Token Microcosms C23 Admin Pass

 

Overview ERC-721

Total Supply:
0 MCAP

Holders:
6 addresses

Transfers:
-

 
Loading
[ Download CSV Export  ] 
Loading
[ Download CSV Export  ] 
Loading

Click here to update the token ICO / general information
# Exchange Pair Price  24H Volume % Volume
Loading

Similar Match Source Code
Note: This contract matches the deployed ByteCode of the Source Code for Contract 0x6ed3b96c0ebf754dd41572e39ea8509bad44ba9d

Contract Name:
ERC721SoulboundToken

Compiler Version
v0.8.4+commit.c7e474f2

Optimization Enabled:
Yes with 200 runs

Other Settings:
default evmVersion
File 1 of 5 : ECDSA.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.0;

import "../Strings.sol";

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS,
        InvalidSignatureV // Deprecated in v4.8
    }

    function _throwError(RecoverError error) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert("ECDSA: invalid signature");
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert("ECDSA: invalid signature length");
        } else if (error == RecoverError.InvalidSignatureS) {
            revert("ECDSA: invalid signature 's' value");
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature` or error string. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength);
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, signature);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     *
     * _Available since v4.3._
     */
    function tryRecover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address, RecoverError) {
        bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
        uint8 v = uint8((uint256(vs) >> 255) + 27);
        return tryRecover(hash, v, r, s);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     *
     * _Available since v4.2._
     */
    function recover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, r, vs);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     *
     * _Available since v4.3._
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address, RecoverError) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature);
        }

        return (signer, RecoverError.NoError);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from a `hash`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) {
        // 32 is the length in bytes of hash,
        // enforced by the type signature above
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash));
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from `s`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
    }

    /**
     * @dev Returns an Ethereum Signed Typed Data, created from a
     * `domainSeparator` and a `structHash`. This produces hash corresponding
     * to the one signed with the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
     * JSON-RPC method as part of EIP-712.
     *
     * See {recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash));
    }
}

File 2 of 5 : EIP712.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/EIP712.sol)

pragma solidity ^0.8.0;

import "./ECDSA.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,
 * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding
 * they need in their contracts using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * _Available since v3.4._
 */
abstract contract EIP712 {
    /* solhint-disable var-name-mixedcase */
    // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
    // invalidate the cached domain separator if the chain id changes.
    bytes32 private immutable _CACHED_DOMAIN_SEPARATOR;
    uint256 private immutable _CACHED_CHAIN_ID;
    address private immutable _CACHED_THIS;

    bytes32 private immutable _HASHED_NAME;
    bytes32 private immutable _HASHED_VERSION;
    bytes32 private immutable _TYPE_HASH;

    /* solhint-enable var-name-mixedcase */

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    constructor(string memory name, string memory version) {
        bytes32 hashedName = keccak256(bytes(name));
        bytes32 hashedVersion = keccak256(bytes(version));
        bytes32 typeHash = keccak256(
            "EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"
        );
        _HASHED_NAME = hashedName;
        _HASHED_VERSION = hashedVersion;
        _CACHED_CHAIN_ID = block.chainid;
        _CACHED_DOMAIN_SEPARATOR = _buildDomainSeparator(typeHash, hashedName, hashedVersion);
        _CACHED_THIS = address(this);
        _TYPE_HASH = typeHash;
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        if (address(this) == _CACHED_THIS && block.chainid == _CACHED_CHAIN_ID) {
            return _CACHED_DOMAIN_SEPARATOR;
        } else {
            return _buildDomainSeparator(_TYPE_HASH, _HASHED_NAME, _HASHED_VERSION);
        }
    }

    function _buildDomainSeparator(
        bytes32 typeHash,
        bytes32 nameHash,
        bytes32 versionHash
    ) private view returns (bytes32) {
        return keccak256(abi.encode(typeHash, nameHash, versionHash, block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return ECDSA.toTypedDataHash(_domainSeparatorV4(), structHash);
    }
}

File 3 of 5 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1);

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator,
        Rounding rounding
    ) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10**64) {
                value /= 10**64;
                result += 64;
            }
            if (value >= 10**32) {
                value /= 10**32;
                result += 32;
            }
            if (value >= 10**16) {
                value /= 10**16;
                result += 16;
            }
            if (value >= 10**8) {
                value /= 10**8;
                result += 8;
            }
            if (value >= 10**4) {
                value /= 10**4;
                result += 4;
            }
            if (value >= 10**2) {
                value /= 10**2;
                result += 2;
            }
            if (value >= 10**1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
        }
    }
}

File 4 of 5 : Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }
}

File 5 of 5 : ERC721SoulboundToken.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0;

import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import "@openzeppelin/contracts/utils/cryptography/EIP712.sol";

error Soulbound();
error AlreadyClaimed();
error InvalidAddress();
error ExceedsMaxSupply();

/// @title Soulbound ERC721 contract with signature-based minting
contract ERC721SoulboundToken is EIP712 {
  /// @dev Emits when ownership changes. Used only during mint since soulbound
  event Transfer(address indexed from, address indexed to, uint256 indexed id);

  /// @dev Counter for the next tokenID, defaults to 1 for better gas on first mint
  uint256 public nextTokenId = 1;

  /// @notice Token name
  string public name;

  /// @notice Token symbol
  string public symbol;

  /// @notice Token contractURI
  string internal _contractURI;

  /// @notice Token URI
  string internal _tokenURI;

  /// @notice Max allowed token amount
  uint256 public immutable maxSupply;

  /// @notice Get the owner of a certain tokenID
  mapping(uint256 => address) public ownerOf;

  /// @notice Get how many tokens a certain user owns
  mapping(address => uint256) public balanceOf;

  /// @notice The owner of this contract (set to the deployer)
  address public immutable owner = msg.sender;

  /// @dev Address used for signatures
  address internal immutable trustedAddress;

  /// @notice Check if NFT has been claimed before
  mapping(address => uint256) public claims;

  bytes32 private constant _MINT_TYPEHASH = keccak256("Mint(address to)");

  /// @param _name Token name
  /// @param _symbol Token symbol
  /// @param contractURI_ Token contract metadata URI
  /// @param tokenURI_ Token metadata URI
  /// @param _trustedAddress Address used for signatures
  /// @param _maxSupply Max allowed token amount
  constructor(
    string memory _name,
    string memory _symbol,
    string memory contractURI_,
    string memory tokenURI_,
    address _trustedAddress,
    uint256 _maxSupply
  ) EIP712(_name, "1.0") {
    if (_trustedAddress == address(0)) revert InvalidAddress();

    name = _name;
    symbol = _symbol;
    _contractURI = contractURI_;
    _tokenURI = tokenURI_;
    trustedAddress = _trustedAddress;
    maxSupply = _maxSupply;
  }

  /// @notice Public signature-based mint function
  /// @dev Verifies submitted signature to be from `trustedAddress`
  function mint(
    bytes32 r,
    bytes32 s,
    uint8 v
  ) external {
    if (claims[msg.sender] != 0) {
      revert AlreadyClaimed();
    }

    uint256 tokenId = nextTokenId;

    bytes32 digest = _hashTypedDataV4(
      keccak256(abi.encode(_MINT_TYPEHASH, msg.sender))
    );
    if (ECDSA.recover(digest, v, r, s) != trustedAddress) {
      revert InvalidAddress();
    }

    _mintToken(msg.sender, tokenId);
  }

  /// @notice Get contract-level metadata URI
  /// @return URI to fetch contract-level metadata
  function contractURI() public view returns (string memory) {
    return _contractURI;
  }

  /// @notice Return token media URI
  function tokenURI(uint256) public view virtual returns (string memory) {
    return _tokenURI;
  }

  /// @notice Disabled ERC721 "approve" method
  function approve(address, uint256) public virtual {
    revert Soulbound();
  }

  /// @notice Disabled ERC721 "isApprovedForAll" method
  function isApprovedForAll(address, address) public view virtual {
    revert Soulbound();
  }

  /// @notice Disabled ERC721 "getApproved" method
  function getApproved(uint256) public view virtual {
    revert Soulbound();
  }

  /// @notice Disabled ERC721 "getApproved" method
  function setApprovalForAll(address, bool) public virtual {
    revert Soulbound();
  }

  /// @notice Disabled ERC721 "transferFrom" method
  function transferFrom(
    address,
    address,
    uint256
  ) public virtual {
    revert Soulbound();
  }

  /// @notice Disabled ERC721 "safeTransferFrom" method
  function safeTransferFrom(
    address,
    address,
    uint256
  ) public virtual {
    revert Soulbound();
  }

  /// @notice Disabled ERC721 "safeTransferFrom" method
  function safeTransferFrom(
    address,
    address,
    uint256,
    bytes calldata
  ) public virtual {
    revert Soulbound();
  }

  /// @dev Query if a contract implements an interface
  /// @param interfaceId The interface identifier, as specified in ERC-165
  function supportsInterface(bytes4 interfaceId)
    public
    view
    virtual
    returns (bool)
  {
    return
      interfaceId == 0x01ffc9a7 || // ERC165 Interface ID for ERC165
      interfaceId == 0x80ac58cd || // ERC165 Interface ID for ERC721
      interfaceId == 0x5b5e139f; // ERC165 Interface ID for ERC721Metadata
  }

  /// @dev Internal mint function.
  ///      Reverts if exceeds max supply
  /// @param to Destination address
  /// @param tokenId Token Id
  function _mintToken(address to, uint256 tokenId) internal {
    if (tokenId > maxSupply) revert ExceedsMaxSupply();

    unchecked {
      ++balanceOf[to];
      ++nextTokenId;
    }

    ownerOf[tokenId] = to;
    claims[msg.sender] = tokenId;

    emit Transfer(address(0), to, tokenId);
  }
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "libraries": {}
}

Contract Security Audit

Contract ABI

[{"inputs":[{"internalType":"string","name":"_name","type":"string"},{"internalType":"string","name":"_symbol","type":"string"},{"internalType":"string","name":"contractURI_","type":"string"},{"internalType":"string","name":"tokenURI_","type":"string"},{"internalType":"address","name":"_trustedAddress","type":"address"},{"internalType":"uint256","name":"_maxSupply","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AlreadyClaimed","type":"error"},{"inputs":[],"name":"ExceedsMaxSupply","type":"error"},{"inputs":[],"name":"InvalidAddress","type":"error"},{"inputs":[],"name":"Soulbound","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":true,"internalType":"uint256","name":"id","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"approve","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"claims","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"contractURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"getApproved","outputs":[],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"}],"name":"isApprovedForAll","outputs":[],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"},{"internalType":"uint8","name":"v","type":"uint8"}],"name":"mint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"nextTokenId","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"ownerOf","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"bytes","name":"","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"bool","name":"","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"tokenURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"transferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"}]

6101a060405260016000553360601b610160523480156200001f57600080fd5b50604051620012513803806200125183398101604081905262000042916200031b565b60408051808201825260038152620312e360ec1b60209182015287518882012060e08190527fe6bbd6277e1bf288eed5e8d1780f9a50b239e86b153736bceebccf4ea79d90b36101008190524660a081815285517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f81870181905281880195909552606081810194909452608080820193909352308183018190528751808303909301835260c09182019097528151919095012090529290921b9052610120526001600160a01b0382166200012a5760405163e6c4247b60e01b815260040160405180910390fd5b85516200013f906001906020890190620001a5565b50845162000155906002906020880190620001a5565b5083516200016b906003906020870190620001a5565b50825162000181906004906020860190620001a5565b5060609190911b6001600160601b0319166101805261014052506200043d92505050565b828054620001b390620003ea565b90600052602060002090601f016020900481019282620001d7576000855562000222565b82601f10620001f257805160ff191683800117855562000222565b8280016001018555821562000222579182015b828111156200022257825182559160200191906001019062000205565b506200023092915062000234565b5090565b5b8082111562000230576000815560010162000235565b80516001600160a01b03811681146200026357600080fd5b919050565b600082601f83011262000279578081fd5b81516001600160401b038082111562000296576200029662000427565b604051601f8301601f19908116603f01168101908282118183101715620002c157620002c162000427565b81604052838152602092508683858801011115620002dd578485fd5b8491505b83821015620003005785820183015181830184015290820190620002e1565b838211156200031157848385830101525b9695505050505050565b60008060008060008060c0878903121562000334578182fd5b86516001600160401b03808211156200034b578384fd5b620003598a838b0162000268565b975060208901519150808211156200036f578384fd5b6200037d8a838b0162000268565b9650604089015191508082111562000393578384fd5b620003a18a838b0162000268565b95506060890151915080821115620003b7578384fd5b50620003c689828a0162000268565b935050620003d7608088016200024b565b915060a087015190509295509295509295565b600181811c90821680620003ff57607f821691505b602082108114156200042157634e487b7160e01b600052602260045260246000fd5b50919050565b634e487b7160e01b600052604160045260246000fd5b60805160a05160c05160601c60e0516101005161012051610140516101605160601c6101805160601c610d93620004be6000396000610460015260006102240152600081816102a20152610677015260006107c00152600061080f015260006107ea015260006107430152600061076d015260006107970152610d936000f3fe608060405234801561001057600080fd5b50600436106101215760003560e01c806375794a3c116100ad578063c6788bdd11610071578063c6788bdd1461026a578063c87b56dd1461028a578063d5abeb011461029d578063e8a3d485146102c4578063e985e9c5146102cc57600080fd5b806375794a3c146102165780638da5cb5b1461021f57806395d89b4114610246578063a22cb4651461024e578063b88d4fde1461025c57600080fd5b80631b424fed116100f45780631b424fed1461018657806323b872dd1461019957806342842e0e146101995780636352211e146101a757806370a08231146101e857600080fd5b806301ffc9a71461012657806306fdde031461014e578063081812fc14610163578063095ea7b314610178575b600080fd5b610139610134366004610c8f565b6102da565b60405190151581526020015b60405180910390f35b61015661032c565b6040516101459190610ccf565b610176610171366004610cb7565b6103ba565b005b610176610171366004610c29565b610176610194366004610c52565b6103d3565b610176610171366004610b1e565b6101d06101b5366004610cb7565b6005602052600090815260409020546001600160a01b031681565b6040516001600160a01b039091168152602001610145565b6102086101f6366004610acb565b60066020526000908152604090205481565b604051908152602001610145565b61020860005481565b6101d07f000000000000000000000000000000000000000000000000000000000000000081565b6101566104cc565b610176610171366004610bef565b610176610171366004610b59565b610208610278366004610acb565b60076020526000908152604090205481565b610156610298366004610cb7565b6104d9565b6102087f000000000000000000000000000000000000000000000000000000000000000081565b61015661056d565b610176610171366004610aec565b60006301ffc9a760e01b6001600160e01b03198316148061030b57506380ac58cd60e01b6001600160e01b03198316145b806103265750635b5e139f60e01b6001600160e01b03198316145b92915050565b6001805461033990610d22565b80601f016020809104026020016040519081016040528092919081815260200182805461036590610d22565b80156103b25780601f10610387576101008083540402835291602001916103b2565b820191906000526020600020905b81548152906001019060200180831161039557829003601f168201915b505050505081565b60405163a4420a9560e01b815260040160405180910390fd5b336000908152600760205260409020541561040157604051630c8d9eab60e31b815260040160405180910390fd5b60008054604080517f7bfd33bd144b9589a0b3585d6cb96101c2894c984ab9aac14c2b14d4b49b6ee06020820152339181019190915290919061045c90606001604051602081830303815290604052805190602001206105ff565b90507f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03166104948285888861064d565b6001600160a01b0316146104bb5760405163e6c4247b60e01b815260040160405180910390fd5b6104c53383610675565b5050505050565b6002805461033990610d22565b6060600480546104e890610d22565b80601f016020809104026020016040519081016040528092919081815260200182805461051490610d22565b80156105615780601f1061053657610100808354040283529160200191610561565b820191906000526020600020905b81548152906001019060200180831161054457829003601f168201915b50505050509050919050565b60606003805461057c90610d22565b80601f01602080910402602001604051908101604052809291908181526020018280546105a890610d22565b80156105f55780601f106105ca576101008083540402835291602001916105f5565b820191906000526020600020905b8154815290600101906020018083116105d857829003601f168201915b5050505050905090565b600061032661060c610736565b8360405161190160f01b6020820152602281018390526042810182905260009060620160405160208183030381529060405280519060200120905092915050565b600080600061065e8787878761085d565b9150915061066b81610921565b5095945050505050565b7f00000000000000000000000000000000000000000000000000000000000000008111156106b65760405163c30436e960e01b815260040160405180910390fd5b6001600160a01b03821660008181526006602090815260408083208054600190810190915583540183558483526005825280832080546001600160a01b03191685179055338352600790915280822084905551839291907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef908290a45050565b6000306001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001614801561078f57507f000000000000000000000000000000000000000000000000000000000000000046145b156107b957507f000000000000000000000000000000000000000000000000000000000000000090565b50604080517f00000000000000000000000000000000000000000000000000000000000000006020808301919091527f0000000000000000000000000000000000000000000000000000000000000000828401527f000000000000000000000000000000000000000000000000000000000000000060608301524660808301523060a0808401919091528351808403909101815260c0909201909252805191012090565b6000807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08311156108945750600090506003610918565b6040805160008082526020820180845289905260ff881692820192909252606081018690526080810185905260019060a0016020604051602081039080840390855afa1580156108e8573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b03811661091157600060019250925050610918565b9150600090505b94509492505050565b600081600481111561094357634e487b7160e01b600052602160045260246000fd5b141561094c5750565b600181600481111561096e57634e487b7160e01b600052602160045260246000fd5b14156109c15760405162461bcd60e51b815260206004820152601860248201527f45434453413a20696e76616c6964207369676e6174757265000000000000000060448201526064015b60405180910390fd5b60028160048111156109e357634e487b7160e01b600052602160045260246000fd5b1415610a315760405162461bcd60e51b815260206004820152601f60248201527f45434453413a20696e76616c6964207369676e6174757265206c656e6774680060448201526064016109b8565b6003816004811115610a5357634e487b7160e01b600052602160045260246000fd5b1415610aac5760405162461bcd60e51b815260206004820152602260248201527f45434453413a20696e76616c6964207369676e6174757265202773272076616c604482015261756560f01b60648201526084016109b8565b50565b80356001600160a01b0381168114610ac657600080fd5b919050565b600060208284031215610adc578081fd5b610ae582610aaf565b9392505050565b60008060408385031215610afe578081fd5b610b0783610aaf565b9150610b1560208401610aaf565b90509250929050565b600080600060608486031215610b32578081fd5b610b3b84610aaf565b9250610b4960208501610aaf565b9150604084013590509250925092565b600080600080600060808688031215610b70578081fd5b610b7986610aaf565b9450610b8760208701610aaf565b935060408601359250606086013567ffffffffffffffff80821115610baa578283fd5b818801915088601f830112610bbd578283fd5b813581811115610bcb578384fd5b896020828501011115610bdc578384fd5b9699959850939650602001949392505050565b60008060408385031215610c01578182fd5b610c0a83610aaf565b915060208301358015158114610c1e578182fd5b809150509250929050565b60008060408385031215610c3b578182fd5b610c4483610aaf565b946020939093013593505050565b600080600060608486031215610c66578283fd5b8335925060208401359150604084013560ff81168114610c84578182fd5b809150509250925092565b600060208284031215610ca0578081fd5b81356001600160e01b031981168114610ae5578182fd5b600060208284031215610cc8578081fd5b5035919050565b6000602080835283518082850152825b81811015610cfb57858101830151858201604001528201610cdf565b81811115610d0c5783604083870101525b50601f01601f1916929092016040019392505050565b600181811c90821680610d3657607f821691505b60208210811415610d5757634e487b7160e01b600052602260045260246000fd5b5091905056fea2646970667358221220c6bd14405bd4948b628726a853900605255bb49d0cc9646e31b17874da17e7d064736f6c6343000804003300000000000000000000000000000000000000000000000000000000000000c00000000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000014000000000000000000000000000000000000000000000000000000000000001c00000000000000000000000003459793a4f7e0879054cb1c7fe53e896a9afe26400000000000000000000000000000000000000000000000000000000000000fa000000000000000000000000000000000000000000000000000000000000001357687920416d2049205374696c6c204865726500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000557414953480000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000042697066733a2f2f6261666b72656966636f656176777661756135676f7034646233683776676267686a356378656d717071726c3778787133356b757071746a6a63340000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000042697066733a2f2f6261666b72656964377179706c7970336d6f6b7a6b6e7a36627432776f64676f727a7663787a3568353774756a3667707876636271666a61726475000000000000000000000000000000000000000000000000000000000000

Loading