComponentData() { // Store the InvalidFulfillmentComponentData error signature. mstore(0, InvalidFulfillmentComponentData_error_selector) // revert(abi.encodeWithSignature( // "InvalidFulfillmentComponentData()" // )) revert( Error_selector_offset, InvalidFulfillmentComponentData_error_length ) } // Declare function for reverts due to arithmetic overflows. function throwOverflow() { // Store the Panic error signature. mstore(0, Panic_error_selector) // Store the arithmetic (0x11) panic code. mstore(Panic_error_code_ptr, Panic_arithmetic) // revert(abi.encodeWithSignature("Panic(uint256)", 0x11)) revert(Error_selector_offset, Panic_error_length) } } } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.17; import { ItemType, OrderType } from "./ConsiderationEnums.sol"; import { AdvancedOrder, ConsiderationItem, CriteriaResolver, OfferItem, OrderParameters, ReceivedItem, SpentItem } from "./ConsiderationStructs.sol"; import { BasicOrderFulfiller } from "./BasicOrderFulfiller.sol"; import { CriteriaResolution } from "./CriteriaResolution.sol"; import { AmountDeriver } from "./AmountDeriver.sol"; import { _revertInsufficientNativeTokensSupplied, _revertInvalidNativeOfferItem } from "./ConsiderationErrors.sol"; import { AccumulatorDisarmed, ConsiderationItem_recipient_offset, ReceivedItem_amount_offset, ReceivedItem_recipient_offset } from "./ConsiderationConstants.sol"; /** * @title OrderFulfiller * @author 0age * @notice OrderFulfiller contains logic related to order fulfillment where a * single order is being fulfilled and where basic order fulfillment is * not available as an option. */ contract OrderFulfiller is BasicOrderFulfiller, CriteriaResolution, AmountDeriver { /** * @dev Derive and set hashes, reference chainId, and associated domain * separator during deployment. * * @param conduitController A contract that deploys conduits, or proxies * that may optionally be used to transfer approved * ERC20/721/1155 tokens. */ constructor( address conduitController ) BasicOrderFulfiller(conduitController) {} /** * @dev Internal function to validate an order and update its status, adjust * prices based on current time, apply criteria resolvers, determine * what portion to fill, and transfer relevant tokens. * * @param advancedOrder The order to fulfill as well as the fraction * to fill. Note that all offer and consideration * components must divide with no remainder for * the partial fill to be valid. * @param criteriaResolvers An array where each element contains a * reference to a specific offer or * consideration, a token identifier, and a proof * that the supplied token identifier is * contained in the order's merkle root. Note * that a criteria of zero indicates that any * (transferable) token identifier is valid and * that no proof needs to be supplied. * @param fulfillerConduitKey A bytes32 value indicating what conduit, if * any, to source the fulfiller's token approvals * from. The zero hash signifies that no conduit * should be used, with direct approvals set on * Consideration. * @param recipient The intended recipient for all received items. * * @return A boolean indicating whether the order has been fulfilled. */ function _validateAndFulfillAdvancedOrder( AdvancedOrder memory advancedOrder, CriteriaResolver[] memory criteriaResolvers, bytes32 fulfillerConduitKey, address recipient ) internal returns (bool) { // Ensure this function cannot be triggered during a reentrant call. _setReentrancyGuard( // Native tokens accepted during execution for contract order types. advancedOrder.parameters.orderType == OrderType.CONTRACT ); // Validate order, update status, and determine fraction to fill. ( bytes32 orderHash, uint256 fillNumerator, uint256 fillDenominator ) = _validateOrderAndUpdateStatus(advancedOrder, true); // Create an array with length 1 containing the order. AdvancedOrder[] memory advancedOrders = new AdvancedOrder[](1); // Populate the order as the first and only element of the new array. advancedOrders[0] = advancedOrder; // Apply criteria resolvers using generated orders and details arrays. _applyCriteriaResolvers(advancedOrders, criteriaResolvers); // Retrieve the order parameters after applying criteria resolvers. OrderParameters memory orderParameters = advancedOrders[0].parameters; // Perform each item transfer with the appropriate fractional amount. _applyFractionsAndTransferEach( orderParameters, fillNumerator, fillDenominator, fulfillerConduitKey, recipient ); // Declare empty bytes32 array and populate with the order hash. bytes32[] memory orderHashes = new bytes32[](1); orderHashes[0] = orderHash; // Ensure restricted orders have a valid submitter or pass a zone check. _assertRestrictedAdvancedOrderValidity( advancedOrders[0], orderHashes, orderHash ); // Emit an event signifying that the order has been fulfilled. _emitOrderFulfilledEvent( orderHash, orderParameters.offerer, orderParameters.zone, recipient, orderParameters.offer, orderParameters.consideration ); // Clear the reentrancy guard. _clearReentrancyGuard(); return true; } /** * @dev Internal function to transfer each item contained in a given single * order fulfillment after applying a respective fraction to the amount * being transferred. * * @param orderParameters The parameters for the fulfilled order. * @param numerator A value indicating the portion of the order * that should be filled. * @param denominator A value indicating the total order size. * @param fulfillerConduitKey A bytes32 value indicating what conduit, if * any, to source the fulfiller's token approvals * from. The zero hash signifies that no conduit * should be used, with direct approvals set on * Consideration. * @param recipient The intended recipient for all received items. */ function _applyFractionsAndTransferEach( OrderParameters memory orderParameters, uint256 numerator, uint256 denominator, bytes32 fulfillerConduitKey, address recipient ) internal { // Read start time & end time from order parameters and place on stack. uint256 startTime = orderParameters.startTime; uint256 endTime = orderParameters.endTime; // Initialize an accumulator array. From this point forward, no new // memory regions can be safely allocated until the accumulator is no // longer being utilized, as the accumulator operates in an open-ended // fashion from this memory pointer; existing memory may still be // accessed and modified, however. bytes memory accumulator = new bytes(AccumulatorDisarmed); // As of solidity 0.6.0, inline assembly cannot directly access function // definitions, but can still access locally scoped function variables. // This means that a local variable to reference the internal function // definition (using the same type), along with a local variable with // the desired type, must first be created. Then, the original function // pointer can be recast to the desired type. /** * Repurpose existing OfferItem memory regions on the offer array for * the order by overriding the _transfer function pointer to accept a * modified OfferItem argument in place of the usual ReceivedItem: * * ========= OfferItem ========== ====== ReceivedItem ====== * ItemType itemType; ------------> ItemType itemType; * address token; ----------------> address token; * uint256 identifierOrCriteria; -> uint256 identifier; * uint256 startAmount; ----------> uint256 amount; * uint256 endAmount; ------------> address recipient; */ // Declare a nested scope to minimize stack depth. unchecked { // Read offer array length from memory and place on stack. uint256 totalOfferItems = orderParameters.offer.length; // Create a variable to indicate whether the order has any // native offer items uint256 anyNativeItems; // Iterate over each offer on the order. // Skip overflow check as for loop is indexed starting at zero. for (uint256 i = 0; i < totalOfferItems; ++i) { // Retrieve the offer item. OfferItem memory offerItem = orderParameters.offer[i]; // Offer items for the native token can not be received outside // of a match order function except as part of a contract order. { ItemType itemType = offerItem.itemType; assembly { anyNativeItems := or(anyNativeItems, iszero(itemType)) } } // Declare an additional nested scope to minimize stack depth. { // Apply fill fraction to get offer item amount to transfer. uint256 amount = _applyFraction( offerItem.startAmount, offerItem.endAmount, numerator, denominator, startTime, endTime, false ); // Utilize assembly to set overloaded offerItem arguments. assembly { // Write new fractional amount to startAmount as amount. mstore( add(offerItem, ReceivedItem_amount_offset), amount ) // Write recipient to endAmount. mstore( add(offerItem, ReceivedItem_recipient_offset), recipient ) } } // Transfer the item from the offerer to the recipient. _toOfferItemInput(_transfer)( offerItem, orderParameters.offerer, orderParameters.conduitKey, accumulator ); } // If a non-contract order has native offer items, throw with an // `InvalidNativeOfferItem` custom error. { OrderType orderType = orderParameters.orderType; uint256 invalidNativeOfferItem; assembly { invalidNativeOfferItem := and( // Note that this check requires that there are no order // types beyond the current set (0-4). It will need to // be modified if more order types are added. lt(orderType, 4), anyNativeItems ) } if (invalidNativeOfferItem != 0) { _revertInvalidNativeOfferItem(); } } } // Declare a variable for the available native token balance. uint256 nativeTokenBalance; /** * Repurpose existing ConsiderationItem memory regions on the * consideration array for the order by overriding the _transfer * function pointer to accept a modified ConsiderationItem argument in * place of the usual ReceivedItem: * * ====== ConsiderationItem ===== ====== ReceivedItem ====== * ItemType itemType; ------------> ItemType itemType; * address token; ----------------> address token; * uint256 identifierOrCriteria;--> uint256 identifier; * uint256 startAmount; ----------> uint256 amount; * uint256 endAmount; /----> address recipient; * address recipient; ------/ */ // Declare a nested scope to minimize stack depth. unchecked { // Read consideration array length from memory and place on stack. uint256 totalConsiderationItems = orderParameters .consideration .length; // Iterate over each consideration item on the order. // Skip overflow check as for loop is indexed starting at zero. for (uint256 i = 0; i < totalConsiderationItems; ++i) { // Retrieve the consideration item. ConsiderationItem memory considerationItem = ( orderParameters.consideration[i] ); // Apply fraction & derive considerationItem amount to transfer. uint256 amount = _applyFraction( considerationItem.startAmount, considerationItem.endAmount, numerator, denominator, startTime, endTime, true ); // Use assembly to set overloaded considerationItem arguments. assembly { // Write derived fractional amount to startAmount as amount. mstore( add(considerationItem, ReceivedItem_amount_offset), amount ) // Write original recipient to endAmount as recipient. mstore( add(considerationItem, ReceivedItem_recipient_offset), mload( add( considerationItem, ConsiderationItem_recipient_offset ) ) ) } if (considerationItem.itemType == ItemType.NATIVE) { // Get the current available balance of native tokens. assembly { nativeTokenBalance := selfbalance() } // Ensure that sufficient native tokens are still available. if (amount > nativeTokenBalance) { _revertInsufficientNativeTokensSupplied(); } } // Transfer item from caller to recipient specified by the item. _toConsiderationItemInput(_transfer)( considerationItem, msg.sender, fulfillerConduitKey, accumulator ); } } // Trigger any remaining accumulated transfers via call to the conduit. _triggerIfArmed(accumulator); // Determine whether any native token balance remains. assembly { nativeTokenBalance := selfbalance() } // Return any remaining native token balance to the caller. if (nativeTokenBalance != 0) { _transferNativeTokens(payable(msg.sender), nativeTokenBalance); } } /** * @dev Internal function to emit an OrderFulfilled event. OfferItems are * translated into SpentItems and ConsiderationItems are translated * into ReceivedItems. * * @param orderHash The order hash. * @param offerer The offerer for the order. * @param zone The zone for the order. * @param recipient The recipient of the order, or the null address if * the order was fulfilled via order matching. * @param offer The offer items for the order. * @param consideration The consideration items for the order. */ function _emitOrderFulfilledEvent( bytes32 orderHash, address offerer, address zone, address recipient, OfferItem[] memory offer, ConsiderationItem[] memory consideration ) internal { // Cast already-modified offer memory region as spent items. SpentItem[] memory spentItems; assembly { spentItems := offer } // Cast already-modified consideration memory region as received items. ReceivedItem[] memory receivedItems; assembly { receivedItems := consideration } // Emit an event signifying that the order has been fulfilled. emit OrderFulfilled( orderHash, offerer, zone, recipient, spentItems, receivedItems ); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.13; uint256 constant Error_selector_offset = 0x1c; /* * error MissingFulfillmentComponentOnAggregation(uint8 side) * - Defined in FulfillmentApplicationErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * - 0x20: side * Revert buffer is memory[0x1c:0x40] */ uint256 constant MissingFulfillmentComponentOnAggregation_error_selector = ( 0x375c24c1 ); uint256 constant MissingFulfillmentComponentOnAggregation_error_side_ptr = 0x20; uint256 constant MissingFulfillmentComponentOnAggregation_error_length = 0x24; /* * error OfferAndConsiderationRequiredOnFulfillment() * - Defined in FulfillmentApplicationErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * Revert buffer is memory[0x1c:0x20] */ uint256 constant OfferAndConsiderationRequiredOnFulfillment_error_selector = ( 0x98e9db6e ); uint256 constant OfferAndConsiderationRequiredOnFulfillment_error_length = 0x04; /* * error MismatchedFulfillmentOfferAndConsiderationComponents( * uint256 fulfillmentIndex * ) * - Defined in FulfillmentApplicationErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * - 0x20: fulfillmentIndex * Revert buffer is memory[0x1c:0x40] */ uint256 constant MismatchedOfferAndConsiderationComponents_error_selector = ( 0xbced929d ); uint256 constant MismatchedOfferAndConsiderationComponents_error_idx_ptr = 0x20; uint256 constant MismatchedOfferAndConsiderationComponents_error_length = 0x24; /* * error InvalidFulfillmentComponentData() * - Defined in FulfillmentApplicationErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * Revert buffer is memory[0x1c:0x20] */ uint256 constant InvalidFulfillmentComponentData_error_selector = 0x7fda7279; uint256 constant InvalidFulfillmentComponentData_error_length = 0x04; /* * error InexactFraction() * - Defined in AmountDerivationErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * Revert buffer is memory[0x1c:0x20] */ uint256 constant InexactFraction_error_selector = 0xc63cf089; uint256 constant InexactFraction_error_length = 0x04; /* * error OrderCriteriaResolverOutOfRange(uint8 side) * - Defined in CriteriaResolutionErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * - 0x20: side * Revert buffer is memory[0x1c:0x40] */ uint256 constant OrderCriteriaResolverOutOfRange_error_selector = 0x133c37c6; uint256 constant OrderCriteriaResolverOutOfRange_error_side_ptr = 0x20; uint256 constant OrderCriteriaResolverOutOfRange_error_length = 0x24; /* * error UnresolvedOfferCriteria(uint256 orderIndex, uint256 offerIndex) * - Defined in CriteriaResolutionErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * - 0x20: orderIndex * - 0x40: offerIndex * Revert buffer is memory[0x1c:0x60] */ uint256 constant UnresolvedOfferCriteria_error_selector = 0xd6929332; uint256 constant UnresolvedOfferCriteria_error_orderIndex_ptr = 0x20; uint256 constant UnresolvedOfferCriteria_error_offerIndex_ptr = 0x40; uint256 constant UnresolvedOfferCriteria_error_length = 0x44; /* * error UnresolvedConsiderationCriteria( * uint256 orderIndex, * uint256 considerationIndex * ) * - Defined in CriteriaResolutionErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * - 0x20: orderIndex * - 0x40: considerationIndex * Revert buffer is memory[0x1c:0x60] */ uint256 constant UnresolvedConsiderationCriteria_error_selector = 0xa8930e9a; uint256 constant UnresolvedConsiderationCriteria_error_orderIndex_ptr = 0x20; uint256 constant UnresolvedConsiderationCriteria_error_considerationIdx_ptr = ( 0x40 ); uint256 constant UnresolvedConsiderationCriteria_error_length = 0x44; /* * error OfferCriteriaResolverOutOfRange() * - Defined in CriteriaResolutionErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * Revert buffer is memory[0x1c:0x20] */ uint256 constant OfferCriteriaResolverOutOfRange_error_selector = 0xbfb3f8ce; // uint256 constant OfferCriteriaResolverOutOfRange_error_length = 0x04; /* * error ConsiderationCriteriaResolverOutOfRange() * - Defined in CriteriaResolutionErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * Revert buffer is memory[0x1c:0x20] */ uint256 constant ConsiderationCriteriaResolverOutOfRange_error_selector = ( 0x6088d7de ); uint256 constant ConsiderationCriteriaResolverOutOfRange_err_selector = ( 0x6088d7de ); // uint256 constant ConsiderationCriteriaResolverOutOfRange_error_length = 0x04; /* * error CriteriaNotEnabledForItem() * - Defined in CriteriaResolutionErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * Revert buffer is memory[0x1c:0x20] */ uint256 constant CriteriaNotEnabledForItem_error_selector = 0x94eb6af6; uint256 constant CriteriaNotEnabledForItem_error_length = 0x04; /* * error InvalidProof() * - Defined in CriteriaResolutionErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * Revert buffer is memory[0x1c:0x20] */ uint256 constant InvalidProof_error_selector = 0x09bde339; uint256 constant InvalidProof_error_length = 0x04; /* * error InvalidRestrictedOrder(bytes32 orderHash) * - Defined in ZoneInteractionErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * - 0x20: orderHash * Revert buffer is memory[0x1c:0x40] */ uint256 constant InvalidRestrictedOrder_error_selector = 0xfb5014fc; uint256 constant InvalidRestrictedOrder_error_orderHash_ptr = 0x20; uint256 constant InvalidRestrictedOrder_error_length = 0x24; /* * error InvalidContractOrder(bytes32 orderHash) * - Defined in ZoneInteractionErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * - 0x20: orderHash * Revert buffer is memory[0x1c:0x40] */ uint256 constant InvalidContractOrder_error_selector = 0x93979285; uint256 constant InvalidContractOrder_error_orderHash_ptr = 0x20; uint256 constant InvalidContractOrder_error_length = 0x24; /* * error BadSignatureV(uint8 v) * - Defined in SignatureVerificationErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * - 0x20: v * Revert buffer is memory[0x1c:0x40] */ uint256 constant BadSignatureV_error_selector = 0x1f003d0a; uint256 constant BadSignatureV_error_v_ptr = 0x20; uint256 constant BadSignatureV_error_length = 0x24; /* * error InvalidSigner() * - Defined in SignatureVerificationErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * Revert buffer is memory[0x1c:0x20] */ uint256 constant InvalidSigner_error_selector = 0x815e1d64; uint256 constant InvalidSigner_error_length = 0x04; /* * error InvalidSignature() * - Defined in SignatureVerificationErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * Revert buffer is memory[0x1c:0x20] */ uint256 constant InvalidSignature_error_selector = 0x8baa579f; uint256 constant InvalidSignature_error_length = 0x04; /* * error BadContractSignature() * - Defined in SignatureVerificationErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * Revert buffer is memory[0x1c:0x20] */ uint256 constant BadContractSignature_error_selector = 0x4f7fb80d; uint256 constant BadContractSignature_error_length = 0x04; /* * error InvalidERC721TransferAmount(uint256 amount) * - Defined in TokenTransferrerErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * - 0x20: amount * Revert buffer is memory[0x1c:0x40] */ uint256 constant InvalidERC721TransferAmount_error_selector = 0x69f95827; uint256 constant InvalidERC721TransferAmount_error_amount_ptr = 0x20; uint256 constant InvalidERC721TransferAmount_error_length = 0x24; /* * error MissingItemAmount() * - Defined in TokenTransferrerErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * Revert buffer is memory[0x1c:0x20] */ uint256 constant MissingItemAmount_error_selector = 0x91b3e514; uint256 constant MissingItemAmount_error_length = 0x04; /* * error UnusedItemParameters() * - Defined in TokenTransferrerErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * Revert buffer is memory[0x1c:0x20] */ uint256 constant UnusedItemParameters_error_selector = 0x6ab37ce7; uint256 constant UnusedItemParameters_error_length = 0x04; /* * error NoReentrantCalls() * - Defined in ReentrancyErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * Revert buffer is memory[0x1c:0x20] */ uint256 constant NoReentrantCalls_error_selector = 0x7fa8a987; uint256 constant NoReentrantCalls_error_length = 0x04; /* * error OrderAlreadyFilled(bytes32 orderHash) * - Defined in ConsiderationEventsAndErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * - 0x20: orderHash * Revert buffer is memory[0x1c:0x40] */ uint256 constant OrderAlreadyFilled_error_selector = 0x10fda3e1; uint256 constant OrderAlreadyFilled_error_orderHash_ptr = 0x20; uint256 constant OrderAlreadyFilled_error_length = 0x24; /* * error InvalidTime(uint256 startTime, uint256 endTime) * - Defined in ConsiderationEventsAndErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * - 0x20: startTime * - 0x40: endTime * Revert buffer is memory[0x1c:0x60] */ uint256 constant InvalidTime_error_selector = 0x21ccfeb7; uint256 constant InvalidTime_error_startTime_ptr = 0x20; uint256 constant InvalidTime_error_endTime_ptr = 0x40; uint256 constant InvalidTime_error_length = 0x44; /* * error InvalidConduit(bytes32 conduitKey, address conduit) * - Defined in ConsiderationEventsAndErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * - 0x20: conduitKey * - 0x40: conduit * Revert buffer is memory[0x1c:0x60] */ uint256 constant InvalidConduit_error_selector = 0x1cf99b26; uint256 constant InvalidConduit_error_conduitKey_ptr = 0x20; uint256 constant InvalidConduit_error_conduit_ptr = 0x40; uint256 constant InvalidConduit_error_length = 0x44; /* * error MissingOriginalConsiderationItems() * - Defined in ConsiderationEventsAndErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * Revert buffer is memory[0x1c:0x20] */ uint256 constant MissingOriginalConsiderationItems_error_selector = 0x466aa616; uint256 constant MissingOriginalConsiderationItems_error_length = 0x04; /* * error InvalidCallToConduit(address conduit) * - Defined in ConsiderationEventsAndErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * - 0x20: conduit * Revert buffer is memory[0x1c:0x40] */ uint256 constant InvalidCallToConduit_error_selector = 0xd13d53d4; uint256 constant InvalidCallToConduit_error_conduit_ptr = 0x20; uint256 constant InvalidCallToConduit_error_length = 0x24; /* * error ConsiderationNotMet( * uint256 orderIndex, * uint256 considerationIndex, * uint256 shortfallAmount * ) * - Defined in ConsiderationEventsAndErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * - 0x20: orderIndex * - 0x40: considerationIndex * - 0x60: shortfallAmount * Revert buffer is memory[0x1c:0x80] */ uint256 constant ConsiderationNotMet_error_selector = 0xa5f54208; uint256 constant ConsiderationNotMet_error_orderIndex_ptr = 0x20; uint256 constant ConsiderationNotMet_error_considerationIndex_ptr = 0x40; uint256 constant ConsiderationNotMet_error_shortfallAmount_ptr = 0x60; uint256 constant ConsiderationNotMet_error_length = 0x64; /* * error InsufficientNativeTokensSupplied() * - Defined in ConsiderationEventsAndErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * Revert buffer is memory[0x1c:0x20] */ uint256 constant InsufficientNativeTokensSupplied_error_selector = 0x8ffff980; uint256 constant InsufficientNativeTokensSupplied_error_length = 0x04; /* * error NativeTokenTransferGenericFailure(address account, uint256 amount) * - Defined in ConsiderationEventsAndErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * - 0x20: account * - 0x40: amount * Revert buffer is memory[0x1c:0x60] */ uint256 constant NativeTokenTransferGenericFailure_error_selector = 0xbc806b96; uint256 constant NativeTokenTransferGenericFailure_error_account_ptr = 0x20; uint256 constant NativeTokenTransferGenericFailure_error_amount_ptr = 0x40; uint256 constant NativeTokenTransferGenericFailure_error_length = 0x44; /* * error PartialFillsNotEnabledForOrder() * - Defined in ConsiderationEventsAndErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * Revert buffer is memory[0x1c:0x20] */ uint256 constant PartialFillsNotEnabledForOrder_error_selector = 0xa11b63ff; uint256 constant PartialFillsNotEnabledForOrder_error_length = 0x04; /* * error OrderIsCancelled(bytes32 orderHash) * - Defined in ConsiderationEventsAndErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * - 0x20: orderHash * Revert buffer is memory[0x1c:0x40] */ uint256 constant OrderIsCancelled_error_selector = 0x1a515574; uint256 constant OrderIsCancelled_error_orderHash_ptr = 0x20; uint256 constant OrderIsCancelled_error_length = 0x24; /* * error OrderPartiallyFilled(bytes32 orderHash) * - Defined in ConsiderationEventsAndErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * - 0x20: orderHash * Revert buffer is memory[0x1c:0x40] */ uint256 constant OrderPartiallyFilled_error_selector = 0xee9e0e63; uint256 constant OrderPartiallyFilled_error_orderHash_ptr = 0x20; uint256 constant OrderPartiallyFilled_error_length = 0x24; /* * error CannotCancelOrder() * - Defined in ConsiderationEventsAndErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * Revert buffer is memory[0x1c:0x20] */ uint256 constant CannotCancelOrder_error_selector = 0xfed398fc; uint256 constant CannotCancelOrder_error_length = 0x04; /* * error BadFraction() * - Defined in ConsiderationEventsAndErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * Revert buffer is memory[0x1c:0x20] */ uint256 constant BadFraction_error_selector = 0x5a052b32; uint256 constant BadFraction_error_length = 0x04; /* * error InvalidMsgValue(uint256 value) * - Defined in ConsiderationEventsAndErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * - 0x20: value * Revert buffer is memory[0x1c:0x40] */ uint256 constant InvalidMsgValue_error_selector = 0xa61be9f0; uint256 constant InvalidMsgValue_error_value_ptr = 0x20; uint256 constant InvalidMsgValue_error_length = 0x24; /* * error InvalidBasicOrderParameterEncoding() * - Defined in ConsiderationEventsAndErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * Revert buffer is memory[0x1c:0x20] */ uint256 constant InvalidBasicOrderParameterEncoding_error_selector = 0x39f3e3fd; uint256 constant InvalidBasicOrderParameterEncoding_error_length = 0x04; /* * error NoSpecifiedOrdersAvailable() * - Defined in ConsiderationEventsAndErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * Revert buffer is memory[0x1c:0x20] */ uint256 constant NoSpecifiedOrdersAvailable_error_selector = 0xd5da9a1b; uint256 constant NoSpecifiedOrdersAvailable_error_length = 0x04; /* * error InvalidNativeOfferItem() * - Defined in ConsiderationEventsAndErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * Revert buffer is memory[0x1c:0x20] */ uint256 constant InvalidNativeOfferItem_error_selector = 0x12d3f5a3; uint256 constant InvalidNativeOfferItem_error_length = 0x04; /* * error ConsiderationLengthNotEqualToTotalOriginal() * - Defined in ConsiderationEventsAndErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * Revert buffer is memory[0x1c:0x20] */ uint256 constant ConsiderationLengthNotEqualToTotalOriginal_error_selector = ( 0x2165628a ); uint256 constant ConsiderationLengthNotEqualToTotalOriginal_error_length = 0x04; /* * error Panic(uint256 code) * - Built-in Solidity error * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * - 0x20: code * Revert buffer is memory[0x1c:0x40] */ uint256 constant Panic_error_selector = 0x4e487b71; uint256 constant Panic_error_code_ptr = 0x20; uint256 constant Panic_error_length = 0x24; uint256 constant Panic_arithmetic = 0x11; // uint256 constant Panic_resource = 0x41;
// SPDX-License-Identifier: MIT pragma solidity ^0.8.13; import { Side } from "../lib/ConsiderationEnums.sol"; /** * @title FulfillmentApplicationErrors * @author 0age * @notice FulfillmentApplicationErrors contains errors related to fulfillment * application and aggregation. */ interface FulfillmentApplicationErrors { /** * @dev Revert with an error when a fulfillment is provided that does not * declare at least one component as part of a call to fulfill * available orders. */ error MissingFulfillmentComponentOnAggregation(Side side); /** * @dev Revert with an error when a fulfillment is provided that does not * declare at least one offer component and at least one consideration * component. */ error OfferAndConsiderationRequiredOnFulfillment(); /** * @dev Revert with an error when the initial offer item named by a * fulfillment component does not match the type, token, identifier, * or conduit preference of the initial consideration item. * * @param fulfillmentIndex The index of the fulfillment component that * does not match the initial offer item. */ error MismatchedFulfillmentOfferAndConsiderationComponents( uint256 fulfillmentIndex ); /** * @dev Revert with an error when an order or item index are out of range * or a fulfillment component does not match the type, token, * identifier, or conduit preference of the initial consideration item. */ error InvalidFulfillmentComponentData(); }
// SPDX-License-Identifier: MIT pragma solidity 0.8.17; import { AmountDerivationErrors } from "../interfaces/AmountDerivationErrors.sol"; import { Error_selector_offset, InexactFraction_error_length, InexactFraction_error_selector } from "./ConsiderationErrorConstants.sol"; /** * @title AmountDeriver * @author 0age * @notice AmountDeriver contains view and pure functions related to deriving * item amounts based on partial fill quantity and on linear * interpolation based on current time when the start amount and end * amount differ. */ contract AmountDeriver is AmountDerivationErrors { /** * @dev Internal view function to derive the current amount of a given item * based on the current price, the starting price, and the ending * price. If the start and end prices differ, the current price will be * interpolated on a linear basis. Note that this function expects that * the startTime parameter of orderParameters is not greater than the * current block timestamp and that the endTime parameter is greater * than the current block timestamp. If this condition is not upheld, * duration / elapsed / remaining variables will underflow. * * @param startAmount The starting amount of the item. * @param endAmount The ending amount of the item. * @param startTime The starting time of the order. * @param endTime The end time of the order. * @param roundUp A boolean indicating whether the resultant amount * should be rounded up or down. * * @return amount The current amount. */ function _locateCurrentAmount( uint256 startAmount, uint256 endAmount, uint256 startTime, uint256 endTime, bool roundUp ) internal view returns (uint256 amount) { // Only modify end amount if it doesn't already equal start amount. if (startAmount != endAmount) { // Declare variables to derive in the subsequent unchecked scope. uint256 duration; uint256 elapsed; uint256 remaining; // Skip underflow checks as startTime <= block.timestamp < endTime. unchecked { // Derive the duration for the order and place it on the stack. duration = endTime - startTime; // Derive time elapsed since the order started & place on stack. elapsed = block.timestamp - startTime; // Derive time remaining until order expires and place on stack. remaining = duration - elapsed; } // Aggregate new amounts weighted by time with rounding factor. uint256 totalBeforeDivision = ((startAmount * remaining) + (endAmount * elapsed)); // Use assembly to combine operations and skip divide-by-zero check. assembly { // Multiply by iszero(iszero(totalBeforeDivision)) to ensure // amount is set to zero if totalBeforeDivision is zero, // as intermediate overflow can occur if it is zero. amount := mul( iszero(iszero(totalBeforeDivision)), // Subtract 1 from the numerator and add 1 to the result if // roundUp is true to get the proper rounding direction. // Division is performed with no zero check as duration // cannot be zero as long as startTime < endTime. add( div(sub(totalBeforeDivision, roundUp), duration), roundUp ) ) } // Return the current amount. return amount; } // Return the original amount as startAmount == endAmount. return endAmount; } /** * @dev Internal pure function to return a fraction of a given value and to * ensure the resultant value does not have any fractional component. * Note that this function assumes that zero will never be supplied as * the denominator parameter; invalid / undefined behavior will result * should a denominator of zero be provided. * * @param numerator A value indicating the portion of the order that * should be filled. * @param denominator A value indicating the total size of the order. Note * that this value cannot be equal to zero. * @param value The value for which to compute the fraction. * * @return newValue The value after applying the fraction. */ function _getFraction( uint256 numerator, uint256 denominator, uint256 value ) internal pure returns (uint256 newValue) { // Return value early in cases where the fraction resolves to 1. if (numerator == denominator) { return value; } // Ensure fraction can be applied to the value with no remainder. Note // that the denominator cannot be zero. assembly { // Ensure new value contains no remainder via mulmod operator. // Credit to @hrkrshnn + @axic for proposing this optimal solution. if mulmod(value, numerator, denominator) { // Store left-padded selector with push4, mem[28:32] = selector mstore(0, InexactFraction_error_selector) // revert(abi.encodeWithSignature("InexactFraction()")) revert(Error_selector_offset, InexactFraction_error_length) } } // Multiply the numerator by the value and ensure no overflow occurs. uint256 valueTimesNumerator = value * numerator; // Divide and check for remainder. Note that denominator cannot be zero. assembly { // Perform division without zero check. newValue := div(valueTimesNumerator, denominator) } } /** * @dev Internal view function to apply a fraction to a consideration * or offer item. * * @param startAmount The starting amount of the item. * @param endAmount The ending amount of the item. * @param numerator A value indicating the portion of the order that * should be filled. * @param denominator A value indicating the total size of the order. * @param startTime The starting time of the order. * @param endTime The end time of the order. * @param roundUp A boolean indicating whether the resultant * amount should be rounded up or down. * * @return amount The received item to transfer with the final amount. */ function _applyFraction( uint256 startAmount, uint256 endAmount, uint256 numerator, uint256 denominator, uint256 startTime, uint256 endTime, bool roundUp ) internal view returns (uint256 amount) { // If start amount equals end amount, apply fraction to end amount. if (startAmount == endAmount) { // Apply fraction to end amount. amount = _getFraction(numerator, denominator, endAmount); } else { // Otherwise, apply fraction to both and interpolated final amount. amount = _locateCurrentAmount( _getFraction(numerator, denominator, startAmount), _getFraction(numerator, denominator, endAmount), startTime, endTime, roundUp ); } } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.17; import { BasicOrderRouteType, ItemType, OrderType } from "./ConsiderationEnums.sol"; import { BasicOrderParameters } from "./ConsiderationStructs.sol"; import { OrderValidator } from "./OrderValidator.sol"; import { _revertInsufficientNativeTokensSupplied, _revertInvalidMsgValue, _revertInvalidERC721TransferAmount, _revertUnusedItemParameters } from "./ConsiderationErrors.sol"; import { AccumulatorDisarmed, AdditionalRecipient_size_shift, AdditionalRecipient_size, BasicOrder_additionalRecipients_data_cdPtr, BasicOrder_additionalRecipients_length_cdPtr, BasicOrder_basicOrderType_cdPtr, BasicOrder_common_params_size, BasicOrder_considerationAmount_cdPtr, BasicOrder_considerationHashesArray_ptr, BasicOrder_considerationIdentifier_cdPtr, BasicOrder_considerationItem_endAmount_ptr, BasicOrder_considerationItem_identifier_ptr, BasicOrder_considerationItem_itemType_ptr, BasicOrder_considerationItem_startAmount_ptr, BasicOrder_considerationItem_token_ptr, BasicOrder_considerationItem_typeHash_ptr, BasicOrder_considerationToken_cdPtr, BasicOrder_endTime_cdPtr, BasicOrder_fulfillerConduit_cdPtr, BasicOrder_offerAmount_cdPtr, BasicOrder_offeredItemByteMap, BasicOrder_offerer_cdPtr, BasicOrder_offererConduit_cdPtr, BasicOrder_offerIdentifier_cdPtr, BasicOrder_offerItem_endAmount_ptr, BasicOrder_offerItem_itemType_ptr, BasicOrder_offerItem_token_ptr, BasicOrder_offerItem_typeHash_ptr, BasicOrder_offerToken_cdPtr, BasicOrder_order_considerationHashes_ptr, BasicOrder_order_counter_ptr, BasicOrder_order_offerer_ptr, BasicOrder_order_offerHashes_ptr, BasicOrder_order_orderType_ptr, BasicOrder_order_startTime_ptr, BasicOrder_order_typeHash_ptr, BasicOrder_receivedItemByteMap, BasicOrder_startTime_cdPtr, BasicOrder_totalOriginalAdditionalRecipients_cdPtr, BasicOrder_zone_cdPtr, Common_token_offset, Conduit_execute_ConduitTransfer_length_ptr, Conduit_execute_ConduitTransfer_length, Conduit_execute_ConduitTransfer_offset_ptr, Conduit_execute_ConduitTransfer_ptr, Conduit_execute_signature, Conduit_execute_transferAmount_ptr, Conduit_execute_transferIdentifier_ptr, Conduit_execute_transferFrom_ptr, Conduit_execute_transferItemType_ptr, Conduit_execute_transferTo_ptr, Conduit_execute_transferToken_ptr, EIP712_ConsiderationItem_size, EIP712_OfferItem_size, EIP712_Order_size, FiveWords, FourWords, FreeMemoryPointerSlot, MaskOverLastTwentyBytes, OneConduitExecute_size, OneWord, OneWordShift, OrderFulfilled_baseOffset, OrderFulfilled_baseSize, OrderFulfilled_consideration_body_offset, OrderFulfilled_consideration_head_offset, OrderFulfilled_consideration_length_baseOffset, OrderFulfilled_fulfiller_offset, OrderFulfilled_offer_body_offset, OrderFulfilled_offer_head_offset, OrderFulfilled_offer_length_baseOffset, OrderFulfilled_selector, ReceivedItem_amount_offset, ReceivedItem_size, receivedItemsHash_ptr, ThreeWords, TwoWords, ZeroSlot } from "./ConsiderationConstants.sol"; import { Error_selector_offset, InvalidBasicOrderParameterEncoding_error_length, InvalidBasicOrderParameterEncoding_error_selector, InvalidTime_error_endTime_ptr, InvalidTime_error_length, InvalidTime_error_selector, InvalidTime_error_startTime_ptr, MissingOriginalConsiderationItems_error_length, MissingOriginalConsiderationItems_error_selector, UnusedItemParameters_error_length, UnusedItemParameters_error_selector } from "./ConsiderationErrorConstants.sol"; /** * @title BasicOrderFulfiller * @author 0age * @notice BasicOrderFulfiller contains functionality for fulfilling "basic" * orders with minimal overhead. See documentation for details on what * qualifies as a basic order. */ contract BasicOrderFulfiller is OrderValidator { /** * @dev Derive and set hashes, reference chainId, and associated domain * separator during deployment. * * @param conduitController A contract that deploys conduits, or proxies * that may optionally be used to transfer approved * ERC20/721/1155 tokens. */ constructor(address conduitController) OrderValidator(conduitController) {} /** * @dev Internal function to fulfill an order offering an ERC20, ERC721, or * ERC1155 item by supplying Ether (or other native tokens), ERC20 * tokens, an ERC721 item, or an ERC1155 item as consideration. Six * permutations are supported: Native token to ERC721, Native token to * ERC1155, ERC20 to ERC721, ERC20 to ERC1155, ERC721 to ERC20, and * ERC1155 to ERC20 (with native tokens supplied as msg.value). For an * order to be eligible for fulfillment via this method, it must * contain a single offer item (though that item may have a greater * amount if the item is not an ERC721). An arbitrary number of * "additional recipients" may also be supplied which will each receive * native tokens or ERC20 items from the fulfiller as consideration. * Refer to the documentation for a more comprehensive summary of how * to utilize this method and what orders are compatible with it. * * @param parameters Additional information on the fulfilled order. Note * that the offerer and the fulfiller must first approve * this contract (or their chosen conduit if indicated) * before any tokens can be transferred. Also note that * contract recipients of ERC1155 consideration items must * implement `onERC1155Received` in order to receive those * items. * * @return A boolean indicating whether the order has been fulfilled. */ function _validateAndFulfillBasicOrder( BasicOrderParameters calldata parameters ) internal returns (bool) { // Declare enums for order type & route to extract from basicOrderType. BasicOrderRouteType route; OrderType orderType; // Declare additional recipient item type to derive from the route type. ItemType additionalRecipientsItemType; bytes32 orderHash; // Utilize assembly to extract the order type and the basic order route. assembly { // Read basicOrderType from calldata. let basicOrderType := calldataload(BasicOrder_basicOrderType_cdPtr) // Mask all but 2 least-significant bits to derive the order type. orderType := and(basicOrderType, 3) // Divide basicOrderType by four to derive the route. route := shr(2, basicOrderType) // If route > 1 additionalRecipient items are ERC20 (1) else native // token (0). additionalRecipientsItemType := gt(route, 1) } { // Declare temporary variable for enforcing payable status. bool correctPayableStatus; // Utilize assembly to compare the route to the callvalue. assembly { // route 0 and 1 are payable, otherwise route is not payable. correctPayableStatus := eq( additionalRecipientsItemType, iszero(callvalue()) ) } // Revert if msg.value has not been supplied as part of payable // routes or has been supplied as part of non-payable routes. if (!correctPayableStatus) { _revertInvalidMsgValue(msg.value); } } // Declare more arguments that will be derived from route and calldata. address additionalRecipientsToken; ItemType offeredItemType; bool offerTypeIsAdditionalRecipientsType; // Declare scope for received item type to manage stack pressure. { ItemType receivedItemType; // Utilize assembly to retrieve function arguments and cast types. assembly { // Check if offered item type == additional recipient item type. offerTypeIsAdditionalRecipientsType := gt(route, 3) // If route > 3 additionalRecipientsToken is at 0xc4 else 0x24. additionalRecipientsToken := calldataload( add( BasicOrder_considerationToken_cdPtr, mul( offerTypeIsAdditionalRecipientsType, BasicOrder_common_params_size ) ) ) // If route > 2, receivedItemType is route - 2. If route is 2, // the receivedItemType is ERC20 (1). Otherwise, it is native // token (0). receivedItemType := byte(route, BasicOrder_receivedItemByteMap) // If route > 3, offeredItemType is ERC20 (1). Route is 2 or 3, // offeredItemType = route. Route is 0 or 1, it is route + 2. offeredItemType := byte(route, BasicOrder_offeredItemByteMap) } // Derive & validate order using parameters and update order status. orderHash = _prepareBasicFulfillmentFromCalldata( parameters, orderType, receivedItemType, additionalRecipientsItemType, additionalRecipientsToken, offeredItemType ); } // Declare conduitKey argument used by transfer functions. bytes32 conduitKey; // Utilize assembly to derive conduit (if relevant) based on route. assembly { // use offerer conduit for routes 0-3, fulfiller conduit otherwise. conduitKey := calldataload( add( BasicOrder_offererConduit_cdPtr, shl(OneWordShift, offerTypeIsAdditionalRecipientsType) ) ) } // Transfer tokens based on the route. if (additionalRecipientsItemType == ItemType.NATIVE) { // Ensure neither consideration token nor identifier are set. Note // that dirty upper bits in the consideration token will still cause // this error to be thrown. assembly { if or( calldataload(BasicOrder_considerationToken_cdPtr), calldataload(BasicOrder_considerationIdentifier_cdPtr) ) { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, UnusedItemParameters_error_selector) // revert(abi.encodeWithSignature("UnusedItemParameters()")) revert( Error_selector_offset, UnusedItemParameters_error_length ) } } // Transfer the ERC721 or ERC1155 item, bypassing the accumulator. _transferIndividual721Or1155Item(offeredItemType, conduitKey); // Transfer native to recipients, return excess to caller & wrap up. _transferNativeTokensAndFinalize(); } else { // Initialize an accumulator array. From this point forward, no new // memory regions can be safely allocated until the accumulator is // no longer being utilized, as the accumulator operates in an // open-ended fashion from this memory pointer; existing memory may // still be accessed and modified, however. bytes memory accumulator = new bytes(AccumulatorDisarmed); // Choose transfer method for ERC721 or ERC1155 item based on route. if (route == BasicOrderRouteType.ERC20_TO_ERC721) { // Transfer ERC721 to caller using offerer's conduit preference. _transferERC721( parameters.offerToken, parameters.offerer, msg.sender, parameters.offerIdentifier, parameters.offerAmount, conduitKey, accumulator ); } else if (route == BasicOrderRouteType.ERC20_TO_ERC1155) { // Transfer ERC1155 to caller with offerer's conduit preference. _transferERC1155( parameters.offerToken, parameters.offerer, msg.sender, parameters.offerIdentifier, parameters.offerAmount, conduitKey, accumulator ); } else if (route == BasicOrderRouteType.ERC721_TO_ERC20) { // Transfer ERC721 to offerer using caller's conduit preference. _transferERC721( parameters.considerationToken, msg.sender, parameters.offerer, parameters.considerationIdentifier, parameters.considerationAmount, conduitKey, accumulator ); } else { // route == BasicOrderRouteType.ERC1155_TO_ERC20 // Transfer ERC1155 to offerer with caller's conduit preference. _transferERC1155( parameters.considerationToken, msg.sender, parameters.offerer, parameters.considerationIdentifier, parameters.considerationAmount, conduitKey, accumulator ); } // Transfer ERC20 tokens to all recipients and wrap up. _transferERC20AndFinalize( offerTypeIsAdditionalRecipientsType, accumulator ); // Trigger any remaining accumulated transfers via call to conduit. _triggerIfArmed(accumulator); } // Determine whether order is restricted and, if so, that it is valid. _assertRestrictedBasicOrderValidity(orderHash, orderType, parameters); // Clear the reentrancy guard. _clearReentrancyGuard(); return true; } /** * @dev Internal function to prepare fulfillment of a basic order with * manual calldata and memory access. This calculates the order hash, * emits an OrderFulfilled event, and asserts basic order validity. * Note that calldata offsets must be validated as this function * accesses constant calldata pointers for dynamic types that match * default ABI encoding, but valid ABI encoding can use arbitrary * offsets. Checking that the offsets were produced by default encoding * will ensure that other functions using Solidity's calldata accessors * (which calculate pointers from the stored offsets) are reading the * same data as the order hash is derived from. Also note that this * function accesses memory directly. * * @param parameters The parameters of the basic order. * @param orderType The order type. * @param receivedItemType The item type of the initial * consideration item on the order. * @param additionalRecipientsItemType The item type of any additional * consideration item on the order. * @param additionalRecipientsToken The ERC20 token contract address (if * applicable) for any additional * consideration item on the order. * @param offeredItemType The item type of the offered item on * the order. * @return orderHash The calculated order hash. */ function _prepareBasicFulfillmentFromCalldata( BasicOrderParameters calldata parameters, OrderType orderType, ItemType receivedItemType, ItemType additionalRecipientsItemType, address additionalRecipientsToken, ItemType offeredItemType ) internal returns (bytes32 orderHash) { // Ensure this function cannot be triggered during a reentrant call. _setReentrancyGuard(false); // Native tokens rejected during execution. // Verify that calldata offsets for all dynamic types were produced by // default encoding. This ensures that the constants used for calldata // pointers to dynamic types are the same as those calculated by // Solidity using their offsets. Also verify that the basic order type // is within range. _assertValidBasicOrderParameters(); // Check for invalid time and missing original consideration items. // Utilize assembly so that constant calldata pointers can be applied. assembly { // Ensure current timestamp is between order start time & end time. if or( gt(calldataload(BasicOrder_startTime_cdPtr), timestamp()), iszero(gt(calldataload(BasicOrder_endTime_cdPtr), timestamp())) ) { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, InvalidTime_error_selector) // Store arguments. mstore( InvalidTime_error_startTime_ptr, calldataload(BasicOrder_startTime_cdPtr) ) mstore( InvalidTime_error_endTime_ptr, calldataload(BasicOrder_endTime_cdPtr) ) // revert(abi.encodeWithSignature( // "InvalidTime(uint256,uint256)", // startTime, // endTime // )) revert(Error_selector_offset, InvalidTime_error_length) } // Ensure consideration array length isn't less than total original. if lt( calldataload(BasicOrder_additionalRecipients_length_cdPtr), calldataload(BasicOrder_totalOriginalAdditionalRecipients_cdPtr) ) { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, MissingOriginalConsiderationItems_error_selector) // revert(abi.encodeWithSignature( // "MissingOriginalConsiderationItems()" // )) revert( Error_selector_offset, MissingOriginalConsiderationItems_error_length ) } } { /** * First, handle consideration items. Memory Layout: * 0x60: final hash of the array of consideration item hashes * 0x80-0x160: reused space for EIP712 hashing of each item * - 0x80: ConsiderationItem EIP-712 typehash (constant) * - 0xa0: itemType * - 0xc0: token * - 0xe0: identifier * - 0x100: startAmount * - 0x120: endAmount * - 0x140: recipient * 0x160-END_ARR: array of consideration item hashes * - 0x160: primary consideration item EIP712 hash * - 0x180-END_ARR: additional recipient item EIP712 hashes * END_ARR: beginning of data for OrderFulfilled event * - END_ARR + 0x120: length of ReceivedItem array * - END_ARR + 0x140: beginning of data for first ReceivedItem * (Note: END_ARR = 0x180 + RECIPIENTS_LENGTH * 0x20) */ // Load consideration item typehash from runtime and place on stack. bytes32 typeHash = _CONSIDERATION_ITEM_TYPEHASH; // Utilize assembly to enable reuse of memory regions and use // constant pointers when possible. assembly { /* * 1. Calculate the EIP712 ConsiderationItem hash for the * primary consideration item of the basic order. */ // Write ConsiderationItem type hash and item type to memory. mstore(BasicOrder_considerationItem_typeHash_ptr, typeHash) mstore( BasicOrder_considerationItem_itemType_ptr, receivedItemType ) // Copy calldata region with (token, identifier, amount) from // BasicOrderParameters to ConsiderationItem. The // considerationAmount is written to startAmount and endAmount // as basic orders do not have dynamic amounts. calldatacopy( BasicOrder_considerationItem_token_ptr, BasicOrder_considerationToken_cdPtr, ThreeWords ) // Copy calldata region with considerationAmount and offerer // from BasicOrderParameters to endAmount and recipient in // ConsiderationItem. calldatacopy( BasicOrder_considerationItem_endAmount_ptr, BasicOrder_considerationAmount_cdPtr, TwoWords ) // Calculate EIP712 ConsiderationItem hash and store it in the // array of EIP712 consideration hashes. mstore( BasicOrder_considerationHashesArray_ptr, keccak256( BasicOrder_considerationItem_typeHash_ptr, EIP712_ConsiderationItem_size ) ) /* * 2. Write a ReceivedItem struct for the primary consideration * item to the consideration array in OrderFulfilled. */ // Get the length of the additional recipients array. let totalAdditionalRecipients := calldataload( BasicOrder_additionalRecipients_length_cdPtr ) // Calculate pointer to length of OrderFulfilled consideration // array. let eventConsiderationArrPtr := add( OrderFulfilled_consideration_length_baseOffset, shl(OneWordShift, totalAdditionalRecipients) ) // Set the length of the consideration array to the number of // additional recipients, plus one for the primary consideration // item. mstore( eventConsiderationArrPtr, add(totalAdditionalRecipients, 1) ) // Overwrite the consideration array pointer so it points to the // body of the first element eventConsiderationArrPtr := add( eventConsiderationArrPtr, OneWord ) // Set itemType at start of the ReceivedItem memory region. mstore(eventConsiderationArrPtr, receivedItemType) // Copy calldata region (token, identifier, amount & recipient) // from BasicOrderParameters to ReceivedItem memory. calldatacopy( add(eventConsiderationArrPtr, Common_token_offset), BasicOrder_considerationToken_cdPtr, FourWords ) /* * 3. Calculate EIP712 ConsiderationItem hashes for original * additional recipients and add a ReceivedItem for each to the * consideration array in the OrderFulfilled event. The original * additional recipients are all the consideration items signed * by the offerer aside from the primary consideration items of * the order. Uses memory region from 0x80-0x160 as a buffer for * calculating EIP712 ConsiderationItem hashes. */ // Put pointer to consideration hashes array on the stack. // This will be updated as each additional recipient is hashed let considerationHashesPtr := BasicOrder_considerationHashesArray_ptr // Write item type, token, & identifier for additional recipient // to memory region for hashing EIP712 ConsiderationItem; these // values will be reused for each recipient. mstore( BasicOrder_considerationItem_itemType_ptr, additionalRecipientsItemType ) mstore( BasicOrder_considerationItem_token_ptr, additionalRecipientsToken ) mstore(BasicOrder_considerationItem_identifier_ptr, 0) // Declare a stack variable where all additional recipients will // be combined to guard against providing dirty upper bits. let combinedAdditionalRecipients // Read length of the additionalRecipients array from calldata // and iterate. totalAdditionalRecipients := calldataload( BasicOrder_totalOriginalAdditionalRecipients_cdPtr ) let i := 0 for {} lt(i, totalAdditionalRecipients) { i := add(i, 1) } { /* * Calculate EIP712 ConsiderationItem hash for recipient. */ // Retrieve calldata pointer for additional recipient. let additionalRecipientCdPtr := add( BasicOrder_additionalRecipients_data_cdPtr, mul(AdditionalRecipient_size, i) ) // Copy startAmount from calldata to the ConsiderationItem // struct. calldatacopy( BasicOrder_considerationItem_startAmount_ptr, additionalRecipientCdPtr, OneWord ) // Copy endAmount and recipient from calldata to the // ConsiderationItem struct. calldatacopy( BasicOrder_considerationItem_endAmount_ptr, additionalRecipientCdPtr, AdditionalRecipient_size ) // Include the recipient as part of combined recipients. combinedAdditionalRecipients := or( combinedAdditionalRecipients, calldataload(add(additionalRecipientCdPtr, OneWord)) ) // Add 1 word to the pointer as part of each loop to reduce // operations needed to get local offset into the array. considerationHashesPtr := add( considerationHashesPtr, OneWord ) // Calculate EIP712 ConsiderationItem hash and store it in // the array of consideration hashes. mstore( considerationHashesPtr, keccak256( BasicOrder_considerationItem_typeHash_ptr, EIP712_ConsiderationItem_size ) ) /* * Write ReceivedItem to OrderFulfilled data. */ // At this point, eventConsiderationArrPtr points to the // beginning of the ReceivedItem struct of the previous // element in the array. Increase it by the size of the // struct to arrive at the pointer for the current element. eventConsiderationArrPtr := add( eventConsiderationArrPtr, ReceivedItem_size ) // Write itemType to the ReceivedItem struct. mstore( eventConsiderationArrPtr, additionalRecipientsItemType ) // Write token to the next word of the ReceivedItem struct. mstore( add(eventConsiderationArrPtr, OneWord), additionalRecipientsToken ) // Copy endAmount & recipient words to ReceivedItem struct. calldatacopy( add( eventConsiderationArrPtr, ReceivedItem_amount_offset ), additionalRecipientCdPtr, TwoWords ) } /* * 4. Hash packed array of ConsiderationItem EIP712 hashes: * `keccak256(abi.encodePacked(receivedItemHashes))` * Note that it is set at 0x60 — all other memory begins at * 0x80. 0x60 is the "zero slot" and will be restored at the end * of the assembly section and before required by the compiler. */ mstore( receivedItemsHash_ptr, keccak256( BasicOrder_considerationHashesArray_ptr, shl(OneWordShift, add(totalAdditionalRecipients, 1)) ) ) /* * 5. Add a ReceivedItem for each tip to the consideration array * in the OrderFulfilled event. The tips are all the * consideration items that were not signed by the offerer and * were provided by the fulfiller. */ // Overwrite length to length of the additionalRecipients array. totalAdditionalRecipients := calldataload( BasicOrder_additionalRecipients_length_cdPtr ) for {} lt(i, totalAdditionalRecipients) { i := add(i, 1) } { // Retrieve calldata pointer for additional recipient. let additionalRecipientCdPtr := add( BasicOrder_additionalRecipients_data_cdPtr, mul(AdditionalRecipient_size, i) ) // At this point, eventConsiderationArrPtr points to the // beginning of the ReceivedItem struct of the previous // element in the array. Increase it by the size of the // struct to arrive at the pointer for the current element. eventConsiderationArrPtr := add( eventConsiderationArrPtr, ReceivedItem_size ) // Write itemType to the ReceivedItem struct. mstore( eventConsiderationArrPtr, additionalRecipientsItemType ) // Write token to the next word of the ReceivedItem struct. mstore( add(eventConsiderationArrPtr, OneWord), additionalRecipientsToken ) // Copy endAmount & recipient words to ReceivedItem struct. calldatacopy( add( eventConsiderationArrPtr, ReceivedItem_amount_offset ), additionalRecipientCdPtr, TwoWords ) // Include the recipient as part of combined recipients. combinedAdditionalRecipients := or( combinedAdditionalRecipients, calldataload(add(additionalRecipientCdPtr, OneWord)) ) } // Ensure no dirty upper bits on combined additional recipients. if gt(combinedAdditionalRecipients, MaskOverLastTwentyBytes) { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, InvalidBasicOrderParameterEncoding_error_selector) // revert(abi.encodeWithSignature( // "InvalidBasicOrderParameterEncoding()" // )) revert( Error_selector_offset, InvalidBasicOrderParameterEncoding_error_length ) } } } { /** * Next, handle offered items. Memory Layout: * EIP712 data for OfferItem * - 0x80: OfferItem EIP-712 typehash (constant) * - 0xa0: itemType * - 0xc0: token * - 0xe0: identifier (reused for offeredItemsHash) * - 0x100: startAmount * - 0x120: endAmount */ // Place offer item typehash on the stack. bytes32 typeHash = _OFFER_ITEM_TYPEHASH; // Utilize assembly to enable reuse of memory regions when possible. assembly { /* * 1. Calculate OfferItem EIP712 hash */ // Write the OfferItem typeHash to memory. mstore(BasicOrder_offerItem_typeHash_ptr, typeHash) // Write the OfferItem item type to memory. mstore(BasicOrder_offerItem_itemType_ptr, offeredItemType) // Copy calldata region with (offerToken, offerIdentifier, // offerAmount) from OrderParameters to (token, identifier, // startAmount) in OfferItem struct. The offerAmount is written // to startAmount and endAmount as basic orders do not have // dynamic amounts. calldatacopy( BasicOrder_offerItem_token_ptr, BasicOrder_offerToken_cdPtr, ThreeWords ) // Copy offerAmount from calldata to endAmount in OfferItem // struct. calldatacopy( BasicOrder_offerItem_endAmount_ptr, BasicOrder_offerAmount_cdPtr, OneWord ) // Compute EIP712 OfferItem hash, write result to scratch space: // `keccak256(abi.encode(offeredItem))` mstore( 0, keccak256( BasicOrder_offerItem_typeHash_ptr, EIP712_OfferItem_size ) ) /* * 2. Calculate hash of array of EIP712 hashes and write the * result to the corresponding OfferItem struct: * `keccak256(abi.encodePacked(offerItemHashes))` */ mstore(BasicOrder_order_offerHashes_ptr, keccak256(0, OneWord)) /* * 3. Write SpentItem to offer array in OrderFulfilled event. */ let eventConsiderationArrPtr := add( OrderFulfilled_offer_length_baseOffset, shl( OneWordShift, calldataload( BasicOrder_additionalRecipients_length_cdPtr ) ) ) // Set a length of 1 for the offer array. mstore(eventConsiderationArrPtr, 1) // Write itemType to the SpentItem struct. mstore(add(eventConsiderationArrPtr, OneWord), offeredItemType) // Copy calldata region with (offerToken, offerIdentifier, // offerAmount) from OrderParameters to (token, identifier, // amount) in SpentItem struct. calldatacopy( add(eventConsiderationArrPtr, AdditionalRecipient_size), BasicOrder_offerToken_cdPtr, ThreeWords ) } } { /** * Once consideration items and offer items have been handled, * derive the final order hash. Memory Layout: * 0x80-0x1c0: EIP712 data for order * - 0x80: Order EIP-712 typehash (constant) * - 0xa0: orderParameters.offerer * - 0xc0: orderParameters.zone * - 0xe0: keccak256(abi.encodePacked(offerHashes)) * - 0x100: keccak256(abi.encodePacked(considerationHashes)) * - 0x120: orderParameters.basicOrderType (% 4 = orderType) * - 0x140: orderParameters.startTime * - 0x160: orderParameters.endTime * - 0x180: orderParameters.zoneHash * - 0x1a0: orderParameters.salt * - 0x1c0: orderParameters.conduitKey * - 0x1e0: _counters[orderParameters.offerer] (from storage) */ // Read the offerer from calldata and place on the stack. address offerer; assembly { offerer := calldataload(BasicOrder_offerer_cdPtr) } // Read offerer's current counter from storage and place on stack. uint256 counter = _getCounter(offerer); // Load order typehash from runtime code and place on stack. bytes32 typeHash = _ORDER_TYPEHASH; assembly { // Set the OrderItem typeHash in memory. mstore(BasicOrder_order_typeHash_ptr, typeHash) // Copy offerer and zone from OrderParameters in calldata to the // Order struct. calldatacopy( BasicOrder_order_offerer_ptr, BasicOrder_offerer_cdPtr, TwoWords ) // Copy receivedItemsHash from zero slot to the Order struct. mstore( BasicOrder_order_considerationHashes_ptr, mload(receivedItemsHash_ptr) ) // Write the supplied orderType to the Order struct. mstore(BasicOrder_order_orderType_ptr, orderType) // Copy startTime, endTime, zoneHash, salt & conduit from // calldata to the Order struct. calldatacopy( BasicOrder_order_startTime_ptr, BasicOrder_startTime_cdPtr, FiveWords ) // Write offerer's counter, retrieved from storage, to struct. mstore(BasicOrder_order_counter_ptr, counter) // Compute the EIP712 Order hash. orderHash := keccak256( BasicOrder_order_typeHash_ptr, EIP712_Order_size ) } } assembly { /** * After the order hash has been derived, emit OrderFulfilled event: * event OrderFulfilled( * bytes32 orderHash, * address indexed offerer, * address indexed zone, * address fulfiller, * SpentItem[] offer, * > (itemType, token, id, amount) * ReceivedItem[] consideration * > (itemType, token, id, amount, recipient) * ) * topic0 - OrderFulfilled event signature * topic1 - offerer * topic2 - zone * data: * - 0x00: orderHash * - 0x20: fulfiller * - 0x40: offer arr ptr (0x80) * - 0x60: consideration arr ptr (0x120) * - 0x80: offer arr len (1) * - 0xa0: offer.itemType * - 0xc0: offer.token * - 0xe0: offer.identifier * - 0x100: offer.amount * - 0x120: 1 + recipients.length * - 0x140: recipient 0 */ // Derive pointer to start of OrderFulfilled event data. let eventDataPtr := add( OrderFulfilled_baseOffset, shl( OneWordShift, calldataload(BasicOrder_additionalRecipients_length_cdPtr) ) ) // Write the order hash to the head of the event's data region. mstore(eventDataPtr, orderHash) // Write the fulfiller (i.e. the caller) next for receiver argument. mstore(add(eventDataPtr, OrderFulfilled_fulfiller_offset), caller()) // Write the SpentItem and ReceivedItem array offsets (constants). mstore( // SpentItem array offset add(eventDataPtr, OrderFulfilled_offer_head_offset), OrderFulfilled_offer_body_offset ) mstore( // ReceivedItem array offset add(eventDataPtr, OrderFulfilled_consideration_head_offset), OrderFulfilled_consideration_body_offset ) // Derive total data size including SpentItem and ReceivedItem data. // SpentItem portion is already included in the baseSize constant, // as there can only be one element in the array. let dataSize := add( OrderFulfilled_baseSize, mul( calldataload(BasicOrder_additionalRecipients_length_cdPtr), ReceivedItem_size ) ) // Emit OrderFulfilled log with three topics (the event signature // as well as the two indexed arguments, the offerer and the zone). log3( // Supply the pointer for event data in memory. eventDataPtr, // Supply the size of event data in memory. dataSize, // Supply the OrderFulfilled event signature. OrderFulfilled_selector, // Supply the first topic (the offerer). calldataload(BasicOrder_offerer_cdPtr), // Supply the second topic (the zone). calldataload(BasicOrder_zone_cdPtr) ) // Restore the zero slot. mstore(ZeroSlot, 0) // Update the free memory pointer so that event data is persisted. mstore(FreeMemoryPointerSlot, add(eventDataPtr, dataSize)) } // Verify and update the status of the derived order. _validateBasicOrderAndUpdateStatus(orderHash, parameters.signature); // Return the derived order hash. return orderHash; } /** * @dev Internal function to transfer an individual ERC721 or ERC1155 item * from a given originator to a given recipient. The accumulator will * be bypassed, meaning that this function should be utilized in cases * where multiple item transfers can be accumulated into a single * conduit call. Sufficient approvals must be set, either on the * respective conduit or on this contract. Note that this function may * only be safely called as part of basic orders, as it assumes a * specific calldata encoding structure that must first be validated. * * @param itemType The type of item to transfer, either ERC721 or ERC1155. * @param conduitKey A bytes32 value indicating what corresponding conduit, * if any, to source token approvals from. The zero hash * signifies that no conduit should be used, with direct * approvals set on this contract. */ function _transferIndividual721Or1155Item( ItemType itemType, bytes32 conduitKey ) internal { // Retrieve token, from, identifier, and amount from calldata using // fixed calldata offsets based on strict basic parameter encoding. address token; address from; uint256 identifier; uint256 amount; assembly { token := calldataload(BasicOrder_offerToken_cdPtr) from := calldataload(BasicOrder_offerer_cdPtr) identifier := calldataload(BasicOrder_offerIdentifier_cdPtr) amount := calldataload(BasicOrder_offerAmount_cdPtr) } // Determine if the transfer is to be performed via a conduit. if (conduitKey != bytes32(0)) { // Use free memory pointer as calldata offset for the conduit call. uint256 callDataOffset; // Utilize assembly to place each argument in free memory. assembly { // Retrieve the free memory pointer and use it as the offset. callDataOffset := mload(FreeMemoryPointerSlot) // Write ConduitInterface.execute.selector to memory. mstore(callDataOffset, Conduit_execute_signature) // Write the offset to the ConduitTransfer array in memory. mstore( add( callDataOffset, Conduit_execute_ConduitTransfer_offset_ptr ), Conduit_execute_ConduitTransfer_ptr ) // Write the length of the ConduitTransfer array to memory. mstore( add( callDataOffset, Conduit_execute_ConduitTransfer_length_ptr ), Conduit_execute_ConduitTransfer_length ) // Write the item type to memory. mstore( add(callDataOffset, Conduit_execute_transferItemType_ptr), itemType ) // Write the token to memory. mstore( add(callDataOffset, Conduit_execute_transferToken_ptr), token ) // Write the transfer source to memory. mstore( add(callDataOffset, Conduit_execute_transferFrom_ptr), from ) // Write the transfer recipient (the caller) to memory. mstore( add(callDataOffset, Conduit_execute_transferTo_ptr), caller() ) // Write the token identifier to memory. mstore( add(callDataOffset, Conduit_execute_transferIdentifier_ptr), identifier ) // Write the transfer amount to memory. mstore( add(callDataOffset, Conduit_execute_transferAmount_ptr), amount ) } // Perform the call to the conduit. _callConduitUsingOffsets( conduitKey, callDataOffset, OneConduitExecute_size ); } else { // Otherwise, determine whether it is an ERC721 or ERC1155 item. if (itemType == ItemType.ERC721) { // Ensure that exactly one 721 item is being transferred. if (amount != 1) { _revertInvalidERC721TransferAmount(amount); } // Perform transfer to caller via the token contract directly. _performERC721Transfer(token, from, msg.sender, identifier); } else { // Perform transfer to caller via the token contract directly. _performERC1155Transfer( token, from, msg.sender, identifier, amount ); } } } /** * @dev Internal function to transfer Ether (or other native tokens) to a * given recipient as part of basic order fulfillment. Note that * conduits are not utilized for native tokens as the transferred * amount must be provided as msg.value. Also note that this function * may only be safely called as part of basic orders, as it assumes a * specific calldata encoding structure that must first be validated. */ function _transferNativeTokensAndFinalize() internal { // Put native token value supplied by the caller on the stack. uint256 nativeTokensRemaining = msg.value; // Retrieve consideration amount, offerer, and total size of additional // recipients data from calldata using fixed offsets and place on stack. uint256 amount; address payable to; uint256 totalAdditionalRecipientsDataSize; assembly { amount := calldataload(BasicOrder_considerationAmount_cdPtr) to := calldataload(BasicOrder_offerer_cdPtr) totalAdditionalRecipientsDataSize := shl( AdditionalRecipient_size_shift, calldataload(BasicOrder_additionalRecipients_length_cdPtr) ) } uint256 additionalRecipientAmount; address payable recipient; // Skip overflow check as for loop is indexed starting at zero. unchecked { // Iterate over additional recipient data by two-word element. for ( uint256 i = 0; i < totalAdditionalRecipientsDataSize; i += AdditionalRecipient_size ) { assembly { // Retrieve calldata pointer for additional recipient. let additionalRecipientCdPtr := add( BasicOrder_additionalRecipients_data_cdPtr, i ) additionalRecipientAmount := calldataload( additionalRecipientCdPtr ) recipient := calldataload( add(OneWord, additionalRecipientCdPtr) ) } // Ensure that sufficient native tokens are available. if (additionalRecipientAmount > nativeTokensRemaining) { _revertInsufficientNativeTokensSupplied(); } // Reduce native token value available. Skip underflow check as // subtracted value is confirmed above as less than remaining. nativeTokensRemaining -= additionalRecipientAmount; // Transfer native tokens to the additional recipient. _transferNativeTokens(recipient, additionalRecipientAmount); } } // Ensure that sufficient native tokens are still available. if (amount > nativeTokensRemaining) { _revertInsufficientNativeTokensSupplied(); } // Transfer native tokens to the offerer. _transferNativeTokens(to, amount); // If any native tokens remain after transfers, return to the caller. if (nativeTokensRemaining > amount) { // Skip underflow check as nativeTokensRemaining > amount. unchecked { // Transfer remaining native tokens to the caller. _transferNativeTokens( payable(msg.sender), nativeTokensRemaining - amount ); } } } /** * @dev Internal function to transfer ERC20 tokens to a given recipient as * part of basic order fulfillment. Note that this function may only be * safely called as part of basic orders, as it assumes a specific * calldata encoding structure that must first be validated. Also note * that basic order parameters are retrieved using fixed offsets, this * requires that strict basic order encoding has already been verified. * * @param fromOfferer A boolean indicating whether to decrement amount from * the offered amount. * @param accumulator An open-ended array that collects transfers to execute * against a given conduit in a single call. */ function _transferERC20AndFinalize( bool fromOfferer, bytes memory accumulator ) internal { // Declare from and to variables determined by fromOfferer value. address from; address to; // Declare token and amount variables determined by fromOfferer value. address token; uint256 amount; // Declare and check identifier variable within an isolated scope. { // Declare identifier variable determined by fromOfferer value. uint256 identifier; // Set ERC20 token transfer variables based on fromOfferer boolean. if (fromOfferer) { // Use offerer as from value, msg.sender as to value, and offer // token, identifier, & amount values if token is from offerer. assembly { from := calldataload(BasicOrder_offerer_cdPtr) to := caller() token := calldataload(BasicOrder_offerToken_cdPtr) identifier := calldataload(BasicOrder_offerIdentifier_cdPtr) amount := calldataload(BasicOrder_offerAmount_cdPtr) } } else { // Otherwise, use msg.sender as from value, offerer as to value, // and consideration token, identifier, and amount values. assembly { from := caller() to := calldataload(BasicOrder_offerer_cdPtr) token := calldataload(BasicOrder_considerationToken_cdPtr) identifier := calldataload( BasicOrder_considerationIdentifier_cdPtr ) amount := calldataload(BasicOrder_considerationAmount_cdPtr) } } // Ensure that no identifier is supplied. if (identifier != 0) { _revertUnusedItemParameters(); } } // Determine the appropriate conduit to utilize. bytes32 conduitKey; // Utilize assembly to derive conduit (if relevant) based on route. assembly { // Use offerer conduit if fromOfferer, fulfiller conduit otherwise. conduitKey := calldataload( sub( BasicOrder_fulfillerConduit_cdPtr, shl(OneWordShift, fromOfferer) ) ) } // Retrieve total size of additional recipients data and place on stack. uint256 totalAdditionalRecipientsDataSize; assembly { totalAdditionalRecipientsDataSize := shl( AdditionalRecipient_size_shift, calldataload(BasicOrder_additionalRecipients_length_cdPtr) ) } uint256 additionalRecipientAmount; address recipient; // Iterate over each additional recipient. for (uint256 i = 0; i < totalAdditionalRecipientsDataSize; ) { assembly { // Retrieve calldata pointer for additional recipient. let additionalRecipientCdPtr := add( BasicOrder_additionalRecipients_data_cdPtr, i ) additionalRecipientAmount := calldataload( additionalRecipientCdPtr ) recipient := calldataload( add(OneWord, additionalRecipientCdPtr) ) } // Decrement the amount to transfer to fulfiller if indicated. if (fromOfferer) { amount -= additionalRecipientAmount; } // Transfer ERC20 tokens to additional recipient given approval. _transferERC20( token, from, recipient, additionalRecipientAmount, conduitKey, accumulator ); // Skip overflow check as for loop is indexed starting at zero. unchecked { i += AdditionalRecipient_size; } } // Transfer ERC20 token amount (from account must have proper approval). _transferERC20(token, from, to, amount, conduitKey, accumulator); } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.17; import { ItemType, Side } from "./ConsiderationEnums.sol"; import { AdvancedOrder, CriteriaResolver, MemoryPointer, OfferItem, OrderParameters } from "./ConsiderationStructs.sol"; import { _revertCriteriaNotEnabledForItem, _revertInvalidProof, _revertOrderCriteriaResolverOutOfRange, _revertUnresolvedConsiderationCriteria, _revertUnresolvedOfferCriteria } from "./ConsiderationErrors.sol"; import { CriteriaResolutionErrors } from "../interfaces/CriteriaResolutionErrors.sol"; import { OneWord, OneWordShift, OrderParameters_consideration_head_offset, Selector_length, TwoWords } from "./ConsiderationConstants.sol"; import { ConsiderationCriteriaResolverOutOfRange_err_selector, Error_selector_offset, OfferCriteriaResolverOutOfRange_error_selector } from "./ConsiderationErrorConstants.sol"; /** * @title CriteriaResolution * @author 0age * @notice CriteriaResolution contains a collection of pure functions related to * resolving criteria-based items. */ contract CriteriaResolution is CriteriaResolutionErrors { /** * @dev Internal pure function to apply criteria resolvers containing * specific token identifiers and associated proofs to order items. * * @param advancedOrders The orders to apply criteria resolvers to. * @param criteriaResolvers An array where each element contains a * reference to a specific order as well as that * order's offer or consideration, a token * identifier, and a proof that the supplied token * identifier is contained in the order's merkle * root. Note that a root of zero indicates that * any transferable token identifier is valid and * that no proof needs to be supplied. */ function _applyCriteriaResolvers( AdvancedOrder[] memory advancedOrders, CriteriaResolver[] memory criteriaResolvers ) internal pure { // Skip overflow checks as all for loops are indexed starting at zero. unchecked { // Retrieve length of criteria resolvers array and place on stack. uint256 totalCriteriaResolvers = criteriaResolvers.length; // Retrieve length of orders array and place on stack. uint256 totalAdvancedOrders = advancedOrders.length; // Iterate over each criteria resolver. for (uint256 i = 0; i < totalCriteriaResolvers; ++i) { // Retrieve the criteria resolver. CriteriaResolver memory criteriaResolver = ( criteriaResolvers[i] ); // Read the order index from memory and place it on the stack. uint256 orderIndex = criteriaResolver.orderIndex; // Ensure that the order index is in range. if (orderIndex >= totalAdvancedOrders) { _revertOrderCriteriaResolverOutOfRange( criteriaResolver.side ); } // Retrieve the referenced advanced order. AdvancedOrder memory advancedOrder = advancedOrders[orderIndex]; // Skip criteria resolution for order if not fulfilled. if (advancedOrder.numerator == 0) { continue; } // Retrieve the parameters for the order. OrderParameters memory orderParameters = ( advancedOrder.parameters ); { // Get a pointer to the list of items to give to // _updateCriteriaItem. If the resolver refers to a // consideration item, this array pointer will be replaced // with the consideration array. OfferItem[] memory items = orderParameters.offer; // Read component index from memory and place it on stack. uint256 componentIndex = criteriaResolver.index; // Get error selector for `OfferCriteriaResolverOutOfRange`. uint256 errorSelector = ( OfferCriteriaResolverOutOfRange_error_selector ); // If the resolver refers to a consideration item... if (criteriaResolver.side != Side.OFFER) { // Get the pointer to `orderParameters.consideration` // Using the array directly has a significant impact on // the optimized compiler output. MemoryPointer considerationPtr = orderParameters .toMemoryPointer() .pptr(OrderParameters_consideration_head_offset); // Replace the items pointer with a pointer to the // consideration array. assembly { items := considerationPtr } // Replace the error selector with the selector for // `ConsiderationCriteriaResolverOutOfRange`. errorSelector = ( ConsiderationCriteriaResolverOutOfRange_err_selector ); } // Ensure that the component index is in range. if (componentIndex >= items.length) { assembly { // Revert with either // `OfferCriteriaResolverOutOfRange()` or // `ConsiderationCriteriaResolverOutOfRange()`, // depending on whether the resolver refers to a // consideration item. mstore(0, errorSelector) // revert(abi.encodeWithSignature( // "OfferCriteriaResolverOutOfRange()" // )) // or // revert(abi.encodeWithSignature( // "ConsiderationCriteriaResolverOutOfRange()" // )) revert(Error_selector_offset, Selector_length) } } // Apply the criteria resolver to the item in question. _updateCriteriaItem( items, componentIndex, criteriaResolver ); } } // Iterate over each advanced order. for (uint256 i = 0; i < totalAdvancedOrders; ++i) { // Retrieve the advanced order. AdvancedOrder memory advancedOrder = advancedOrders[i]; // Skip criteria resolution for order if not fulfilled. if (advancedOrder.numerator == 0) { continue; } // Retrieve the parameters for the order. OrderParameters memory orderParameters = ( advancedOrder.parameters ); // Read consideration length from memory and place on stack. uint256 totalItems = orderParameters.consideration.length; // Iterate over each consideration item on the order. for (uint256 j = 0; j < totalItems; ++j) { // Ensure item type no longer indicates criteria usage. if ( _isItemWithCriteria( orderParameters.consideration[j].itemType ) ) { _revertUnresolvedConsiderationCriteria(i, j); } } // Read offer length from memory and place on stack. totalItems = orderParameters.offer.length; // Iterate over each offer item on the order. for (uint256 j = 0; j < totalItems; ++j) { // Ensure item type no longer indicates criteria usage. if ( _isItemWithCriteria(orderParameters.offer[j].itemType) ) { _revertUnresolvedOfferCriteria(i, j); } } } } } /** * @dev Internal pure function to update a criteria item. * * @param offer The offer containing the item to update. * @param componentIndex The index of the item to update. * @param criteriaResolver The criteria resolver to use to update the item. */ function _updateCriteriaItem( OfferItem[] memory offer, uint256 componentIndex, CriteriaResolver memory criteriaResolver ) internal pure { // Retrieve relevant item using the component index. OfferItem memory offerItem = offer[componentIndex]; // Read item type and criteria from memory & place on stack. ItemType itemType = offerItem.itemType; // Ensure the specified item type indicates criteria usage. if (!_isItemWithCriteria(itemType)) { _revertCriteriaNotEnabledForItem(); } uint256 identifierOrCriteria = offerItem.identifierOrCriteria; // If criteria is not 0 (i.e. a collection-wide criteria-based item)... if (identifierOrCriteria != uint256(0)) { // Verify identifier inclusion in criteria root using proof. _verifyProof( criteriaResolver.identifier, identifierOrCriteria, criteriaResolver.criteriaProof ); } else if (criteriaResolver.criteriaProof.length != 0) { // Revert if non-empty proof is supplied for a collection-wide item. _revertInvalidProof(); } // Update item type to remove criteria usage. // Use assembly to operate on ItemType enum as a number. ItemType newItemType; assembly { // Item type 4 becomes 2 and item type 5 becomes 3. newItemType := sub(3, eq(itemType, 4)) } offerItem.itemType = newItemType; // Update identifier w/ supplied identifier. offerItem.identifierOrCriteria = criteriaResolver.identifier; } /** * @dev Internal pure function to check whether a given item type represents * a criteria-based ERC721 or ERC1155 item (e.g. an item that can be * resolved to one of a number of different identifiers at the time of * order fulfillment). * * @param itemType The item type in question. * * @return withCriteria A boolean indicating that the item type in question * represents a criteria-based item. */ function _isItemWithCriteria( ItemType itemType ) internal pure returns (bool withCriteria) { // ERC721WithCriteria is ItemType 4. ERC1155WithCriteria is ItemType 5. assembly { withCriteria := gt(itemType, 3) } } /** * @dev Internal pure function to ensure that a given element is contained * in a merkle root via a supplied proof. * * @param leaf The element for which to prove inclusion. * @param root The merkle root that inclusion will be proved against. * @param proof The merkle proof. */ function _verifyProof( uint256 leaf, uint256 root, bytes32[] memory proof ) internal pure { // Declare a variable that will be used to determine proof validity. bool isValid; // Utilize assembly to efficiently verify the proof against the root. assembly { // Store the leaf at the beginning of scratch space. mstore(0, leaf) // Derive the hash of the leaf to use as the initial proof element. let computedHash := keccak256(0, OneWord) // Get memory start location of the first element in proof array. let data := add(proof, OneWord) // Iterate over each proof element to compute the root hash. for { // Left shift by 5 is equivalent to multiplying by 0x20. let end := add(data, shl(OneWordShift, mload(proof))) } lt(data, end) { // Increment by one word at a time. data := add(data, OneWord) } { // Get the proof element. let loadedData := mload(data) // Sort proof elements and place them in scratch space. // Slot of `computedHash` in scratch space. // If the condition is true: 0x20, otherwise: 0x00. let scratch := shl(OneWordShift, gt(computedHash, loadedData)) // Store elements to hash contiguously in scratch space. Scratch // space is 64 bytes (0x00 - 0x3f) & both elements are 32 bytes. mstore(scratch, computedHash) mstore(xor(scratch, OneWord), loadedData) // Derive the updated hash. computedHash := keccak256(0, TwoWords) } // Compare the final hash to the supplied root. isValid := eq(computedHash, root) } // Revert if computed hash does not equal supplied root. if (!isValid) { _revertInvalidProof(); } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.13; /** * @title AmountDerivationErrors * @author 0age * @notice AmountDerivationErrors contains errors related to amount derivation. */ interface AmountDerivationErrors { /** * @dev Revert with an error when attempting to apply a fraction as part of * a partial fill that does not divide the target amount cleanly. */ error InexactFraction(); }
// SPDX-License-Identifier: MIT pragma solidity 0.8.17; import { OrderType } from "./ConsiderationEnums.sol"; import { AdvancedOrder, ConsiderationItem, OfferItem, Order, OrderComponents, OrderParameters, OrderStatus } from "./ConsiderationStructs.sol"; import { _revertBadFraction, _revertCannotCancelOrder, _revertConsiderationLengthNotEqualToTotalOriginal, _revertInvalidContractOrder, _revertPartialFillsNotEnabledForOrder } from "./ConsiderationErrors.sol"; import { Executor } from "./Executor.sol"; import { ZoneInteraction } from "./ZoneInteraction.sol"; import { MemoryPointer } from "../helpers/PointerLibraries.sol"; import { AdvancedOrder_denominator_offset, AdvancedOrder_numerator_offset, BasicOrder_offerer_cdPtr, Common_amount_offset, Common_endAmount_offset, Common_identifier_offset, Common_token_offset, ConsiderItem_recipient_offset, ContractOrder_orderHash_offerer_shift, MaxUint120, OrderStatus_filledDenominator_offset, OrderStatus_filledNumerator_offset, OrderStatus_ValidatedAndNotCancelled } from "./ConsiderationConstants.sol"; import { Error_selector_offset, Panic_arithmetic, Panic_error_code_ptr, Panic_error_length, Panic_error_selector } from "./ConsiderationErrorConstants.sol"; /** * @title OrderValidator * @author 0age * @notice OrderValidator contains functionality related to validating orders * and updating their status. */ contract OrderValidator is Executor, ZoneInteraction { // Track status of each order (validated, cancelled, and fraction filled). mapping(bytes32 => OrderStatus) private _orderStatus; // Track nonces for contract offerers. mapping(address => uint256) internal _contractNonces; /** * @dev Derive and set hashes, reference chainId, and associated domain * separator during deployment. * * @param conduitController A contract that deploys conduits, or proxies * that may optionally be used to transfer approved * ERC20/721/1155 tokens. */ constructor(address conduitController) Executor(conduitController) {} /** * @dev Internal function to verify and update the status of a basic order. * Note that this function may only be safely called as part of basic * orders, as it assumes a specific calldata encoding structure that * must first be validated. * * @param orderHash The hash of the order. * @param signature A signature from the offerer indicating that the order * has been approved. */ function _validateBasicOrderAndUpdateStatus( bytes32 orderHash, bytes calldata signature ) internal { // Retrieve offerer directly using fixed calldata offset based on strict // basic parameter encoding. address offerer; assembly { offerer := calldataload(BasicOrder_offerer_cdPtr) } // Retrieve the order status for the given order hash. OrderStatus storage orderStatus = _orderStatus[orderHash]; // Ensure order is fillable and is not cancelled. _verifyOrderStatus( orderHash, orderStatus, true, // Only allow unused orders when fulfilling basic orders. true // Signifies to revert if the order is invalid. ); // If the order is not already validated, verify the supplied signature. if (!orderStatus.isValidated) { _verifySignature(offerer, orderHash, signature); } // Update order status as fully filled, packing struct values. orderStatus.isValidated = true; orderStatus.isCancelled = false; orderStatus.numerator = 1; orderStatus.denominator = 1; } /** * @dev Internal function to validate an order, determine what portion to * fill, and update its status. The desired fill amount is supplied as * a fraction, as is the returned amount to fill. * * @param advancedOrder The order to fulfill as well as the fraction to * fill. Note that all offer and consideration * amounts must divide with no remainder in order * for a partial fill to be valid. * @param revertOnInvalid A boolean indicating whether to revert if the * order is invalid due to the time or status. * * @return orderHash The order hash. * @return numerator A value indicating the portion of the order that * will be filled. * @return denominator A value indicating the total size of the order. */ function _validateOrderAndUpdateStatus( AdvancedOrder memory advancedOrder, bool revertOnInvalid ) internal returns (bytes32 orderHash, uint256 numerator, uint256 denominator) { // Retrieve the parameters for the order. OrderParameters memory orderParameters = advancedOrder.parameters; // Ensure current timestamp falls between order start time and end time. if ( !_verifyTime( orderParameters.startTime, orderParameters.endTime, revertOnInvalid ) ) { // Assuming an invalid time and no revert, return zeroed out values. return (bytes32(0), 0, 0); } // Read numerator and denominator from memory and place on the stack. // Note that overflowed values are masked. assembly { numerator := and( mload(add(advancedOrder, AdvancedOrder_numerator_offset)), MaxUint120 ) denominator := and( mload(add(advancedOrder, AdvancedOrder_denominator_offset)), MaxUint120 ) } // Declare variable for tracking the validity of the supplied fraction. bool invalidFraction; // If the order is a contract order, return the generated order. if (orderParameters.orderType == OrderType.CONTRACT) { // Ensure that the numerator and denominator are both equal to 1. assembly { // (1 ^ nd =/= 0) => (nd =/= 1) => (n =/= 1) || (d =/= 1) // It's important that the values are 120-bit masked before // multiplication is applied. Otherwise, the last implication // above is not correct (mod 2^256). invalidFraction := xor(mul(numerator, denominator), 1) } // Revert if the supplied numerator and denominator are not valid. if (invalidFraction) { _revertBadFraction(); } // Return the generated order based on the order params and the // provided extra data. If revertOnInvalid is true, the function // will revert if the input is invalid. return _getGeneratedOrder( orderParameters, advancedOrder.extraData, revertOnInvalid ); } // Ensure numerator does not exceed denominator and is not zero. assembly { invalidFraction := or(gt(numerator, denominator), iszero(numerator)) } // Revert if the supplied numerator and denominator are not valid. if (invalidFraction) { _revertBadFraction(); } // If attempting partial fill (n < d) check order type & ensure support. if ( _doesNotSupportPartialFills( orderParameters.orderType, numerator, denominator ) ) { // Revert if partial fill was attempted on an unsupported order. _revertPartialFillsNotEnabledForOrder(); } // Retrieve current counter & use it w/ parameters to derive order hash. orderHash = _assertConsiderationLengthAndGetOrderHash(orderParameters); // Retrieve the order status using the derived order hash. OrderStatus storage orderStatus = _orderStatus[orderHash]; // Ensure order is fillable and is not cancelled. if ( !_verifyOrderStatus( orderHash, orderStatus, false, // Allow partially used orders to be filled. revertOnInvalid ) ) { // Assuming an invalid order status and no revert, return zero fill. return (orderHash, 0, 0); } // If the order is not already validated, verify the supplied signature. if (!orderStatus.isValidated) { _verifySignature( orderParameters.offerer, orderHash, advancedOrder.signature ); } // Utilize assembly to determine the fraction to fill and update status. assembly { let orderStatusSlot := orderStatus.slot // Read filled amount as numerator and denominator and put on stack. let filledNumerator := sload(orderStatusSlot) let filledDenominator := shr( OrderStatus_filledDenominator_offset, filledNumerator ) // "Loop" until the appropriate fill fraction has been determined. for { } 1 { } { // If no portion of the order has been filled yet... if iszero(filledDenominator) { // fill the full supplied fraction. filledNumerator := numerator // Exit the "loop" early. break } // Shift and mask to calculate the current filled numerator. filledNumerator := and( shr(OrderStatus_filledNumerator_offset, filledNumerator), MaxUint120 ) // If denominator of 1 supplied, fill entire remaining amount. if eq(denominator, 1) { // Set the amount to fill to the remaining amount. numerator := sub(filledDenominator, filledNumerator) // Set the fill size to the current size. denominator := filledDenominator // Set the filled amount to the current size. filledNumerator := filledDenominator // Exit the "loop" early. break } // If supplied denominator is equal to the current one: if eq(denominator, filledDenominator) { // Increment the filled numerator by the new numerator. filledNumerator := add(numerator, filledNumerator) // Once adjusted, if current + supplied numerator exceeds // the denominator: let carry := mul( sub(filledNumerator, denominator), gt(filledNumerator, denominator) ) // reduce the amount to fill by the excess. numerator := sub(numerator, carry) // Reduce the filled amount by the excess as well. filledNumerator := sub(filledNumerator, carry) // Exit the "loop" early. break } // Otherwise, if supplied denominator differs from current one: // Scale the filled amount up by the supplied size. filledNumerator := mul(filledNumerator, denominator) // Scale the supplied amount and size up by the current size. numerator := mul(numerator, filledDenominator) denominator := mul(denominator, filledDenominator) // Increment the filled numerator by the new numerator. filledNumerator := add(numerator, filledNumerator) // Once adjusted, if current + supplied numerator exceeds // denominator: let carry := mul( sub(filledNumerator, denominator), gt(filledNumerator, denominator) ) // reduce the amount to fill by the excess. numerator := sub(numerator, carry) // Reduce the filled amount by the excess as well. filledNumerator := sub(filledNumerator, carry) // Check filledNumerator and denominator for uint120 overflow. if or( gt(filledNumerator, MaxUint120), gt(denominator, MaxUint120) ) { // Derive greatest common divisor using euclidean algorithm. function gcd(_a, _b) -> out { // "Loop" until only one non-zero value remains. for { } _b { } { // Assign the second value to a temporary variable. let _c := _b // Derive the modulus of the two values. _b := mod(_a, _c) // Set the first value to the temporary value. _a := _c } // Return the remaining non-zero value. out := _a } // Determine the amount to scale down the fill fractions. let scaleDown := gcd( numerator, gcd(filledNumerator, denominator) ) // Ensure that the divisor is at least one. let safeScaleDown := add(scaleDown, iszero(scaleDown)) // Scale all fractional values down by gcd. numerator := div(numerator, safeScaleDown) filledNumerator := div(filledNumerator, safeScaleDown) denominator := div(denominator, safeScaleDown) // Perform the overflow check a second time. if or( gt(filledNumerator, MaxUint120), gt(denominator, MaxUint120) ) { // Store the Panic error signature. mstore(0, Panic_error_selector) // Store the arithmetic (0x11) panic code. mstore(Panic_error_code_ptr, Panic_arithmetic) // revert(abi.encodeWithSignature( // "Panic(uint256)", 0x11 // )) revert(Error_selector_offset, Panic_error_length) } } // Exit the "loop" now that all evaluation is complete. break } // Update order status and fill amount, packing struct values. // [denominator: 15 bytes] [numerator: 15 bytes] // [isCancelled: 1 byte] [isValidated: 1 byte] sstore( orderStatusSlot, or( OrderStatus_ValidatedAndNotCancelled, or( shl( OrderStatus_filledNumerator_offset, filledNumerator ), shl(OrderStatus_filledDenominator_offset, denominator) ) ) ) } } /** * @dev Internal pure function to check the compatibility of two offer * or consideration items for contract orders. Note that the itemType * and identifier are reset in cases where criteria = 0 (collection- * wide offers), which means that a contract offerer has full latitude * to choose any identifier it wants mid-flight, in contrast to the * normal behavior, where the fulfiller can pick which identifier to * receive by providing a CriteriaResolver. * * @param originalItem The original offer or consideration item. * @param newItem The new offer or consideration item. * * @return isInvalid Error buffer indicating if items are incompatible. */ function _compareItems( MemoryPointer originalItem, MemoryPointer newItem ) internal pure returns (uint256 isInvalid) { assembly { let itemType := mload(originalItem) let identifier := mload(add(originalItem, Common_identifier_offset)) // Set returned identifier for criteria-based items w/ criteria = 0. if and(gt(itemType, 3), iszero(identifier)) { // replace item type itemType := sub(3, eq(itemType, 4)) identifier := mload(add(newItem, Common_identifier_offset)) } let originalAmount := mload(add(originalItem, Common_amount_offset)) let newAmount := mload(add(newItem, Common_amount_offset)) isInvalid := iszero( and( // originalItem.token == newItem.token && // originalItem.itemType == newItem.itemType and( eq( mload(add(originalItem, Common_token_offset)), mload(add(newItem, Common_token_offset)) ), eq(itemType, mload(newItem)) ), // originalItem.identifier == newItem.identifier && // originalItem.startAmount == originalItem.endAmount and( eq( identifier, mload(add(newItem, Common_identifier_offset)) ), eq( originalAmount, mload(add(originalItem, Common_endAmount_offset)) ) ) ) ) } } /** * @dev Internal pure function to check the compatibility of two recipients * on consideration items for contract orders. This check is skipped if * no recipient is originally supplied. * * @param originalRecipient The original consideration item recipient. * @param newRecipient The new consideration item recipient. * * @return isInvalid Error buffer indicating if recipients are incompatible. */ function _checkRecipients( address originalRecipient, address newRecipient ) internal pure returns (uint256 isInvalid) { assembly { isInvalid := iszero( or( iszero(originalRecipient), eq(newRecipient, originalRecipient) ) ) } } /** * @dev Internal function to generate a contract order. When a * collection-wide criteria-based item (criteria = 0) is provided as an * input to a contract order, the contract offerer has full latitude to * choose any identifier it wants mid-flight, which differs from the * usual behavior. For regular criteria-based orders with * identifierOrCriteria = 0, the fulfiller can pick which identifier to * receive by providing a CriteriaResolver. For contract offers with * identifierOrCriteria = 0, Seaport does not expect a corresponding * CriteriaResolver, and will revert if one is provided. * * @param orderParameters The parameters for the order. * @param context The context for generating the order. * @param revertOnInvalid Whether to revert on invalid input. * * @return orderHash The order hash. * @return numerator The numerator. * @return denominator The denominator. */ function _getGeneratedOrder( OrderParameters memory orderParameters, bytes memory context, bool revertOnInvalid ) internal returns (bytes32 orderHash, uint256 numerator, uint256 denominator) { // Ensure that consideration array length is equal to the total original // consideration items value. if ( orderParameters.consideration.length != orderParameters.totalOriginalConsiderationItems ) { _revertConsiderationLengthNotEqualToTotalOriginal(); } { address offerer = orderParameters.offerer; bool success; (MemoryPointer cdPtr, uint256 size) = _encodeGenerateOrder( orderParameters, context ); assembly { success := call(gas(), offerer, 0, cdPtr, size, 0, 0) } { // Note: overflow impossible; nonce can't increment that high. uint256 contractNonce; unchecked { // Note: nonce will be incremented even for skipped orders, // and even if generateOrder's return data does not satisfy // all the constraints. This is the case when errorBuffer // != 0 and revertOnInvalid == false. contractNonce = _contractNonces[offerer]++; } assembly { // Shift offerer address up 96 bytes and combine with nonce. orderHash := xor( contractNonce, shl(ContractOrder_orderHash_offerer_shift, offerer) ) } } // Revert or skip if the call to generate the contract order failed. if (!success) { return _revertOrReturnEmpty(revertOnInvalid, orderHash); } } // From this point onward, do not allow for skipping orders as the // contract offerer may have modified state in expectation of any named // consideration items being sent to their designated recipients. // Decode the returned contract order and/or update the error buffer. ( uint256 errorBuffer, OfferItem[] memory offer, ConsiderationItem[] memory consideration ) = _convertGetGeneratedOrderResult(_decodeGenerateOrderReturndata)(); // Revert if the returndata could not be decoded correctly. if (errorBuffer != 0) { _revertInvalidContractOrder(orderHash); } { // Designate lengths. uint256 originalOfferLength = orderParameters.offer.length; uint256 newOfferLength = offer.length; // Explicitly specified offer items cannot be removed. if (originalOfferLength > newOfferLength) { _revertInvalidContractOrder(orderHash); } // Iterate over each specified offer (e.g. minimumReceived) item. for (uint256 i = 0; i < originalOfferLength; ) { // Retrieve the pointer to the originally supplied item. MemoryPointer mPtrOriginal = orderParameters .offer[i] .toMemoryPointer(); // Retrieve the pointer to the newly returned item. MemoryPointer mPtrNew = offer[i].toMemoryPointer(); // Compare the items and update the error buffer accordingly. errorBuffer |= _cast( mPtrOriginal .offset(Common_amount_offset) .readUint256() > mPtrNew.offset(Common_amount_offset).readUint256() ) | _compareItems(mPtrOriginal, mPtrNew); // Increment the array (cannot overflow as index starts at 0). unchecked { ++i; } } // Assign the returned offer item in place of the original item. orderParameters.offer = offer; } { // Designate lengths & memory locations. ConsiderationItem[] memory originalConsiderationArray = ( orderParameters.consideration ); uint256 newConsiderationLength = consideration.length; // New consideration items cannot be created. if (newConsiderationLength > originalConsiderationArray.length) { _revertInvalidContractOrder(orderHash); } // Iterate over returned consideration & do not exceed maximumSpent. for (uint256 i = 0; i < newConsiderationLength; ) { // Retrieve the pointer to the originally supplied item. MemoryPointer mPtrOriginal = originalConsiderationArray[i] .toMemoryPointer(); // Retrieve the pointer to the newly returned item. MemoryPointer mPtrNew = consideration[i].toMemoryPointer(); // Compare the items and update the error buffer accordingly // and ensure that the recipients are equal when provided. errorBuffer |= _cast( mPtrNew.offset(Common_amount_offset).readUint256() > mPtrOriginal .offset(Common_amount_offset) .readUint256() ) | _compareItems(mPtrOriginal, mPtrNew) | _checkRecipients( mPtrOriginal .offset(ConsiderItem_recipient_offset) .readAddress(), mPtrNew .offset(ConsiderItem_recipient_offset) .readAddress() ); // Increment the array (cannot overflow as index starts at 0). unchecked { ++i; } } // Assign returned consideration item in place of the original item. orderParameters.consideration = consideration; } // Revert if any item comparison failed. if (errorBuffer != 0) { _revertInvalidContractOrder(orderHash); } // Return order hash and full fill amount (numerator & denominator = 1). return (orderHash, 1, 1); } /** * @dev Internal function to cancel an arbitrary number of orders. Note that * only the offerer or the zone of a given order may cancel it. Callers * should ensure that the intended order was cancelled by calling * `getOrderStatus` and confirming that `isCancelled` returns `true`. * Also note that contract orders are not cancellable. * * @param orders The orders to cancel. * * @return cancelled A boolean indicating whether the supplied orders were * successfully cancelled. */ function _cancel( OrderComponents[] calldata orders ) internal returns (bool cancelled) { // Ensure that the reentrancy guard is not currently set. _assertNonReentrant(); // Declare variables outside of the loop. OrderStatus storage orderStatus; // Declare a variable for tracking invariants in the loop. bool anyInvalidCallerOrContractOrder; // Skip overflow check as for loop is indexed starting at zero. unchecked { // Read length of the orders array from memory and place on stack. uint256 totalOrders = orders.length; // Iterate over each order. for (uint256 i = 0; i < totalOrders; ) { // Retrieve the order. OrderComponents calldata order = orders[i]; address offerer = order.offerer; address zone = order.zone; OrderType orderType = order.orderType; assembly { // If caller is neither the offerer nor zone, or a contract // order is present, flag anyInvalidCallerOrContractOrder. anyInvalidCallerOrContractOrder := or( anyInvalidCallerOrContractOrder, // orderType == CONTRACT || // !(caller == offerer || caller == zone) or( eq(orderType, 4), iszero( or(eq(caller(), offerer), eq(caller(), zone)) ) ) ) } bytes32 orderHash = _deriveOrderHash( _toOrderParametersReturnType( _decodeOrderComponentsAsOrderParameters )(order.toCalldataPointer()), order.counter ); // Retrieve the order status using the derived order hash. orderStatus = _orderStatus[orderHash]; // Update the order status as not valid and cancelled. orderStatus.isValidated = false; orderStatus.isCancelled = true; // Emit an event signifying that the order has been cancelled. emit OrderCancelled(orderHash, offerer, zone); // Increment counter inside body of loop for gas efficiency. ++i; } } if (anyInvalidCallerOrContractOrder) { _revertCannotCancelOrder(); } // Return a boolean indicating that orders were successfully cancelled. cancelled = true; } /** * @dev Internal function to validate an arbitrary number of orders, thereby * registering their signatures as valid and allowing the fulfiller to * skip signature verification on fulfillment. Note that validated * orders may still be unfulfillable due to invalid item amounts or * other factors; callers should determine whether validated orders are * fulfillable by simulating the fulfillment call prior to execution. * Also note that anyone can validate a signed order, but only the * offerer can validate an order without supplying a signature. * * @param orders The orders to validate. * * @return validated A boolean indicating whether the supplied orders were * successfully validated. */ function _validate( Order[] memory orders ) internal returns (bool validated) { // Ensure that the reentrancy guard is not currently set. _assertNonReentrant(); // Declare variables outside of the loop. OrderStatus storage orderStatus; bytes32 orderHash; address offerer; // Skip overflow check as for loop is indexed starting at zero. unchecked { // Read length of the orders array from memory and place on stack. uint256 totalOrders = orders.length; // Iterate over each order. for (uint256 i = 0; i < totalOrders; ++i) { // Retrieve the order. Order memory order = orders[i]; // Retrieve the order parameters. OrderParameters memory orderParameters = order.parameters; // Skip contract orders. if (orderParameters.orderType == OrderType.CONTRACT) { continue; } // Move offerer from memory to the stack. offerer = orderParameters.offerer; // Get current counter & use it w/ params to derive order hash. orderHash = _assertConsiderationLengthAndGetOrderHash( orderParameters ); // Retrieve the order status using the derived order hash. orderStatus = _orderStatus[orderHash]; // Ensure order is fillable and retrieve the filled amount. _verifyOrderStatus( orderHash, orderStatus, false, // Signifies that partially filled orders are valid. true // Signifies to revert if the order is invalid. ); // If the order has not already been validated... if (!orderStatus.isValidated) { // Ensure that consideration array length is equal to the // total original consideration items value. if ( orderParameters.consideration.length != orderParameters.totalOriginalConsiderationItems ) { _revertConsiderationLengthNotEqualToTotalOriginal(); } // Verify the supplied signature. _verifySignature(offerer, orderHash, order.signature); // Update order status to mark the order as valid. orderStatus.isValidated = true; // Emit an event signifying the order has been validated. emit OrderValidated(orderHash, orderParameters); } } } // Return a boolean indicating that orders were successfully validated. validated = true; } /** * @dev Internal view function to retrieve the status of a given order by * hash, including whether the order has been cancelled or validated * and the fraction of the order that has been filled. * * @param orderHash The order hash in question. * * @return isValidated A boolean indicating whether the order in question * has been validated (i.e. previously approved or * partially filled). * @return isCancelled A boolean indicating whether the order in question * has been cancelled. * @return totalFilled The total portion of the order that has been filled * (i.e. the "numerator"). * @return totalSize The total size of the order that is either filled or * unfilled (i.e. the "denominator"). */ function _getOrderStatus( bytes32 orderHash ) internal view returns ( bool isValidated, bool isCancelled, uint256 totalFilled, uint256 totalSize ) { // Retrieve the order status using the order hash. OrderStatus storage orderStatus = _orderStatus[orderHash]; // Return the fields on the order status. return ( orderStatus.isValidated, orderStatus.isCancelled, orderStatus.numerator, orderStatus.denominator ); } /** * @dev Internal pure function to either revert or return an empty tuple * depending on the value of `revertOnInvalid`. * * @param revertOnInvalid Whether to revert on invalid input. * @param contractOrderHash The contract order hash. * * @return orderHash The order hash. * @return numerator The numerator. * @return denominator The denominator. */ function _revertOrReturnEmpty( bool revertOnInvalid, bytes32 contractOrderHash ) internal pure returns (bytes32 orderHash, uint256 numerator, uint256 denominator) { if (revertOnInvalid) { _revertInvalidContractOrder(contractOrderHash); } return (contractOrderHash, 0, 0); } /** * @dev Internal pure function to check whether a given order type indicates * that partial fills are not supported (e.g. only "full fills" are * allowed for the order in question). * * @param orderType The order type in question. * @param numerator The numerator in question. * @param denominator The denominator in question. * * @return isFullOrder A boolean indicating whether the order type only * supports full fills. */ function _doesNotSupportPartialFills( OrderType orderType, uint256 numerator, uint256 denominator ) internal pure returns (bool isFullOrder) { // The "full" order types are even, while "partial" order types are odd. // Bitwise and by 1 is equivalent to modulo by 2, but 2 gas cheaper. The // check is only necessary if numerator is less than denominator. assembly { // Equivalent to `uint256(orderType) & 1 == 0`. isFullOrder := and( lt(numerator, denominator), iszero(and(orderType, 1)) ) } } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.17; import { OrderType } from "./ConsiderationEnums.sol"; import { AdvancedOrder, BasicOrderParameters, OrderParameters } from "./ConsiderationStructs.sol"; import { ZoneInteractionErrors } from "../interfaces/ZoneInteractionErrors.sol"; import { LowLevelHelpers } from "./LowLevelHelpers.sol"; import { ConsiderationEncoder } from "./ConsiderationEncoder.sol"; import { MemoryPointer } from "../helpers/PointerLibraries.sol"; import { ContractOrder_orderHash_offerer_shift, MaskOverFirstFourBytes, OneWord, OrderParameters_zone_offset } from "./ConsiderationConstants.sol"; import { Error_selector_offset, InvalidContractOrder_error_selector, InvalidRestrictedOrder_error_length, InvalidRestrictedOrder_error_orderHash_ptr, InvalidRestrictedOrder_error_selector } from "./ConsiderationErrorConstants.sol"; /** * @title ZoneInteraction * @author 0age * @notice ZoneInteraction contains logic related to interacting with zones. */ contract ZoneInteraction is ConsiderationEncoder, ZoneInteractionErrors, LowLevelHelpers { /** * @dev Internal function to determine if an order has a restricted order * type and, if so, to ensure that either the zone is the caller or * that a call to `validateOrder` on the zone returns a magic value * indicating that the order is currently valid. Note that contract * orders are not accessible via the basic fulfillment method. * * @param orderHash The hash of the order. * @param orderType The order type. * @param parameters The parameters of the basic order. */ function _assertRestrictedBasicOrderValidity( bytes32 orderHash, OrderType orderType, BasicOrderParameters calldata parameters ) internal { // Order type 2-3 require zone be caller or zone to approve. // Note that in cases where fulfiller == zone, the restricted order // validation will be skipped. if (_isRestrictedAndCallerNotZone(orderType, parameters.zone)) { // Encode the `validateOrder` call in memory. (MemoryPointer callData, uint256 size) = _encodeValidateBasicOrder( orderHash, parameters ); // Perform `validateOrder` call and ensure magic value was returned. _callAndCheckStatus( parameters.zone, orderHash, callData, size, InvalidRestrictedOrder_error_selector ); } } /** * @dev Internal function to determine the post-execution validity of * restricted and contract orders. Restricted orders where the caller * is not the zone must successfully call `validateOrder` with the * correct magic value returned. Contract orders must successfully call * `ratifyOrder` with the correct magic value returned. * * @param advancedOrder The advanced order in question. * @param orderHashes The order hashes of each order included as part of * the current fulfillment. * @param orderHash The hash of the order. */ function _assertRestrictedAdvancedOrderValidity( AdvancedOrder memory advancedOrder, bytes32[] memory orderHashes, bytes32 orderHash ) internal { // Declare variables that will be assigned based on the order type. address target; uint256 errorSelector; MemoryPointer callData; uint256 size; // Retrieve the parameters of the order in question. OrderParameters memory parameters = advancedOrder.parameters; // OrderType 2-3 require zone to be caller or approve via validateOrder. if ( _isRestrictedAndCallerNotZone(parameters.orderType, parameters.zone) ) { // Encode the `validateOrder` call in memory. (callData, size) = _encodeValidateOrder( orderHash, parameters, advancedOrder.extraData, orderHashes ); // Set the target to the zone. target = ( parameters .toMemoryPointer() .offset(OrderParameters_zone_offset) .readAddress() ); // Set the restricted-order-specific error selector. errorSelector = InvalidRestrictedOrder_error_selector; } else if (parameters.orderType == OrderType.CONTRACT) { // Set the target to the offerer (note the offerer has no offset). target = parameters.toMemoryPointer().readAddress(); // Shift the target 96 bits to the left. uint256 shiftedOfferer; assembly { shiftedOfferer := shl( ContractOrder_orderHash_offerer_shift, target ) } // Encode the `ratifyOrder` call in memory. (callData, size) = _encodeRatifyOrder( orderHash, parameters, advancedOrder.extraData, orderHashes, shiftedOfferer ); // Set the contract-order-specific error selector. errorSelector = InvalidContractOrder_error_selector; } else { return; } // Perform call and ensure a corresponding magic value was returned. _callAndCheckStatus(target, orderHash, callData, size, errorSelector); } /** * @dev Determines whether the specified order type is restricted and the * caller is not the specified zone. * * @param orderType The type of the order to check. * @param zone The address of the zone to check against. * * @return mustValidate True if the order type is restricted and the caller * is not the specified zone, false otherwise. */ function _isRestrictedAndCallerNotZone( OrderType orderType, address zone ) internal view returns (bool mustValidate) { assembly { mustValidate := and( // Note that this check requires that there are no order types // beyond the current set (0-4). It will need to be modified if // more order types are added. and(lt(orderType, 4), gt(orderType, 1)), iszero(eq(caller(), zone)) ) } } /** * @dev Calls the specified target with the given data and checks the status * of the call. Revert reasons will be "bubbled up" if one is returned, * otherwise reverting calls will throw a generic error based on the * supplied error handler. * * @param target The address of the contract to call. * @param orderHash The hash of the order associated with the call. * @param callData The data to pass to the contract call. * @param size The size of calldata. * @param errorSelector The error handling function to call if the call * fails or the magic value does not match. */ function _callAndCheckStatus( address target, bytes32 orderHash, MemoryPointer callData, uint256 size, uint256 errorSelector ) internal { bool success; bool magicMatch; assembly { // Get magic value from the selector at start of provided calldata. let magic := and(mload(callData), MaskOverFirstFourBytes) // Clear the start of scratch space. mstore(0, 0) // Perform call, placing result in the first word of scratch space. success := call(gas(), target, 0, callData, size, 0, OneWord) // Determine if returned magic value matches the calldata selector. magicMatch := eq(magic, mload(0)) } // Revert if the call was not successful. if (!success) { // Revert and pass reason along if one was returned. _revertWithReasonIfOneIsReturned(); // If no reason was returned, revert with supplied error selector. assembly { mstore(0, errorSelector) mstore(InvalidRestrictedOrder_error_orderHash_ptr, orderHash) // revert(abi.encodeWithSelector( // "InvalidRestrictedOrder(bytes32)", // orderHash // )) revert( Error_selector_offset, InvalidRestrictedOrder_error_length ) } } // Revert if the correct magic value was not returned. if (!magicMatch) { // Revert with a generic error message. assembly { mstore(0, errorSelector) mstore(InvalidRestrictedOrder_error_orderHash_ptr, orderHash) // revert(abi.encodeWithSelector( // "InvalidRestrictedOrder(bytes32)", // orderHash // )) revert( Error_selector_offset, InvalidRestrictedOrder_error_length ) } } } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.17; import { ConduitInterface } from "../interfaces/ConduitInterface.sol"; import { ConduitItemType } from "../conduit/lib/ConduitEnums.sol"; import { ItemType } from "./ConsiderationEnums.sol"; import { ReceivedItem } from "./ConsiderationStructs.sol"; import { Verifiers } from "./Verifiers.sol"; import { TokenTransferrer } from "./TokenTransferrer.sol"; import { Accumulator_array_length_ptr, Accumulator_array_offset_ptr, Accumulator_array_offset, Accumulator_conduitKey_ptr, Accumulator_itemSizeOffsetDifference, Accumulator_selector_ptr, AccumulatorArmed, AccumulatorDisarmed, Conduit_transferItem_amount_ptr, Conduit_transferItem_from_ptr, Conduit_transferItem_identifier_ptr, Conduit_transferItem_size, Conduit_transferItem_to_ptr, Conduit_transferItem_token_ptr, FreeMemoryPointerSlot, OneWord, TwoWords } from "./ConsiderationConstants.sol"; import { Error_selector_offset, NativeTokenTransferGenericFailure_error_account_ptr, NativeTokenTransferGenericFailure_error_amount_ptr, NativeTokenTransferGenericFailure_error_length, NativeTokenTransferGenericFailure_error_selector } from "./ConsiderationErrorConstants.sol"; import { _revertInvalidCallToConduit, _revertInvalidConduit, _revertInvalidERC721TransferAmount, _revertUnusedItemParameters } from "./ConsiderationErrors.sol"; /** * @title Executor * @author 0age * @notice Executor contains functions related to processing executions (i.e. * transferring items, either directly or via conduits). */ contract Executor is Verifiers, TokenTransferrer { /** * @dev Derive and set hashes, reference chainId, and associated domain * separator during deployment. * * @param conduitController A contract that deploys conduits, or proxies * that may optionally be used to transfer approved * ERC20/721/1155 tokens. */ constructor(address conduitController) Verifiers(conduitController) {} /** * @dev Internal function to transfer a given item, either directly or via * a corresponding conduit. * * @param item The item to transfer, including an amount and a * recipient. * @param from The account supplying the item. * @param conduitKey A bytes32 value indicating what corresponding conduit, * if any, to source token approvals from. The zero hash * signifies that no conduit should be used, with direct * approvals set on this contract. * @param accumulator An open-ended array that collects transfers to execute * against a given conduit in a single call. */ function _transfer( ReceivedItem memory item, address from, bytes32 conduitKey, bytes memory accumulator ) internal { // If the item type indicates Ether or a native token... if (item.itemType == ItemType.NATIVE) { // Ensure neither the token nor the identifier parameters are set. if ((uint160(item.token) | item.identifier) != 0) { _revertUnusedItemParameters(); } // transfer the native tokens to the recipient. _transferNativeTokens(item.recipient, item.amount); } else if (item.itemType == ItemType.ERC20) { // Ensure that no identifier is supplied. if (item.identifier != 0) { _revertUnusedItemParameters(); } // Transfer ERC20 tokens from the source to the recipient. _transferERC20( item.token, from, item.recipient, item.amount, conduitKey, accumulator ); } else if (item.itemType == ItemType.ERC721) { // Transfer ERC721 token from the source to the recipient. _transferERC721( item.token, from, item.recipient, item.identifier, item.amount, conduitKey, accumulator ); } else { // Transfer ERC1155 token from the source to the recipient. _transferERC1155( item.token, from, item.recipient, item.identifier, item.amount, conduitKey, accumulator ); } } /** * @dev Internal function to transfer Ether or other native tokens to a * given recipient. * * @param to The recipient of the transfer. * @param amount The amount to transfer. */ function _transferNativeTokens( address payable to, uint256 amount ) internal { // Ensure that the supplied amount is non-zero. _assertNonZeroAmount(amount); // Declare a variable indicating whether the call was successful or not. bool success; assembly { // Transfer the native token and store if it succeeded or not. success := call(gas(), to, amount, 0, 0, 0, 0) } // If the call fails... if (!success) { // Revert and pass the revert reason along if one was returned. _revertWithReasonIfOneIsReturned(); // Otherwise, revert with a generic error message. assembly { // Store left-padded selector with push4, mem[28:32] = selector mstore(0, NativeTokenTransferGenericFailure_error_selector) // Write `to` and `amount` arguments. mstore(NativeTokenTransferGenericFailure_error_account_ptr, to) mstore( NativeTokenTransferGenericFailure_error_amount_ptr, amount ) // revert(abi.encodeWithSignature( // "NativeTokenTransferGenericFailure(address,uint256)", // to, // amount // )) revert( Error_selector_offset, NativeTokenTransferGenericFailure_error_length ) } } } /** * @dev Internal function to transfer ERC20 tokens from a given originator * to a given recipient using a given conduit if applicable. Sufficient * approvals must be set on this contract or on a respective conduit. * * @param token The ERC20 token to transfer. * @param from The originator of the transfer. * @param to The recipient of the transfer. * @param amount The amount to transfer. * @param conduitKey A bytes32 value indicating what corresponding conduit, * if any, to source token approvals from. The zero hash * signifies that no conduit should be used, with direct * approvals set on this contract. * @param accumulator An open-ended array that collects transfers to execute * against a given conduit in a single call. */ function _transferERC20( address token, address from, address to, uint256 amount, bytes32 conduitKey, bytes memory accumulator ) internal { // Ensure that the supplied amount is non-zero. _assertNonZeroAmount(amount); // Trigger accumulated transfers if the conduits differ. _triggerIfArmedAndNotAccumulatable(accumulator, conduitKey); // If no conduit has been specified... if (conduitKey == bytes32(0)) { // Perform the token transfer directly. _performERC20Transfer(token, from, to, amount); } else { // Insert the call to the conduit into the accumulator. _insert( conduitKey, accumulator, ConduitItemType.ERC20, token, from, to, uint256(0), amount ); } } /** * @dev Internal function to transfer a single ERC721 token from a given * originator to a given recipient. Sufficient approvals must be set, * either on the respective conduit or on this contract itself. * * @param token The ERC721 token to transfer. * @param from The originator of the transfer. * @param to The recipient of the transfer. * @param identifier The tokenId to transfer. * @param amount The amount to transfer (must be 1 for ERC721). * @param conduitKey A bytes32 value indicating what corresponding conduit, * if any, to source token approvals from. The zero hash * signifies that no conduit should be used, with direct * approvals set on this contract. * @param accumulator An open-ended array that collects transfers to execute * against a given conduit in a single call. */ function _transferERC721( address token, address from, address to, uint256 identifier, uint256 amount, bytes32 conduitKey, bytes memory accumulator ) internal { // Trigger accumulated transfers if the conduits differ. _triggerIfArmedAndNotAccumulatable(accumulator, conduitKey); // If no conduit has been specified... if (conduitKey == bytes32(0)) { // Ensure that exactly one 721 item is being transferred. if (amount != 1) { _revertInvalidERC721TransferAmount(amount); } // Perform transfer via the token contract directly. _performERC721Transfer(token, from, to, identifier); } else { // Insert the call to the conduit into the accumulator. _insert( conduitKey, accumulator, ConduitItemType.ERC721, token, from, to, identifier, amount ); } } /** * @dev Internal function to transfer ERC1155 tokens from a given originator * to a given recipient. Sufficient approvals must be set, either on * the respective conduit or on this contract itself. * * @param token The ERC1155 token to transfer. * @param from The originator of the transfer. * @param to The recipient of the transfer. * @param identifier The id to transfer. * @param amount The amount to transfer. * @param conduitKey A bytes32 value indicating what corresponding conduit, * if any, to source token approvals from. The zero hash * signifies that no conduit should be used, with direct * approvals set on this contract. * @param accumulator An open-ended array that collects transfers to execute * against a given conduit in a single call. */ function _transferERC1155( address token, address from, address to, uint256 identifier, uint256 amount, bytes32 conduitKey, bytes memory accumulator ) internal { // Ensure that the supplied amount is non-zero. _assertNonZeroAmount(amount); // Trigger accumulated transfers if the conduits differ. _triggerIfArmedAndNotAccumulatable(accumulator, conduitKey); // If no conduit has been specified... if (conduitKey == bytes32(0)) { // Perform transfer via the token contract directly. _performERC1155Transfer(token, from, to, identifier, amount); } else { // Insert the call to the conduit into the accumulator. _insert( conduitKey, accumulator, ConduitItemType.ERC1155, token, from, to, identifier, amount ); } } /** * @dev Internal function to trigger a call to the conduit currently held by * the accumulator if the accumulator contains item transfers (i.e. it * is "armed") and the supplied conduit key does not match the key held * by the accumulator. * * @param accumulator An open-ended array that collects transfers to execute * against a given conduit in a single call. * @param conduitKey A bytes32 value indicating what corresponding conduit, * if any, to source token approvals from. The zero hash * signifies that no conduit should be used, with direct * approvals set on this contract. */ function _triggerIfArmedAndNotAccumulatable( bytes memory accumulator, bytes32 conduitKey ) internal { // Retrieve the current conduit key from the accumulator. bytes32 accumulatorConduitKey = _getAccumulatorConduitKey(accumulator); // Perform conduit call if the set key does not match the supplied key. if (accumulatorConduitKey != conduitKey) { _triggerIfArmed(accumulator); } } /** * @dev Internal function to trigger a call to the conduit currently held by * the accumulator if the accumulator contains item transfers (i.e. it * is "armed"). * * @param accumulator An open-ended array that collects transfers to execute * against a given conduit in a single call. */ function _triggerIfArmed(bytes memory accumulator) internal { // Exit if the accumulator is not "armed". if (accumulator.length != AccumulatorArmed) { return; } // Retrieve the current conduit key from the accumulator. bytes32 accumulatorConduitKey = _getAccumulatorConduitKey(accumulator); // Perform conduit call. _trigger(accumulatorConduitKey, accumulator); } /** * @dev Internal function to trigger a call to the conduit corresponding to * a given conduit key, supplying all accumulated item transfers. The * accumulator will be "disarmed" and reset in the process. * * @param conduitKey A bytes32 value indicating what corresponding conduit, * if any, to source token approvals from. The zero hash * signifies that no conduit should be used, with direct * approvals set on this contract. * @param accumulator An open-ended array that collects transfers to execute * against a given conduit in a single call. */ function _trigger(bytes32 conduitKey, bytes memory accumulator) internal { // Declare variables for offset in memory & size of calldata to conduit. uint256 callDataOffset; uint256 callDataSize; // Call the conduit with all the accumulated transfers. assembly { // Call begins at third word; the first is length or "armed" status, // and the second is the current conduit key. callDataOffset := add(accumulator, TwoWords) // 68 + items * 192 callDataSize := add( Accumulator_array_offset_ptr, mul( mload(add(accumulator, Accumulator_array_length_ptr)), Conduit_transferItem_size ) ) } // Call conduit derived from conduit key & supply accumulated transfers. _callConduitUsingOffsets(conduitKey, callDataOffset, callDataSize); // Reset accumulator length to signal that it is now "disarmed". assembly { mstore(accumulator, AccumulatorDisarmed) } } /** * @dev Internal function to perform a call to the conduit corresponding to * a given conduit key based on the offset and size of the calldata in * question in memory. * * @param conduitKey A bytes32 value indicating what corresponding * conduit, if any, to source token approvals from. * The zero hash signifies that no conduit should be * used, with direct approvals set on this contract. * @param callDataOffset The memory pointer where calldata is contained. * @param callDataSize The size of calldata in memory. */ function _callConduitUsingOffsets( bytes32 conduitKey, uint256 callDataOffset, uint256 callDataSize ) internal { // Derive the address of the conduit using the conduit key. address conduit = _deriveConduit(conduitKey); bool success; bytes4 result; // call the conduit. assembly { // Ensure first word of scratch space is empty. mstore(0, 0) // Perform call, placing first word of return data in scratch space. success := call( gas(), conduit, 0, callDataOffset, callDataSize, 0, OneWord ) // Take value from scratch space and place it on the stack. result := mload(0) } // If the call failed... if (!success) { // Pass along whatever revert reason was given by the conduit. _revertWithReasonIfOneIsReturned(); // Otherwise, revert with a generic error. _revertInvalidCallToConduit(conduit); } // Ensure result was extracted and matches EIP-1271 magic value. if (result != ConduitInterface.execute.selector) { _revertInvalidConduit(conduitKey, conduit); } } /** * @dev Internal pure function to retrieve the current conduit key set for * the accumulator. * * @param accumulator An open-ended array that collects transfers to execute * against a given conduit in a single call. * * @return accumulatorConduitKey The conduit key currently set for the * accumulator. */ function _getAccumulatorConduitKey( bytes memory accumulator ) internal pure returns (bytes32 accumulatorConduitKey) { // Retrieve the current conduit key from the accumulator. assembly { accumulatorConduitKey := mload( add(accumulator, Accumulator_conduitKey_ptr) ) } } /** * @dev Internal pure function to place an item transfer into an accumulator * that collects a series of transfers to execute against a given * conduit in a single call. * * @param conduitKey A bytes32 value indicating what corresponding conduit, * if any, to source token approvals from. The zero hash * signifies that no conduit should be used, with direct * approvals set on this contract. * @param accumulator An open-ended array that collects transfers to execute * against a given conduit in a single call. * @param itemType The type of the item to transfer. * @param token The token to transfer. * @param from The originator of the transfer. * @param to The recipient of the transfer. * @param identifier The tokenId to transfer. * @param amount The amount to transfer. */ function _insert( bytes32 conduitKey, bytes memory accumulator, ConduitItemType itemType, address token, address from, address to, uint256 identifier, uint256 amount ) internal pure { uint256 elements; // "Arm" and prime accumulator if it's not already armed. The sentinel // value is held in the length of the accumulator array. if (accumulator.length == AccumulatorDisarmed) { elements = 1; bytes4 selector = ConduitInterface.execute.selector; assembly { mstore(accumulator, AccumulatorArmed) // "arm" the accumulator. mstore(add(accumulator, Accumulator_conduitKey_ptr), conduitKey) mstore(add(accumulator, Accumulator_selector_ptr), selector) mstore( add(accumulator, Accumulator_array_offset_ptr), Accumulator_array_offset ) mstore(add(accumulator, Accumulator_array_length_ptr), elements) } } else { // Otherwise, increase the number of elements by one. assembly { elements := add( mload(add(accumulator, Accumulator_array_length_ptr)), 1 ) mstore(add(accumulator, Accumulator_array_length_ptr), elements) } } // Insert the item. assembly { let itemPointer := sub( add(accumulator, mul(elements, Conduit_transferItem_size)), Accumulator_itemSizeOffsetDifference ) mstore(itemPointer, itemType) mstore(add(itemPointer, Conduit_transferItem_token_ptr), token) mstore(add(itemPointer, Conduit_transferItem_from_ptr), from) mstore(add(itemPointer, Conduit_transferItem_to_ptr), to) mstore( add(itemPointer, Conduit_transferItem_identifier_ptr), identifier ) mstore(add(itemPointer, Conduit_transferItem_amount_ptr), amount) } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.13; /** * @title ZoneInteractionErrors * @author 0age * @notice ZoneInteractionErrors contains errors related to zone interaction. */ interface ZoneInteractionErrors { /** * @dev Revert with an error when attempting to fill an order that specifies * a restricted submitter as its order type when not submitted by * either the offerer or the order's zone or approved as valid by the * zone in question via a call to `isValidOrder`. * * @param orderHash The order hash for the invalid restricted order. */ error InvalidRestrictedOrder(bytes32 orderHash); /** * @dev Revert with an error when attempting to fill a contract order that * fails to generate an order successfully, that does not adhere to the * requirements for minimum spent or maximum received supplied by the * fulfiller, or that fails the post-execution `ratifyOrder` check.. * * @param orderHash The order hash for the invalid contract order. */ error InvalidContractOrder(bytes32 orderHash); }
// SPDX-License-Identifier: MIT pragma solidity 0.8.17; import { CostPerWord, ExtraGasBuffer, FreeMemoryPointerSlot, MemoryExpansionCoefficientShift, OneWord, OneWordShift, ThirtyOneBytes } from "./ConsiderationConstants.sol"; /** * @title LowLevelHelpers * @author 0age * @notice LowLevelHelpers contains logic for performing various low-level * operations. */ contract LowLevelHelpers { /** * @dev Internal view function to revert and pass along the revert reason if * data was returned by the last call and that the size of that data * does not exceed the currently allocated memory size. */ function _revertWithReasonIfOneIsReturned() internal view { assembly { // If it returned a message, bubble it up as long as sufficient gas // remains to do so: if returndatasize() { // Ensure that sufficient gas is available to copy returndata // while expanding memory where necessary. Start by computing // the word size of returndata and allocated memory. let returnDataWords := shr( OneWordShift, add(returndatasize(), ThirtyOneBytes) ) // Note: use the free memory pointer in place of msize() to work // around a Yul warning that prevents accessing msize directly // when the IR pipeline is activated. let msizeWords := shr( OneWordShift, mload(FreeMemoryPointerSlot) ) // Next, compute the cost of the returndatacopy. let cost := mul(CostPerWord, returnDataWords) // Then, compute cost of new memory allocation. if gt(returnDataWords, msizeWords) { cost := add( cost, add( mul(sub(returnDataWords, msizeWords), CostPerWord), shr( MemoryExpansionCoefficientShift, sub( mul(returnDataWords, returnDataWords), mul(msizeWords, msizeWords) ) ) ) ) } // Finally, add a small constant and compare to gas remaining; // bubble up the revert data if enough gas is still available. if lt(add(cost, ExtraGasBuffer), gas()) { // Copy returndata to memory; overwrite existing memory. returndatacopy(0, 0, returndatasize()) // Revert, specifying memory region with copied returndata. revert(0, returndatasize()) } } } } /** * @dev Internal view function to branchlessly select either the caller (if * a supplied recipient is equal to zero) or the supplied recipient (if * that recipient is a nonzero value). * * @param recipient The supplied recipient. * * @return updatedRecipient The updated recipient. */ function _substituteCallerForEmptyRecipient( address recipient ) internal view returns (address updatedRecipient) { // Utilize assembly to perform a branchless operation on the recipient. assembly { // Add caller to recipient if recipient equals 0; otherwise add 0. updatedRecipient := add(recipient, mul(iszero(recipient), caller())) } } /** * @dev Internal pure function to cast a `bool` value to a `uint256` value. * * @param b The `bool` value to cast. * * @return u The `uint256` value. */ function _cast(bool b) internal pure returns (uint256 u) { assembly { u := b } } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.17; import { BasicOrder_additionalRecipients_length_cdPtr, BasicOrder_common_params_size, BasicOrder_startTime_cdPtr, BasicOrder_startTimeThroughZoneHash_size, Common_amount_offset, Common_identifier_offset, Common_token_offset, generateOrder_base_tail_offset, generateOrder_context_head_offset, generateOrder_head_offset, generateOrder_maximumSpent_head_offset, generateOrder_minimumReceived_head_offset, generateOrder_selector_offset, generateOrder_selector, OneWord, OneWordShift, OnlyFullWordMask, OrderFulfilled_baseDataSize, OrderFulfilled_offer_length_baseOffset, OrderParameters_consideration_head_offset, OrderParameters_endTime_offset, OrderParameters_offer_head_offset, OrderParameters_startTime_offset, OrderParameters_zoneHash_offset, ratifyOrder_base_tail_offset, ratifyOrder_consideration_head_offset, ratifyOrder_context_head_offset, ratifyOrder_contractNonce_offset, ratifyOrder_head_offset, ratifyOrder_orderHashes_head_offset, ratifyOrder_selector_offset, ratifyOrder_selector, ReceivedItem_size, Selector_length, SixtyThreeBytes, SpentItem_size_shift, SpentItem_size, validateOrder_head_offset, validateOrder_selector_offset, validateOrder_selector, validateOrder_zoneParameters_offset, ZoneParameters_base_tail_offset, ZoneParameters_basicOrderFixedElements_length, ZoneParameters_consideration_head_offset, ZoneParameters_endTime_offset, ZoneParameters_extraData_head_offset, ZoneParameters_fulfiller_offset, ZoneParameters_offer_head_offset, ZoneParameters_offerer_offset, ZoneParameters_orderHashes_head_offset, ZoneParameters_selectorAndPointer_length, ZoneParameters_startTime_offset, ZoneParameters_zoneHash_offset } from "./ConsiderationConstants.sol"; import { BasicOrderParameters, OrderParameters } from "./ConsiderationStructs.sol"; import { CalldataPointer, getFreeMemoryPointer, MemoryPointer } from "../helpers/PointerLibraries.sol"; contract ConsiderationEncoder { /** * @dev Takes a bytes array and casts it to a memory pointer. * * @param obj A bytes array in memory. * * @return ptr A memory pointer to the start of the bytes array in memory. */ function toMemoryPointer( bytes memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Takes an array of bytes32 types and casts it to a memory pointer. * * @param obj An array of bytes32 types in memory. * * @return ptr A memory pointer to the start of the array of bytes32 types * in memory. */ function toMemoryPointer( bytes32[] memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Takes a bytes array in memory and copies it to a new location in * memory. * * @param src A memory pointer referencing the bytes array to be copied (and * pointing to the length of the bytes array). * @param src A memory pointer referencing the location in memory to copy * the bytes array to (and pointing to the length of the copied * bytes array). * * @return size The size of the bytes array. */ function _encodeBytes( MemoryPointer src, MemoryPointer dst ) internal view returns (uint256 size) { unchecked { // Mask the length of the bytes array to protect against overflow // and round up to the nearest word. // Note: `size` also includes the 1 word that stores the length. size = (src.readUint256() + SixtyThreeBytes) & OnlyFullWordMask; // Copy the bytes array to the new memory location. src.copy(dst, size); } } /** * @dev Takes an OrderParameters struct and a context bytes array in memory * and encodes it as `generateOrder` calldata. * * @param orderParameters The OrderParameters struct used to construct the * encoded `generateOrder` calldata. * @param context The context bytes array used to construct the * encoded `generateOrder` calldata. * * @return dst A memory pointer referencing the encoded `generateOrder` * calldata. * @return size The size of the bytes array. */ function _encodeGenerateOrder( OrderParameters memory orderParameters, bytes memory context ) internal view returns (MemoryPointer dst, uint256 size) { // Get the memory pointer for the OrderParameters struct. MemoryPointer src = orderParameters.toMemoryPointer(); // Get free memory pointer to write calldata to. dst = getFreeMemoryPointer(); // Write generateOrder selector and get pointer to start of calldata. dst.write(generateOrder_selector); dst = dst.offset(generateOrder_selector_offset); // Get pointer to the beginning of the encoded data. MemoryPointer dstHead = dst.offset(generateOrder_head_offset); // Write `fulfiller` to calldata. dstHead.write(msg.sender); // Initialize tail offset, used to populate the minimumReceived array. uint256 tailOffset = generateOrder_base_tail_offset; // Write offset to minimumReceived. dstHead.offset(generateOrder_minimumReceived_head_offset).write( tailOffset ); // Get memory pointer to `orderParameters.offer.length`. MemoryPointer srcOfferPointer = src .offset(OrderParameters_offer_head_offset) .readMemoryPointer(); // Encode the offer array as a `SpentItem[]`. uint256 minimumReceivedSize = _encodeSpentItems( srcOfferPointer, dstHead.offset(tailOffset) ); unchecked { // Increment tail offset, now used to populate maximumSpent array. tailOffset += minimumReceivedSize; } // Write offset to maximumSpent. dstHead.offset(generateOrder_maximumSpent_head_offset).write( tailOffset ); // Get memory pointer to `orderParameters.consideration.length`. MemoryPointer srcConsiderationPointer = src .offset(OrderParameters_consideration_head_offset) .readMemoryPointer(); // Encode the consideration array as a `SpentItem[]`. uint256 maximumSpentSize = _encodeSpentItems( srcConsiderationPointer, dstHead.offset(tailOffset) ); unchecked { // Increment tail offset, now used to populate context array. tailOffset += maximumSpentSize; } // Write offset to context. dstHead.offset(generateOrder_context_head_offset).write(tailOffset); // Get memory pointer to context. MemoryPointer srcContext = toMemoryPointer(context); // Encode context as a bytes array. uint256 contextSize = _encodeBytes( srcContext, dstHead.offset(tailOffset) ); unchecked { // Increment the tail offset, now used to determine final size. tailOffset += contextSize; // Derive the final size by including the selector. size = Selector_length + tailOffset; } } /** * @dev Takes an order hash (e.g. offerer shifted 96 bits to the left XOR'd * with the contract nonce in the case of contract orders), an * OrderParameters struct, context bytes array, and an array of order * hashes for each order included as part of the current fulfillment * and encodes it as `ratifyOrder` calldata. * * @param orderHash The order hash (e.g. shl(0x60, offerer) ^ nonce). * @param orderParameters The OrderParameters struct used to construct the * encoded `ratifyOrder` calldata. * @param context The context bytes array used to construct the * encoded `ratifyOrder` calldata. * @param orderHashes An array of bytes32 values representing the order * hashes of all orders included as part of the * current fulfillment. * @param shiftedOfferer The offerer for the order, shifted 96 bits to the * left. * * @return dst A memory pointer referencing the encoded `ratifyOrder` * calldata. * @return size The size of the bytes array. */ function _encodeRatifyOrder( bytes32 orderHash, // e.g. shl(0x60, offerer) ^ contract nonce OrderParameters memory orderParameters, bytes memory context, // encoded based on the schemaID bytes32[] memory orderHashes, uint256 shiftedOfferer ) internal view returns (MemoryPointer dst, uint256 size) { // Get free memory pointer to write calldata to. This isn't allocated as // it is only used for a single function call. dst = getFreeMemoryPointer(); // Write ratifyOrder selector and get pointer to start of calldata. dst.write(ratifyOrder_selector); dst = dst.offset(ratifyOrder_selector_offset); // Get pointer to the beginning of the encoded data. MemoryPointer dstHead = dst.offset(ratifyOrder_head_offset); // Write contractNonce to calldata via xor(orderHash, shiftedOfferer). dstHead.offset(ratifyOrder_contractNonce_offset).write( uint256(orderHash) ^ shiftedOfferer ); // Initialize tail offset, used to populate the offer array. uint256 tailOffset = ratifyOrder_base_tail_offset; MemoryPointer src = orderParameters.toMemoryPointer(); // Write offset to `offer`. dstHead.write(tailOffset); // Get memory pointer to `orderParameters.offer.length`. MemoryPointer srcOfferPointer = src .offset(OrderParameters_offer_head_offset) .readMemoryPointer(); // Encode the offer array as a `SpentItem[]`. uint256 offerSize = _encodeSpentItems( srcOfferPointer, dstHead.offset(tailOffset) ); unchecked { // Increment tail offset, now used to populate consideration array. tailOffset += offerSize; } // Write offset to consideration. dstHead.offset(ratifyOrder_consideration_head_offset).write(tailOffset); // Get pointer to `orderParameters.consideration.length`. MemoryPointer srcConsiderationPointer = src .offset(OrderParameters_consideration_head_offset) .readMemoryPointer(); // Encode the consideration array as a `ReceivedItem[]`. uint256 considerationSize = _encodeConsiderationAsReceivedItems( srcConsiderationPointer, dstHead.offset(tailOffset) ); unchecked { // Increment tail offset, now used to populate context array. tailOffset += considerationSize; } // Write offset to context. dstHead.offset(ratifyOrder_context_head_offset).write(tailOffset); // Encode context. uint256 contextSize = _encodeBytes( toMemoryPointer(context), dstHead.offset(tailOffset) ); unchecked { // Increment tail offset, now used to populate orderHashes array. tailOffset += contextSize; } // Write offset to orderHashes. dstHead.offset(ratifyOrder_orderHashes_head_offset).write(tailOffset); // Encode orderHashes. uint256 orderHashesSize = _encodeOrderHashes( toMemoryPointer(orderHashes), dstHead.offset(tailOffset) ); unchecked { // Increment the tail offset, now used to determine final size. tailOffset += orderHashesSize; // Derive the final size by including the selector. size = Selector_length + tailOffset; } } /** * @dev Takes an order hash, OrderParameters struct, extraData bytes array, * and array of order hashes for each order included as part of the * current fulfillment and encodes it as `validateOrder` calldata. * Note that future, new versions of this contract may end up writing * to a memory region that might have been potentially dirtied by the * accumulator. Since the book-keeping for the accumulator does not * update the free memory pointer, it will be necessary to ensure that * all bytes in the memory in the range [dst, dst+size) are fully * updated/written to in this function. * * @param orderHash The order hash. * @param orderParameters The OrderParameters struct used to construct the * encoded `validateOrder` calldata. * @param extraData The extraData bytes array used to construct the * encoded `validateOrder` calldata. * @param orderHashes An array of bytes32 values representing the order * hashes of all orders included as part of the * current fulfillment. * * @return dst A memory pointer referencing the encoded `validateOrder` * calldata. * @return size The size of the bytes array. */ function _encodeValidateOrder( bytes32 orderHash, OrderParameters memory orderParameters, bytes memory extraData, bytes32[] memory orderHashes ) internal view returns (MemoryPointer dst, uint256 size) { // Get free memory pointer to write calldata to. This isn't allocated as // it is only used for a single function call. dst = getFreeMemoryPointer(); // Write validateOrder selector and get pointer to start of calldata. dst.write(validateOrder_selector); dst = dst.offset(validateOrder_selector_offset); // Get pointer to the beginning of the encoded data. MemoryPointer dstHead = dst.offset(validateOrder_head_offset); // Write offset to zoneParameters to start of calldata. dstHead.write(validateOrder_zoneParameters_offset); // Reuse `dstHead` as pointer to zoneParameters. dstHead = dstHead.offset(validateOrder_zoneParameters_offset); // Write orderHash and fulfiller to zoneParameters. dstHead.writeBytes32(orderHash); dstHead.offset(ZoneParameters_fulfiller_offset).write(msg.sender); // Get the memory pointer to the order parameters struct. MemoryPointer src = orderParameters.toMemoryPointer(); // Copy offerer, startTime, endTime and zoneHash to zoneParameters. dstHead.offset(ZoneParameters_offerer_offset).write(src.readUint256()); dstHead.offset(ZoneParameters_startTime_offset).write( src.offset(OrderParameters_startTime_offset).readUint256() ); dstHead.offset(ZoneParameters_endTime_offset).write( src.offset(OrderParameters_endTime_offset).readUint256() ); dstHead.offset(ZoneParameters_zoneHash_offset).write( src.offset(OrderParameters_zoneHash_offset).readUint256() ); // Initialize tail offset, used to populate the offer array. uint256 tailOffset = ZoneParameters_base_tail_offset; // Write offset to `offer`. dstHead.offset(ZoneParameters_offer_head_offset).write(tailOffset); // Get pointer to `orderParameters.offer.length`. MemoryPointer srcOfferPointer = src .offset(OrderParameters_offer_head_offset) .readMemoryPointer(); // Encode the offer array as a `SpentItem[]`. uint256 offerSize = _encodeSpentItems( srcOfferPointer, dstHead.offset(tailOffset) ); unchecked { // Increment tail offset, now used to populate consideration array. tailOffset += offerSize; }