Token Gyroscope 3CLP BUSD/USDC/USDT
Polygon Sponsored slots available. Book your slot here!
Overview ERC-20
Price
$0.00 @ 0.000000 MATIC
Fully Diluted Market Cap
Total Supply:
101,384,393.023781 3CLP-BUSD-USDC-USDT
Holders:
2,038 addresses
Transfers:
-
Contract:
Decimals:
18
[ Download CSV Export ]
[ Download CSV Export ]
# | Exchange | Pair | Price | 24H Volume | % Volume |
---|
Contract Name:
Gyro3CLPPool
Compiler Version
v0.7.6+commit.7338295f
Optimization Enabled:
Yes with 200 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity 0.7.6; pragma experimental ABIEncoderV2; import "../../libraries/GyroConfigKeys.sol"; import "../../interfaces/IGyroConfig.sol"; import "../../libraries/GyroPoolMath.sol"; import "../../libraries/GyroErrors.sol"; import "./ExtensibleBaseWeightedPool.sol"; import "./Gyro3CLPMath.sol"; import "./Gyro3CLPPoolErrors.sol"; import "../CappedLiquidity.sol"; import "../LocallyPausable.sol"; /** * @dev Gyro Three Pool with immutable weights. */ // We derive from ExtensibleBaseWeightedPool and we override a large part of the functionality. In particular the // weights are not used. contract Gyro3CLPPool is ExtensibleBaseWeightedPool, CappedLiquidity, LocallyPausable { using GyroFixedPoint for uint256; using WeightedPoolUserDataHelpers for bytes; uint256 private immutable _root3Alpha; IGyroConfig public gyroConfig; uint256 private constant _MAX_TOKENS = 3; IERC20 internal immutable _token0; IERC20 internal immutable _token1; IERC20 internal immutable _token2; // All token balances are normalized to behave as if the token had 18 decimals. We assume a token's decimals will // not change throughout its lifetime, and store the corresponding scaling factor for each at construction time. // These factors are always greater than or equal to one: tokens with more than 18 decimals are not supported. uint256 internal immutable _scalingFactor0; uint256 internal immutable _scalingFactor1; uint256 internal immutable _scalingFactor2; struct NewPoolConfigParams { string name; string symbol; IERC20[] tokens; uint256 swapFeePercentage; uint256 root3Alpha; address owner; address capManager; CapParams capParams; address pauseManager; } struct NewPoolParams { IVault vault; address configAddress; NewPoolConfigParams config; uint256 pauseWindowDuration; uint256 bufferPeriodDuration; } constructor(NewPoolParams memory params) ExtensibleBaseWeightedPool( params.vault, params.config.name, params.config.symbol, params.config.tokens, new address[](3), params.config.swapFeePercentage, params.pauseWindowDuration, params.bufferPeriodDuration, params.config.owner ) CappedLiquidity(params.config.capManager, params.config.capParams) LocallyPausable(params.config.pauseManager) { IERC20[] memory tokens = params.config.tokens; _grequire(tokens.length == 3, Gyro3CLPPoolErrors.TOKENS_LENGTH_MUST_BE_3); InputHelpers.ensureArrayIsSorted(tokens); // For uniqueness and required to make balance reconstruction work _grequire(params.configAddress != address(0), GyroErrors.ZERO_ADDRESS); _token0 = tokens[0]; _token1 = tokens[1]; _token2 = tokens[2]; _scalingFactor0 = _computeScalingFactor(tokens[0]); _scalingFactor1 = _computeScalingFactor(tokens[1]); _scalingFactor2 = _computeScalingFactor(tokens[2]); // _require(params.config.root3Alpha < FixedPoint.ONE, Gyro3CLPPoolErrors.PRICE_BOUNDS_WRONG); _grequire( Gyro3CLPMath._MIN_ROOT_3_ALPHA <= params.config.root3Alpha && params.config.root3Alpha <= Gyro3CLPMath._MAX_ROOT_3_ALPHA, Gyro3CLPPoolErrors.PRICE_BOUNDS_WRONG ); _root3Alpha = params.config.root3Alpha; gyroConfig = IGyroConfig(params.configAddress); } function getRoot3Alpha() external view returns (uint256) { return _root3Alpha; } // We don't support weights at the moment; in other words, all tokens are always weighted equally and thus their // normalized weights are all 1/3. This is what the functions return. function _getNormalizedWeight(IERC20) internal view virtual override returns (uint256) { return GyroFixedPoint.ONE / 3; } function _getNormalizedWeights() internal view virtual override returns (uint256[] memory) { uint256[] memory normalizedWeights = new uint256[](3); // prettier-ignore { normalizedWeights[0] = GyroFixedPoint.ONE/3; normalizedWeights[1] = GyroFixedPoint.ONE/3; normalizedWeights[2] = GyroFixedPoint.ONE/3; } return normalizedWeights; } /// @dev Since all weights are always the same, the max-weight token is arbitrary. We return token 0. function _getNormalizedWeightsAndMaxWeightIndex() internal view virtual override returns (uint256[] memory, uint256) { return (_getNormalizedWeights(), 0); } function _getMaxTokens() internal pure virtual override returns (uint256) { return _MAX_TOKENS; } function _getTotalTokens() internal pure virtual override returns (uint256) { return 3; } /** * @dev Returns the scaling factor for one of the Pool's tokens. Reverts if `token` is not a token registered by the * Pool. */ function _scalingFactor(IERC20 token) internal view virtual override returns (uint256 scalingFactor) { if (token == _token0) { scalingFactor = _scalingFactor0; } else if (token == _token1) { scalingFactor = _scalingFactor1; } else if (token == _token2) { scalingFactor = _scalingFactor2; } else { _revert(Errors.INVALID_TOKEN); } } function _scalingFactors() internal view virtual override returns (uint256[] memory) { uint256 totalTokens = _getTotalTokens(); uint256[] memory scalingFactors = new uint256[](totalTokens); // prettier-ignore { scalingFactors[0] = _scalingFactor0; scalingFactors[1] = _scalingFactor1; scalingFactors[2] = _scalingFactor2; } return scalingFactors; } // on{Swap,Join,Exit}() toplevel entry points are not overloaded and taken from ExtensibleBaseWeightedPool. We // override the lower-level functions. function _onSwapGivenIn( SwapRequest memory swapRequest, uint256 currentBalanceTokenIn, uint256 currentBalanceTokenOut ) internal view virtual override whenNotPaused returns (uint256) { uint256 virtualOffset = _calculateVirtualOffset(swapRequest, currentBalanceTokenIn, currentBalanceTokenOut); return _onSwapGivenIn(swapRequest, currentBalanceTokenIn, currentBalanceTokenOut, virtualOffset); } function _onSwapGivenOut( SwapRequest memory swapRequest, uint256 currentBalanceTokenIn, uint256 currentBalanceTokenOut ) internal view virtual override whenNotPaused returns (uint256) { uint256 virtualOffset = _calculateVirtualOffset(swapRequest, currentBalanceTokenIn, currentBalanceTokenOut); return _onSwapGivenOut(swapRequest, currentBalanceTokenIn, currentBalanceTokenOut, virtualOffset); } /** @dev Given two tokens x, y, return the third one among the pool tokens that is neither x nor y. x, y do *not* * have to be ordered, but they have to be among the tokens of this pool and they have to be different. */ function _getThirdToken(IERC20 x, IERC20 y) internal view returns (IERC20 tokenOther, uint256 scalingFactorOther) { // Sort if (x > y) (x, y) = (y, x); // We exploit that the variables _token{0,1,2} are sorted. if (x == _token0) { if (y == _token1) return (_token2, _scalingFactor2); if (y != _token2) _grequire(false, Gyro3CLPPoolErrors.TOKENS_NOT_AMONG_POOL_TOKENS); return (_token1, _scalingFactor1); } if (!(x == _token1 && y == _token2)) _grequire(false, Gyro3CLPPoolErrors.TOKENS_NOT_AMONG_POOL_TOKENS); return (_token0, _scalingFactor0); } /** @dev Reads the balance of a token from the balancer vault and returns the scaled amount. Smaller storage access * compared to getVault().getPoolTokens(). */ function _getScaledTokenBalance(IERC20 token, uint256 scalingFactor) internal view returns (uint256 balance) { // Signature of getPoolTokenInfo(): (pool id, token) -> (cash, managed, lastChangeBlock, assetManager) // and total amount = cash + managed. See balancer repo, PoolTokens.sol and BalanceAllocation.sol (uint256 cash, uint256 managed, , ) = getVault().getPoolTokenInfo(getPoolId(), token); balance = cash + managed; // can't overflow, see BalanceAllocation.sol::total() in the Balancer repo. balance = balance.mulDown(scalingFactor); } /** @dev Calculate the offset that that takes real reserves to virtual reserves. Variant that uses the info given * during swaps to query less from the vault and save gas. */ function _calculateVirtualOffset( SwapRequest memory swapRequest, uint256 currentBalanceTokenIn, uint256 currentBalanceTokenOut ) private view returns (uint256 virtualOffset) { // We exploit that everything is symmetric, so we don't have to know which balance is which here uint256[] memory balances = new uint256[](3); balances[0] = currentBalanceTokenIn; balances[1] = currentBalanceTokenOut; // Get the third token and query its balance. // This needs to be scaled up, like in BasePool._upscaleArray(). The other balances are already scaled up. (IERC20 token3, uint256 scalingFactor3) = _getThirdToken(swapRequest.tokenIn, swapRequest.tokenOut); balances[2] = _getScaledTokenBalance(token3, scalingFactor3); return _calculateVirtualOffset(balances); } /** @dev Calculate virtual offsets from scaled balances. Balances can be retrieved in the most gas-efficient way. */ function _calculateVirtualOffset( uint256[] memory balances // Need to be already scaled up. ) private view returns (uint256 virtualOffset) { uint256 root3Alpha = _root3Alpha; uint256 invariant = Gyro3CLPMath._calculateInvariant(balances, root3Alpha); virtualOffset = invariant.mulDown(root3Alpha); } /** @dev Get all balances in the pool, scaled by the appropriate scaling factors, in a relatively gas-efficient way. */ function _getAllBalances() private view returns (uint256[] memory balances) { // The below is more gas-efficient than the following line because the token slots don't have to be read in the // vault. // (, uint256[] memory balances, ) = getVault().getPoolTokens(getPoolId()); balances = new uint256[](3); balances[0] = _getScaledTokenBalance(_token0, _scalingFactor0); balances[1] = _getScaledTokenBalance(_token1, _scalingFactor1); balances[2] = _getScaledTokenBalance(_token2, _scalingFactor2); return balances; } /** @dev Calculate the offset that that takes real reserves to virtual reserves. Uses only the info in the pool, but * is rather expensive because a lot has to be queried from the vault. */ function _calculateVirtualOffset() private view returns (uint256 virtualOffset) { return _calculateVirtualOffset(_getAllBalances()); } function _calculateInvariant() private view returns (uint256 invariant) { return Gyro3CLPMath._calculateInvariant(_getAllBalances(), _root3Alpha); } function _onSwapGivenIn( SwapRequest memory swapRequest, uint256 currentBalanceTokenIn, uint256 currentBalanceTokenOut, uint256 virtualOffset ) private pure returns (uint256) { return Gyro3CLPMath._calcOutGivenIn(currentBalanceTokenIn, currentBalanceTokenOut, swapRequest.amount, virtualOffset); } function _onSwapGivenOut( SwapRequest memory swapRequest, uint256 currentBalanceTokenIn, uint256 currentBalanceTokenOut, uint256 virtualOffset ) private pure returns (uint256) { return Gyro3CLPMath._calcInGivenOut(currentBalanceTokenIn, currentBalanceTokenOut, swapRequest.amount, virtualOffset); } /** * @dev Called when the Pool is joined for the first time; that is, when the BPT total supply is zero. * * Returns the amount of BPT to mint and the token amounts the Pool will receive in return. * * Minted BPT will be sent to `recipient`, except for _MINIMUM_BPT, which will be deducted from this amount and sent * to the zero address instead. This will cause that BPT to remain forever locked there, preventing total BTP from * ever dropping below that value, and ensuring `_onInitializePool` can only be called once in the entire Pool's * lifetime. * * The tokens granted to the Pool will be transferred from `sender`. These amounts are considered upscaled and will * be downscaled (rounding up) before being returned to the Vault. */ function _onInitializePool( bytes32, address, address, uint256[] memory scalingFactors, bytes memory userData ) internal override whenNotPaused returns (uint256, uint256[] memory) { BaseWeightedPool.JoinKind kind = userData.joinKind(); _require(kind == BaseWeightedPool.JoinKind.INIT, Errors.UNINITIALIZED); uint256[] memory amountsIn = userData.initialAmountsIn(); InputHelpers.ensureInputLengthMatch(amountsIn.length, 3); _upscaleArray(amountsIn, scalingFactors); uint256 invariantAfterJoin = Gyro3CLPMath._calculateInvariant(amountsIn, _root3Alpha); // Set the initial BPT to the value of the invariant times the number of tokens. This makes BPT supply more // consistent in Pools with similar compositions but different number of tokens. // Note that the BPT supply also depends on the parameters of the pool. uint256 bptAmountOut = Math.mul(invariantAfterJoin, 3); _lastInvariant = invariantAfterJoin; return (bptAmountOut, amountsIn); } /** * @dev Called whenever the Pool is joined after the first initialization join (see `_onInitializePool`). * * Returns the amount of BPT to mint, the token amounts that the Pool will receive in return, and the number of * tokens to pay in protocol swap fees. * * Implementations of this function might choose to mutate the `balances` array to save gas (e.g. when * performing intermediate calculations, such as subtraction of due protocol fees). This can be done safely. * * Minted BPT will be sent to `recipient`. * * The tokens granted to the Pool will be transferred from `sender`. These amounts are considered upscaled and will * be downscaled (rounding up) before being returned to the Vault. * * protocolSwapFeePercentage argument is intentionally unused as protocol fees are handled in a different way */ function _onJoinPool( bytes32, address, address recipient, uint256[] memory balances, uint256, uint256, // protocolSwapFeePercentage, not used uint256[] memory, bytes memory userData ) internal override returns ( uint256 bptAmountOut, uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts ) { // Due protocol swap fee amounts are computed by measuring the growth of the invariant between the previous join // or exit event and now - the invariant's growth is due exclusively to swap fees. This avoids spending gas // accounting for them on each individual swap uint256 root3Alpha = _root3Alpha; uint256 invariantBeforeJoin = Gyro3CLPMath._calculateInvariant(balances, root3Alpha); _distributeFees(invariantBeforeJoin); (bptAmountOut, amountsIn) = _doJoin(balances, userData); if (_capParams.capEnabled) { _ensureCap(bptAmountOut, balanceOf(recipient), totalSupply()); } // Since we pay fees in BPT, they have not changed the invariant and 'lastInvariant' is still consistent with // 'balances'. Therefore, we can use a simplified method to update the invariant that does not require a full // re-computation. // Note: Should this be changed in the future, we also need to reduce the invariant proportionally by the total // protocol fee factor. _lastInvariant = GyroPoolMath.liquidityInvariantUpdate(invariantBeforeJoin, bptAmountOut, totalSupply(), true); // returns a new uint256[](3) b/c Balancer vault is expecting a fee array, but fees paid in BPT instead return (bptAmountOut, amountsIn, new uint256[](3)); } function _doJoin(uint256[] memory balances, bytes memory userData) internal view returns (uint256 bptAmountOut, uint256[] memory amountsIn) { BaseWeightedPool.JoinKind kind = userData.joinKind(); // We do NOT currently support unbalanced update, i.e., EXACT_TOKENS_IN_FOR_BPT_OUT or TOKEN_IN_FOR_EXACT_BPT_OUT if (kind == BaseWeightedPool.JoinKind.ALL_TOKENS_IN_FOR_EXACT_BPT_OUT) { (bptAmountOut, amountsIn) = _joinAllTokensInForExactBPTOut(balances, userData); } else { _revert(Errors.UNHANDLED_JOIN_KIND); } } /** * @dev Called whenever the Pool is exited. * * Returns the amount of BPT to burn, the token amounts for each Pool token that the Pool will grant in return, and * the number of tokens to pay in protocol swap fees. * * Implementations of this function might choose to mutate the `balances` array to save gas (e.g. when * performing intermediate calculations, such as subtraction of due protocol fees). This can be done safely. * * BPT will be burnt from `sender`. * * The Pool will grant tokens to `recipient`. These amounts are considered upscaled and will be downscaled * (rounding down) before being returned to the Vault. * * protocolSwapFeePercentage argument is intentionally unused as protocol fees are handled in a different way */ function _onExitPool( bytes32, address, address, uint256[] memory balances, uint256, uint256, // protocolSwapFeePercentage uint256[] memory, bytes memory userData ) internal override returns ( uint256 bptAmountIn, uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts ) { // Exits are not completely disabled while the contract is paused: proportional exits (exact BPT in for tokens // out) remain functional. uint256 root3Alpha = _root3Alpha; if (_isNotPaused()) { // Due protocol swap fee amounts are computed by measuring the growth of the invariant between the previous // join or exit event and now - the invariant's growth is due exclusively to swap fees. This avoids // spending gas calculating the fees on each individual swap. uint256 invariantBeforeExit = Gyro3CLPMath._calculateInvariant(balances, root3Alpha); _distributeFees(invariantBeforeExit); (bptAmountIn, amountsOut) = _doExit(balances, userData); // Since we pay fees in BPT, they have not changed the invariant and 'lastInvariant' is still consistent with // 'balances'. Therefore, we can use a simplified method to update the invariant that does not require a full // re-computation. // Note: Should this be changed in the future, we also need to reduce the invariant proportionally by the // total protocol fee factor. _lastInvariant = GyroPoolMath.liquidityInvariantUpdate(invariantBeforeExit, bptAmountIn, totalSupply(), false); } else { // Note: If the contract is paused, swap protocol fee amounts are not charged and the oracle is not updated // to avoid extra calculations and reduce the potential for errors. (bptAmountIn, amountsOut) = _doExit(balances, userData); // In the paused state, we do not recompute the invariant to reduce the potential for errors and to avoid // lock-up in case the pool is in a state where the involved numerical method does not converge. // Instead, we set the invariant such that any following (non-paused) join/exit will ignore and recompute it // (see GyroPoolMath._calcProtocolFees()) _lastInvariant = type(uint256).max; } // returns a new uint256[](3) b/c Balancer vault is expecting a fee array, but fees paid in BPT instead return (bptAmountIn, amountsOut, new uint256[](3)); } /** * @dev Returns the current value of the invariant. */ function getInvariant() public view override returns (uint256 invariant) { return _calculateInvariant(); } function _joinAllTokensInForExactBPTOut(uint256[] memory balances, bytes memory userData) internal view override returns (uint256, uint256[] memory) { uint256 bptAmountOut = userData.allTokensInForExactBptOut(); uint256[] memory amountsIn = GyroPoolMath._calcAllTokensInGivenExactBptOut(balances, bptAmountOut, totalSupply()); return (bptAmountOut, amountsIn); } function _doExit(uint256[] memory balances, bytes memory userData) internal view returns (uint256 bptAmountIn, uint256[] memory amountsOut) { BaseWeightedPool.ExitKind kind = userData.exitKind(); // We do NOT support unbalanced exit at the moment, i.e., EXACT_BPT_IN_FOR_ONE_TOKEN_OUT or // BPT_IN_FOR_EXACT_TOKENS_OUT. if (kind == BaseWeightedPool.ExitKind.EXACT_BPT_IN_FOR_TOKENS_OUT) { return _exitExactBPTInForTokensOut(balances, userData); } else { _revert(Errors.UNHANDLED_EXIT_KIND); } } function _exitExactBPTInForTokensOut(uint256[] memory balances, bytes memory userData) internal view override returns (uint256, uint256[] memory) { // This exit function is the only one that is not disabled if the contract is paused: it remains unrestricted // in an attempt to provide users with a mechanism to retrieve their tokens in case of an emergency. // This particular exit function is the only one that remains available because it is the simplest one, and // therefore the one with the lowest likelihood of errors. uint256 bptAmountIn = userData.exactBptInForTokensOut(); // Note that there is no minimum amountOut parameter: this is handled by `IVault.exitPool`. uint256[] memory amountsOut = GyroPoolMath._calcTokensOutGivenExactBptIn(balances, bptAmountIn, totalSupply()); return (bptAmountIn, amountsOut); } // Helpers // Protocol Fee Helpers. These are the same functions as in Gyro2CLPPool. /** * @dev Computes and distributes fees between the Balancer and the Gyro treasury * The fees are computed and distributed in BPT rather than using the * Balancer regular distribution mechanism which would pay these in underlying */ function _distributeFees(uint256 invariantBeforeAction) internal { // calculate Protocol fees in BPT // _lastInvariant is the invariant logged at the end of the last liquidity update // protocol fees are calculated on swap fees earned between liquidity updates (uint256 gyroFees, uint256 balancerFees, address gyroTreasury, address balTreasury) = _getDueProtocolFeeAmounts( _lastInvariant, invariantBeforeAction ); // Pay fees in BPT _payFeesBpt(gyroFees, balancerFees, gyroTreasury, balTreasury); } /** * @dev this function overrides inherited function to make sure it is never used */ function _getDueProtocolFeeAmounts( uint256[] memory, // balances, uint256[] memory, // normalizedWeights, uint256, // maxWeightTokenIndex, uint256, // previousInvariant, uint256, // currentInvariant, uint256 // protocolSwapFeePercentage ) internal pure override returns (uint256[] memory) { revert("Not implemented"); } /** * @dev * Note: This function is identical to that used in Gyro2CLPPool.sol. * Calculates protocol fee amounts in BPT terms. * protocolSwapFeePercentage is not used here b/c we take parameters from GyroConfig instead. * Returns: BPT due to Gyro, BPT due to Balancer, receiving address for Gyro fees, receiving address for Balancer * fees. */ function _getDueProtocolFeeAmounts(uint256 previousInvariant, uint256 currentInvariant) internal view returns ( uint256, uint256, address, address ) { (uint256 protocolSwapFeePerc, uint256 protocolFeeGyroPortion, address gyroTreasury, address balTreasury) = _getFeesMetadata(); // Early return if the protocol swap fee percentage is zero, saving gas. if (protocolSwapFeePerc == 0) { return (0, 0, gyroTreasury, balTreasury); } // Calculate fees in BPT (uint256 gyroFees, uint256 balancerFees) = GyroPoolMath._calcProtocolFees( previousInvariant, currentInvariant, totalSupply(), protocolSwapFeePerc, protocolFeeGyroPortion ); return (gyroFees, balancerFees, gyroTreasury, balTreasury); } // Note: This function is identical to that used in Gyro2CLPPool.sol function _payFeesBpt( uint256 gyroFees, uint256 balancerFees, address gyroTreasury, address balTreasury ) internal { // Pay fees in BPT to gyro treasury if (gyroFees > 0) { _mintPoolTokens(gyroTreasury, gyroFees); } // Pay fees in BPT to bal treasury if (balancerFees > 0) { _mintPoolTokens(balTreasury, balancerFees); } } // Note: This function is identical to that used in Gyro2CLPPool.sol function _getFeesMetadata() internal view returns ( uint256, uint256, address, address ) { return ( gyroConfig.getUint(GyroConfigKeys.PROTOCOL_SWAP_FEE_PERC_KEY), gyroConfig.getUint(GyroConfigKeys.PROTOCOL_FEE_GYRO_PORTION_KEY), gyroConfig.getAddress(GyroConfigKeys.GYRO_TREASURY_KEY), gyroConfig.getAddress(GyroConfigKeys.BAL_TREASURY_KEY) ); } function _setPausedState(bool paused) internal override { _setPaused(paused); } }
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.7.6; library GyroConfigKeys { bytes32 public constant PROTOCOL_SWAP_FEE_PERC_KEY = "PROTOCOL_SWAP_FEE_PERC"; bytes32 public constant PROTOCOL_FEE_GYRO_PORTION_KEY = "PROTOCOL_FEE_GYRO_PORTION"; bytes32 public constant GYRO_TREASURY_KEY = "GYRO_TREASURY"; bytes32 public constant BAL_TREASURY_KEY = "BAL_TREASURY"; }
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.7.6; /// @notice IGyroConfig stores the global configuration of the Gyroscope protocol interface IGyroConfig { /// @notice Event emitted every time a configuration is changed event ConfigChanged(bytes32 key, uint256 previousValue, uint256 newValue); event ConfigChanged(bytes32 key, address previousValue, address newValue); /// @notice Returns a set of known configuration keys function listKeys() external view returns (bytes32[] memory); /// @notice Returns a uint256 value from the config function getUint(bytes32 key) external view returns (uint256); /// @notice Returns an address value from the config function getAddress(bytes32 key) external view returns (address); /// @notice Set a uint256 config /// NOTE: We avoid overloading to avoid complications with some clients function setUint(bytes32 key, uint256 newValue) external; /// @notice Set an address config function setAddress(bytes32 key, address newValue) external; }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity 0.7.6; // import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol"; import "./GyroFixedPoint.sol"; import "@balancer-labs/v2-solidity-utils/contracts/math/Math.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/InputHelpers.sol"; library GyroPoolMath { using GyroFixedPoint for uint256; uint256 private constant SQRT_1E_NEG_1 = 316227766016837933; uint256 private constant SQRT_1E_NEG_3 = 31622776601683793; uint256 private constant SQRT_1E_NEG_5 = 3162277660168379; uint256 private constant SQRT_1E_NEG_7 = 316227766016837; uint256 private constant SQRT_1E_NEG_9 = 31622776601683; uint256 private constant SQRT_1E_NEG_11 = 3162277660168; uint256 private constant SQRT_1E_NEG_13 = 316227766016; uint256 private constant SQRT_1E_NEG_15 = 31622776601; uint256 private constant SQRT_1E_NEG_17 = 3162277660; // Note: this function is identical to that in WeightedMath.sol audited by Balancer function _calcAllTokensInGivenExactBptOut( uint256[] memory balances, uint256 bptOut, uint256 totalBPT ) internal pure returns (uint256[] memory amountsIn) { /************************************************************************************ // tokensInForExactBptOut // // / bptOut \ // // amountsIn[i] = balances[i] * | ------------ | // // \ totalBPT / // ************************************************************************************/ // We adjust the order of operations to minimize error amplification, assuming that // balances[i], totalBPT > 1 (which is usually the case). // Tokens in, so we round up overall. amountsIn = new uint256[](balances.length); for (uint256 i = 0; i < balances.length; i++) { amountsIn[i] = balances[i].mulUp(bptOut).divUp(totalBPT); } return amountsIn; } // Note: this function is identical to that in WeightedMath.sol audited by Balancer function _calcTokensOutGivenExactBptIn( uint256[] memory balances, uint256 bptIn, uint256 totalBPT ) internal pure returns (uint256[] memory amountsOut) { /********************************************************************************************** // exactBPTInForTokensOut // // (per token) // // / bptIn \ // // amountsOut[i] = balances[i] * | --------------------- | // // \ totalBPT / // **********************************************************************************************/ // We adjust the order of operations to minimize error amplification, assuming that // balances[i], totalBPT > 1 (which is usually the case). // Since we're computing an amount out, we round down overall. This means rounding down on both the // multiplication and division. amountsOut = new uint256[](balances.length); for (uint256 i = 0; i < balances.length; i++) { amountsOut[i] = balances[i].mulDown(bptIn).divDown(totalBPT); } return amountsOut; } /** @dev Calculates protocol fees due to Gyro and Balancer * Note: we do this differently than normal Balancer pools by paying fees in BPT tokens * b/c this is much more gas efficient than doing many transfers of underlying assets * This function gets protocol fee parameters from GyroConfig */ function _calcProtocolFees( uint256 previousInvariant, uint256 currentInvariant, uint256 currentBptSupply, uint256 protocolSwapFeePerc, uint256 protocolFeeGyroPortion ) internal pure returns (uint256, uint256) { /********************************************************************************* /* Protocol fee collection should decrease the invariant L by * Delta L = protocolSwapFeePerc * (currentInvariant - previousInvariant) * To take these fees in BPT LP shares, the protocol mints Delta S new LP shares where * Delta S = S * Delta L / ( currentInvariant - Delta L ) * where S = current BPT supply * The protocol then splits the fees (in BPT) considering protocolFeeGyroPortion * See also the write-up, Proposition 7. *********************************************************************************/ if (currentInvariant <= previousInvariant) { // This shouldn't happen outside of rounding errors, but have this safeguard nonetheless to prevent the Pool // from entering a locked state in which joins and exits revert while computing accumulated swap fees. // NB: This condition is also used by the pools to indicate that _lastInvariant is invalid and should be ignored. return (0, 0); } // Calculate due protocol fees in BPT terms // We round down to prevent issues in the Pool's accounting, even if it means paying slightly less in protocol // fees to the Vault. // For the numerator, we need to round down delta L. Also for the denominator b/c subtracted // Ordering multiplications for best fixed point precision considering that S and currentInvariant-previousInvariant could be large uint256 numerator = (currentBptSupply.mulDown(currentInvariant.sub(previousInvariant))).mulDown(protocolSwapFeePerc); uint256 diffInvariant = protocolSwapFeePerc.mulDown(currentInvariant.sub(previousInvariant)); uint256 denominator = currentInvariant.sub(diffInvariant); uint256 deltaS = numerator.divDown(denominator); // Split fees between Gyro and Balancer uint256 gyroFees = protocolFeeGyroPortion.mulDown(deltaS); uint256 balancerFees = deltaS.sub(gyroFees); return (gyroFees, balancerFees); } /** @dev Implements square root algorithm using Newton's method and a first-guess optimisation **/ function _sqrt(uint256 input, uint256 tolerance) internal pure returns (uint256) { if (input == 0) { return 0; } uint256 guess = _makeInitialGuess(input); // 7 iterations guess = (guess + ((input * GyroFixedPoint.ONE) / guess)) / 2; guess = (guess + ((input * GyroFixedPoint.ONE) / guess)) / 2; guess = (guess + ((input * GyroFixedPoint.ONE) / guess)) / 2; guess = (guess + ((input * GyroFixedPoint.ONE) / guess)) / 2; guess = (guess + ((input * GyroFixedPoint.ONE) / guess)) / 2; guess = (guess + ((input * GyroFixedPoint.ONE) / guess)) / 2; guess = (guess + ((input * GyroFixedPoint.ONE) / guess)) / 2; // Check in some epsilon range // Check square is more or less correct uint256 guessSquared = guess.mulDown(guess); require(guessSquared <= input.add(guess.mulUp(tolerance)) && guessSquared >= input.sub(guess.mulUp(tolerance)), "_sqrt FAILED"); return guess; } // function _makeInitialGuess10(uint256 input) internal pure returns (uint256) { // uint256 orderUpperBound = 72; // uint256 orderLowerBound = 0; // uint256 orderMiddle; // orderMiddle = (orderUpperBound + orderLowerBound) / 2; // while (orderUpperBound - orderLowerBound != 1) { // if (10**orderMiddle > input) { // orderUpperBound = orderMiddle; // } else { // orderLowerBound = orderMiddle; // } // } // return 10**(orderUpperBound / 2); // } function _makeInitialGuess(uint256 input) internal pure returns (uint256) { if (input >= GyroFixedPoint.ONE) { return (1 << (_intLog2Halved(input / GyroFixedPoint.ONE))) * GyroFixedPoint.ONE; } else { if (input <= 10) { return SQRT_1E_NEG_17; } if (input <= 1e2) { return 1e10; } if (input <= 1e3) { return SQRT_1E_NEG_15; } if (input <= 1e4) { return 1e11; } if (input <= 1e5) { return SQRT_1E_NEG_13; } if (input <= 1e6) { return 1e12; } if (input <= 1e7) { return SQRT_1E_NEG_11; } if (input <= 1e8) { return 1e13; } if (input <= 1e9) { return SQRT_1E_NEG_9; } if (input <= 1e10) { return 1e14; } if (input <= 1e11) { return SQRT_1E_NEG_7; } if (input <= 1e12) { return 1e15; } if (input <= 1e13) { return SQRT_1E_NEG_5; } if (input <= 1e14) { return 1e16; } if (input <= 1e15) { return SQRT_1E_NEG_3; } if (input <= 1e16) { return 1e17; } if (input <= 1e17) { return SQRT_1E_NEG_1; } return input; } } function _intLog2Halved(uint256 x) public pure returns (uint256 n) { if (x >= 1 << 128) { x >>= 128; n += 64; } if (x >= 1 << 64) { x >>= 64; n += 32; } if (x >= 1 << 32) { x >>= 32; n += 16; } if (x >= 1 << 16) { x >>= 16; n += 8; } if (x >= 1 << 8) { x >>= 8; n += 4; } if (x >= 1 << 4) { x >>= 4; n += 2; } if (x >= 1 << 2) { x >>= 2; n += 1; } } /** @dev If liquidity update is proportional so that price stays the same ("balanced liquidity update"), then this * returns the invariant after that change. This is more efficient than calling `calculateInvariant()` on the updated balances. * `isIncreaseLiq` denotes the sign of the update. See the writeup, Corollary 3 in Section 3.1.3. */ function liquidityInvariantUpdate( uint256 uinvariant, uint256 changeBptSupply, uint256 currentBptSupply, bool isIncreaseLiq ) internal pure returns (uint256 unewInvariant) { // change in invariant if (isIncreaseLiq) { // round new invariant up so that protocol fees not triggered uint256 dL = uinvariant.mulUp(changeBptSupply).divUp(currentBptSupply); unewInvariant = uinvariant.add(dL); } else { // round new invariant up (and so round dL down) so that protocol fees not triggered uint256 dL = uinvariant.mulDown(changeBptSupply).divDown(currentBptSupply); unewInvariant = uinvariant.sub(dL); } } /** @dev If `deltaBalances` are such that, when changing `balances` by it, the price stays the same ("balanced * liquidity update"), then this returns the invariant after that change. This is more efficient than calling * `calculateInvariant()` on the updated balances. `isIncreaseLiq` denotes the sign of the update. * See the writeup, Corollary 3 in Section 3.1.3. * * DEPRECATED and will go out of use and be removed once pending changes to the CEMM are merged. Use the other liquidityInvariantUpdate() function instead! */ function liquidityInvariantUpdate( uint256[] memory balances, uint256 uinvariant, uint256[] memory deltaBalances, bool isIncreaseLiq ) internal pure returns (uint256 unewInvariant) { uint256 largestBalanceIndex; uint256 largestBalance; for (uint256 i = 0; i < balances.length; i++) { if (balances[i] > largestBalance) { largestBalance = balances[i]; largestBalanceIndex = i; } } uint256 deltaInvariant = uinvariant.mulDown(deltaBalances[largestBalanceIndex]).divDown(balances[largestBalanceIndex]); unewInvariant = isIncreaseLiq ? uinvariant.add(deltaInvariant) : uinvariant.sub(deltaInvariant); } }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.7.0; /** * @dev Reverts if `condition` is false, with a revert reason containing `errorCode`. Only codes up to 999 are * supported. * Uses the default 'BAL' prefix for the error code */ function _grequire(bool condition, uint256 errorCode) pure { if (!condition) _grevert(errorCode); } /** * @dev Reverts if `condition` is false, with a revert reason containing `errorCode`. Only codes up to 999 are * supported. */ function _grequire( bool condition, uint256 errorCode, bytes3 prefix ) pure { if (!condition) _grevert(errorCode, prefix); } /** * @dev Reverts with a revert reason containing `errorCode`. Only codes up to 999 are supported. * Uses the default 'BAL' prefix for the error code */ function _grevert(uint256 errorCode) pure { _grevert(errorCode, 0x475952); // This is the raw byte representation of "GYR" } /** * @dev Reverts with a revert reason containing `errorCode`. Only codes up to 999 are supported. */ function _grevert(uint256 errorCode, bytes3 prefix) pure { uint256 prefixUint = uint256(uint24(prefix)); // We're going to dynamically create a revert string based on the error code, with the following format: // 'BAL#{errorCode}' // where the code is left-padded with zeroes to three digits (so they range from 000 to 999). // // We don't have revert strings embedded in the contract to save bytecode size: it takes much less space to store a // number (8 to 16 bits) than the individual string characters. // // The dynamic string creation algorithm that follows could be implemented in Solidity, but assembly allows for a // much denser implementation, again saving bytecode size. Given this function unconditionally reverts, this is a // safe place to rely on it without worrying about how its usage might affect e.g. memory contents. assembly { // First, we need to compute the ASCII representation of the error code. We assume that it is in the 0-999 // range, so we only need to convert three digits. To convert the digits to ASCII, we add 0x30, the value for // the '0' character. let units := add(mod(errorCode, 10), 0x30) errorCode := div(errorCode, 10) let tenths := add(mod(errorCode, 10), 0x30) errorCode := div(errorCode, 10) let hundreds := add(mod(errorCode, 10), 0x30) // With the individual characters, we can now construct the full string. // We first append the '#' character (0x23) to the prefix. In the case of 'BAL', it results in 0x42414c23 ('BAL#') // Then, we shift this by 24 (to provide space for the 3 bytes of the error code), and add the // characters to it, each shifted by a multiple of 8. // The revert reason is then shifted left by 200 bits (256 minus the length of the string, 7 characters * 8 bits // per character = 56) to locate it in the most significant part of the 256 slot (the beginning of a byte // array). let formattedPrefix := shl(24, add(0x23, shl(8, prefixUint))) let revertReason := shl(200, add(formattedPrefix, add(add(units, shl(8, tenths)), shl(16, hundreds)))) // We can now encode the reason in memory, which can be safely overwritten as we're about to revert. The encoded // message will have the following layout: // [ revert reason identifier ] [ string location offset ] [ string length ] [ string contents ] // The Solidity revert reason identifier is 0x08c739a0, the function selector of the Error(string) function. We // also write zeroes to the next 28 bytes of memory, but those are about to be overwritten. mstore(0x0, 0x08c379a000000000000000000000000000000000000000000000000000000000) // Next is the offset to the location of the string, which will be placed immediately after (20 bytes away). mstore(0x04, 0x0000000000000000000000000000000000000000000000000000000000000020) // The string length is fixed: 7 characters. mstore(0x24, 7) // Finally, the string itself is stored. mstore(0x44, revertReason) // Even if the string is only 7 bytes long, we need to return a full 32 byte slot containing it. The length of // the encoded message is therefore 4 + 32 + 32 + 32 = 100. revert(0, 100) } } library GyroErrors { uint256 internal constant ZERO_ADDRESS = 105; }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity 0.7.6; pragma experimental ABIEncoderV2; // import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol"; import "../../libraries/GyroFixedPoint.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/InputHelpers.sol"; import "@balancer-labs/v2-pool-utils/contracts/BaseMinimalSwapInfoPool.sol"; import "@balancer-labs/v2-pool-weighted/contracts/WeightedMath.sol"; import "@balancer-labs/v2-pool-weighted/contracts/WeightedPoolUserDataHelpers.sol"; /** * @dev Base class for WeightedPools containing swap, join and exit logic, but leaving storage and management of * the weights to subclasses. Derived contracts can choose to make weights immutable, mutable, or even dynamic * based on local or external logic. */ abstract contract ExtensibleBaseWeightedPool is BaseMinimalSwapInfoPool { using GyroFixedPoint for uint256; using WeightedPoolUserDataHelpers for bytes; uint256 internal _lastInvariant; constructor( IVault vault, string memory name, string memory symbol, IERC20[] memory tokens, address[] memory assetManagers, uint256 swapFeePercentage, uint256 pauseWindowDuration, uint256 bufferPeriodDuration, address owner ) BasePool( vault, // Given BaseMinimalSwapInfoPool supports both of these specializations, and this Pool never registers or // deregisters any tokens after construction, picking Two Token when the Pool only has two tokens is free // gas savings. tokens.length == 2 ? IVault.PoolSpecialization.TWO_TOKEN : IVault.PoolSpecialization.MINIMAL_SWAP_INFO, name, symbol, tokens, assetManagers, swapFeePercentage, pauseWindowDuration, bufferPeriodDuration, owner ) { // solhint-disable-previous-line no-empty-blocks } // Virtual functions /** * @dev Returns the normalized weight of `token`. Weights are fixed point numbers that sum to FixedPoint.ONE. */ function _getNormalizedWeight(IERC20 token) internal view virtual returns (uint256); /** * @dev Returns all normalized weights, in the same order as the Pool's tokens. */ function _getNormalizedWeights() internal view virtual returns (uint256[] memory); /** * @dev Returns all normalized weights, in the same order as the Pool's tokens, along with the index of the token * with the highest weight. */ function _getNormalizedWeightsAndMaxWeightIndex() internal view virtual returns (uint256[] memory, uint256); function getLastInvariant() public view virtual returns (uint256) { return _lastInvariant; } /** * @dev Returns the current value of the invariant. */ function getInvariant() public view virtual returns (uint256) { (, uint256[] memory balances, ) = getVault().getPoolTokens(getPoolId()); // Since the Pool hooks always work with upscaled balances, we manually // upscale here for consistency _upscaleArray(balances, _scalingFactors()); (uint256[] memory normalizedWeights, ) = _getNormalizedWeightsAndMaxWeightIndex(); return WeightedMath._calculateInvariant(normalizedWeights, balances); } function getNormalizedWeights() external view returns (uint256[] memory) { return _getNormalizedWeights(); } // Base Pool handlers // Swap function _onSwapGivenIn( SwapRequest memory swapRequest, uint256 currentBalanceTokenIn, uint256 currentBalanceTokenOut ) internal view virtual override whenNotPaused returns (uint256) { // Swaps are disabled while the contract is paused. return WeightedMath._calcOutGivenIn( currentBalanceTokenIn, _getNormalizedWeight(swapRequest.tokenIn), currentBalanceTokenOut, _getNormalizedWeight(swapRequest.tokenOut), swapRequest.amount ); } function _onSwapGivenOut( SwapRequest memory swapRequest, uint256 currentBalanceTokenIn, uint256 currentBalanceTokenOut ) internal view virtual override whenNotPaused returns (uint256) { // Swaps are disabled while the contract is paused. return WeightedMath._calcInGivenOut( currentBalanceTokenIn, _getNormalizedWeight(swapRequest.tokenIn), currentBalanceTokenOut, _getNormalizedWeight(swapRequest.tokenOut), swapRequest.amount ); } // Initialize function _onInitializePool( bytes32, address, address, uint256[] memory scalingFactors, bytes memory userData ) internal virtual override whenNotPaused returns (uint256, uint256[] memory) { // It would be strange for the Pool to be paused before it is initialized, but for consistency we prevent // initialization in this case. BaseWeightedPool.JoinKind kind = userData.joinKind(); _require(kind == BaseWeightedPool.JoinKind.INIT, Errors.UNINITIALIZED); uint256[] memory amountsIn = userData.initialAmountsIn(); InputHelpers.ensureInputLengthMatch(_getTotalTokens(), amountsIn.length); _upscaleArray(amountsIn, scalingFactors); (uint256[] memory normalizedWeights, ) = _getNormalizedWeightsAndMaxWeightIndex(); uint256 invariantAfterJoin = WeightedMath._calculateInvariant(normalizedWeights, amountsIn); // Set the initial BPT to the value of the invariant times the number of tokens. This makes BPT supply more // consistent in Pools with similar compositions but different number of tokens. uint256 bptAmountOut = Math.mul(invariantAfterJoin, _getTotalTokens()); _lastInvariant = invariantAfterJoin; return (bptAmountOut, amountsIn); } // Join function _onJoinPool( bytes32, address, address, uint256[] memory balances, uint256, uint256 protocolSwapFeePercentage, uint256[] memory scalingFactors, bytes memory userData ) internal virtual override whenNotPaused returns ( uint256, uint256[] memory, uint256[] memory ) { // All joins are disabled while the contract is paused. (uint256[] memory normalizedWeights, uint256 maxWeightTokenIndex) = _getNormalizedWeightsAndMaxWeightIndex(); // Due protocol swap fee amounts are computed by measuring the growth of the invariant between the previous join // or exit event and now - the invariant's growth is due exclusively to swap fees. This avoids spending gas // computing them on each individual swap uint256 invariantBeforeJoin = WeightedMath._calculateInvariant(normalizedWeights, balances); uint256[] memory dueProtocolFeeAmounts = _getDueProtocolFeeAmounts( balances, normalizedWeights, maxWeightTokenIndex, _lastInvariant, invariantBeforeJoin, protocolSwapFeePercentage ); // Update current balances by subtracting the protocol fee amounts _mutateAmounts(balances, dueProtocolFeeAmounts, FixedPoint.sub); (uint256 bptAmountOut, uint256[] memory amountsIn) = _doJoin(balances, normalizedWeights, scalingFactors, userData); // Update the invariant with the balances the Pool will have after the join, in order to compute the // protocol swap fee amounts due in future joins and exits. _lastInvariant = _invariantAfterJoin(balances, amountsIn, normalizedWeights); return (bptAmountOut, amountsIn, dueProtocolFeeAmounts); } function _doJoin( uint256[] memory balances, uint256[] memory normalizedWeights, uint256[] memory scalingFactors, bytes memory userData ) internal returns (uint256, uint256[] memory) { BaseWeightedPool.JoinKind kind = userData.joinKind(); if (kind == BaseWeightedPool.JoinKind.EXACT_TOKENS_IN_FOR_BPT_OUT) { return _joinExactTokensInForBPTOut(balances, normalizedWeights, scalingFactors, userData); } else if (kind == BaseWeightedPool.JoinKind.TOKEN_IN_FOR_EXACT_BPT_OUT) { return _joinTokenInForExactBPTOut(balances, normalizedWeights, userData); } else if (kind == BaseWeightedPool.JoinKind.ALL_TOKENS_IN_FOR_EXACT_BPT_OUT) { return _joinAllTokensInForExactBPTOut(balances, userData); } else { _revert(Errors.UNHANDLED_JOIN_KIND); } } function _joinExactTokensInForBPTOut( uint256[] memory balances, uint256[] memory normalizedWeights, uint256[] memory scalingFactors, bytes memory userData ) private returns (uint256, uint256[] memory) { (uint256[] memory amountsIn, uint256 minBPTAmountOut) = userData.exactTokensInForBptOut(); InputHelpers.ensureInputLengthMatch(_getTotalTokens(), amountsIn.length); _upscaleArray(amountsIn, scalingFactors); (uint256 bptAmountOut, uint256[] memory swapFees) = WeightedMath._calcBptOutGivenExactTokensIn( balances, normalizedWeights, amountsIn, totalSupply(), getSwapFeePercentage() ); // Note that swapFees is already upscaled _processSwapFeeAmounts(swapFees); _require(bptAmountOut >= minBPTAmountOut, Errors.BPT_OUT_MIN_AMOUNT); return (bptAmountOut, amountsIn); } function _joinTokenInForExactBPTOut( uint256[] memory balances, uint256[] memory normalizedWeights, bytes memory userData ) private returns (uint256, uint256[] memory) { (uint256 bptAmountOut, uint256 tokenIndex) = userData.tokenInForExactBptOut(); // Note that there is no maximum amountIn parameter: this is handled by `IVault.joinPool`. _require(tokenIndex < _getTotalTokens(), Errors.OUT_OF_BOUNDS); (uint256 amountIn, uint256 swapFee) = WeightedMath._calcTokenInGivenExactBptOut( balances[tokenIndex], normalizedWeights[tokenIndex], bptAmountOut, totalSupply(), getSwapFeePercentage() ); // Note that swapFee is already upscaled _processSwapFeeAmount(tokenIndex, swapFee); // We join in a single token, so we initialize amountsIn with zeros uint256[] memory amountsIn = new uint256[](_getTotalTokens()); // And then assign the result to the selected token amountsIn[tokenIndex] = amountIn; return (bptAmountOut, amountsIn); } function _joinAllTokensInForExactBPTOut(uint256[] memory balances, bytes memory userData) internal view virtual returns (uint256, uint256[] memory) { uint256 bptAmountOut = userData.allTokensInForExactBptOut(); // Note that there is no maximum amountsIn parameter: this is handled by `IVault.joinPool`. uint256[] memory amountsIn = WeightedMath._calcAllTokensInGivenExactBptOut(balances, bptAmountOut, totalSupply()); return (bptAmountOut, amountsIn); } // Exit function _onExitPool( bytes32, address, address, uint256[] memory balances, uint256, uint256 protocolSwapFeePercentage, uint256[] memory scalingFactors, bytes memory userData ) internal virtual override returns ( uint256 bptAmountIn, uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts ) { (uint256[] memory normalizedWeights, uint256 maxWeightTokenIndex) = _getNormalizedWeightsAndMaxWeightIndex(); // Exits are not completely disabled while the contract is paused: proportional exits (exact BPT in for tokens // out) remain functional. if (_isNotPaused()) { // Due protocol swap fee amounts are computed by measuring the growth of the invariant between the previous // join or exit event and now - the invariant's growth is due exclusively to swap fees. This avoids // spending gas calculating the fees on each individual swap. uint256 invariantBeforeExit = WeightedMath._calculateInvariant(normalizedWeights, balances); dueProtocolFeeAmounts = _getDueProtocolFeeAmounts( balances, normalizedWeights, maxWeightTokenIndex, _lastInvariant, invariantBeforeExit, protocolSwapFeePercentage ); // Update current balances by subtracting the protocol fee amounts _mutateAmounts(balances, dueProtocolFeeAmounts, GyroFixedPoint.sub); } else { // If the contract is paused, swap protocol fee amounts are not charged to avoid extra calculations and // reduce the potential for errors. dueProtocolFeeAmounts = new uint256[](_getTotalTokens()); } (bptAmountIn, amountsOut) = _doExit(balances, normalizedWeights, scalingFactors, userData); // Update the invariant with the balances the Pool will have after the exit, in order to compute the // protocol swap fees due in future joins and exits. _lastInvariant = _invariantAfterExit(balances, amountsOut, normalizedWeights); return (bptAmountIn, amountsOut, dueProtocolFeeAmounts); } function _doExit( uint256[] memory balances, uint256[] memory normalizedWeights, uint256[] memory scalingFactors, bytes memory userData ) internal returns (uint256, uint256[] memory) { BaseWeightedPool.ExitKind kind = userData.exitKind(); if (kind == BaseWeightedPool.ExitKind.EXACT_BPT_IN_FOR_ONE_TOKEN_OUT) { return _exitExactBPTInForTokenOut(balances, normalizedWeights, userData); } else if (kind == BaseWeightedPool.ExitKind.EXACT_BPT_IN_FOR_TOKENS_OUT) { return _exitExactBPTInForTokensOut(balances, userData); } else if (kind == BaseWeightedPool.ExitKind.BPT_IN_FOR_EXACT_TOKENS_OUT) { return _exitBPTInForExactTokensOut(balances, normalizedWeights, scalingFactors, userData); } else { _revert(Errors.UNHANDLED_EXIT_KIND); } } function _exitExactBPTInForTokenOut( uint256[] memory balances, uint256[] memory normalizedWeights, bytes memory userData ) private whenNotPaused returns (uint256, uint256[] memory) { // This exit function is disabled if the contract is paused. (uint256 bptAmountIn, uint256 tokenIndex) = userData.exactBptInForTokenOut(); // Note that there is no minimum amountOut parameter: this is handled by `IVault.exitPool`. _require(tokenIndex < _getTotalTokens(), Errors.OUT_OF_BOUNDS); (uint256 amountOut, uint256 swapFee) = WeightedMath._calcTokenOutGivenExactBptIn( balances[tokenIndex], normalizedWeights[tokenIndex], bptAmountIn, totalSupply(), getSwapFeePercentage() ); // This is an exceptional situation in which the fee is charged on a token out instead of a token in. // Note that swapFee is already upscaled. _processSwapFeeAmount(tokenIndex, swapFee); // We exit in a single token, so we initialize amountsOut with zeros uint256[] memory amountsOut = new uint256[](_getTotalTokens()); // And then assign the result to the selected token amountsOut[tokenIndex] = amountOut; return (bptAmountIn, amountsOut); } function _exitExactBPTInForTokensOut(uint256[] memory balances, bytes memory userData) internal view virtual returns (uint256, uint256[] memory) { // This exit function is the only one that is not disabled if the contract is paused: it remains unrestricted // in an attempt to provide users with a mechanism to retrieve their tokens in case of an emergency. // This particular exit function is the only one that remains available because it is the simplest one, and // therefore the one with the lowest likelihood of errors. uint256 bptAmountIn = userData.exactBptInForTokensOut(); // Note that there is no minimum amountOut parameter: this is handled by `IVault.exitPool`. uint256[] memory amountsOut = WeightedMath._calcTokensOutGivenExactBptIn(balances, bptAmountIn, totalSupply()); return (bptAmountIn, amountsOut); } function _exitBPTInForExactTokensOut( uint256[] memory balances, uint256[] memory normalizedWeights, uint256[] memory scalingFactors, bytes memory userData ) private whenNotPaused returns (uint256, uint256[] memory) { // This exit function is disabled if the contract is paused. (uint256[] memory amountsOut, uint256 maxBPTAmountIn) = userData.bptInForExactTokensOut(); InputHelpers.ensureInputLengthMatch(amountsOut.length, _getTotalTokens()); _upscaleArray(amountsOut, scalingFactors); (uint256 bptAmountIn, uint256[] memory swapFees) = WeightedMath._calcBptInGivenExactTokensOut( balances, normalizedWeights, amountsOut, totalSupply(), getSwapFeePercentage() ); _require(bptAmountIn <= maxBPTAmountIn, Errors.BPT_IN_MAX_AMOUNT); // This is an exceptional situation in which the fee is charged on a token out instead of a token in. // Note that swapFee is already upscaled. _processSwapFeeAmounts(swapFees); return (bptAmountIn, amountsOut); } // Helpers function _getDueProtocolFeeAmounts( uint256[] memory balances, uint256[] memory normalizedWeights, uint256 maxWeightTokenIndex, uint256 previousInvariant, uint256 currentInvariant, uint256 protocolSwapFeePercentage ) internal view virtual returns (uint256[] memory) { // Initialize with zeros uint256[] memory dueProtocolFeeAmounts = new uint256[](_getTotalTokens()); // Early return if the protocol swap fee percentage is zero, saving gas. if (protocolSwapFeePercentage == 0) { return dueProtocolFeeAmounts; } // The protocol swap fees are always paid using the token with the largest weight in the Pool. As this is the // token that is expected to have the largest balance, using it to pay fees should not unbalance the Pool. dueProtocolFeeAmounts[maxWeightTokenIndex] = WeightedMath._calcDueTokenProtocolSwapFeeAmount( balances[maxWeightTokenIndex], normalizedWeights[maxWeightTokenIndex], previousInvariant, currentInvariant, protocolSwapFeePercentage ); return dueProtocolFeeAmounts; } /** * @dev Returns the value of the invariant given `balances`, assuming they are increased by `amountsIn`. All * amounts are expected to be upscaled. */ function _invariantAfterJoin( uint256[] memory balances, uint256[] memory amountsIn, uint256[] memory normalizedWeights ) private view returns (uint256) { _mutateAmounts(balances, amountsIn, GyroFixedPoint.add); return WeightedMath._calculateInvariant(normalizedWeights, balances); } function _invariantAfterExit( uint256[] memory balances, uint256[] memory amountsOut, uint256[] memory normalizedWeights ) private view returns (uint256) { _mutateAmounts(balances, amountsOut, GyroFixedPoint.sub); return WeightedMath._calculateInvariant(normalizedWeights, balances); } /** * @dev Mutates `amounts` by applying `mutation` with each entry in `arguments`. * * Equivalent to `amounts = amounts.map(mutation)`. */ function _mutateAmounts( uint256[] memory toMutate, uint256[] memory arguments, function(uint256, uint256) pure returns (uint256) mutation ) internal view { for (uint256 i = 0; i < _getTotalTokens(); ++i) { toMutate[i] = mutation(toMutate[i], arguments[i]); } } /** * @dev This function returns the appreciation of one BPT relative to the * underlying tokens. This starts at 1 when the pool is created and grows over time */ function getRate() public view returns (uint256) { // The initial BPT supply is equal to the invariant times the number of tokens. return Math.mul(getInvariant(), _getTotalTokens()).divDown(totalSupply()); } }
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.7.6; // import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol"; import "@balancer-labs/v2-solidity-utils/contracts/math/Math.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/InputHelpers.sol"; import "./Gyro3CLPPoolErrors.sol"; import "../../libraries/GyroFixedPoint.sol"; import "../../libraries/GyroPoolMath.sol"; import "../../libraries/GyroErrors.sol"; // These functions start with an underscore, as if they were part of a contract and not a library. At some point this // should be fixed. // solhint-disable private-vars-leading-underscore /** @dev Math routines for the "symmetric" 3CLP, i.e., the price bounds are [alpha, 1/alpha] for all three asset * pairs. We pass the parameter root3Alpha = 3rd root of alpha. We don't need to compute root3Alpha; instead, we * take this as the fundamental parameter and compute alpha = root3Alpha^3 where needed. * * A large part of this code is concerned with computing the invariant L from the real reserves, via Newton's method. * This can be rather large and we need it to high precision. We apply various techniques to prevent an accumulation of * errors. See the 2-CLP/3-CLP math paper (especially Appendix A) for context. * * Most calculations are unchecked and instead we impose some global bounds to ensure that they don't overflow. See the * Overflow Analysis writeup for why this works. */ library Gyro3CLPMath { using GyroFixedPoint for uint256; using GyroPoolMath for uint256; // for the function number._sqrt(tolerance) // Stopping criterion for the Newton iteration that computes the invariant: // - Stop if the step width doesn't shrink anymore by at least a factor _INVARIANT_SHRINKING_FACTOR_PER_STEP. // - but in any case, make at least _INVARIANT_MIN_ITERATIONS iterations. This is useful to compensate for a // less-than-ideal starting point, which is important when alpha is small. uint8 internal constant _INVARIANT_SHRINKING_FACTOR_PER_STEP = 8; uint8 internal constant _INVARIANT_MIN_ITERATIONS = 5; // Thresholds that prevent against numerical overflow and excessive inaccuracy: uint256 internal constant _MAX_BALANCES = 1e29; // 1e11 = 100 billion, scaled uint256 internal constant _MIN_ROOT_3_ALPHA = 0.15874010519681997e18; // 3rd root of 0.004, scaled uint256 internal constant _MAX_ROOT_3_ALPHA = 0.9999666655554938e18; // 3rd root of 0.9999, scaled // Threshold of l where the normal method of computing the newton step would overflow and we need a workaround. uint256 internal constant _L_THRESHOLD_SIMPLE_NUMERICS = 2e31; // 2e13, scaled // Threshold of l above which overflows may occur in the Newton iteration. This is far above the theoretically // maximum possible (starting or solution or intermediate) value of l, so it would only ever be reached due to some // other bug in the Newton iteration. uint256 internal constant _L_MAX = 1e34; // 1e16, scaled // Minimum value of l / L+, where L+ is the local minimum of the function f. This is significantly below the // theoretically minimum possible (starting or solution or intermediate) value of l / L+, so it would only ever be // reached due to a bug in the Newton iteration. We require this because otherwise, rounding errors in // `divDownLarge()` may become significant. uint256 internal constant _L_VS_LPLUS_MIN = 1.3e18; // 1.3, scaled /** @dev The invariant L corresponding to the given balances and alpha. */ function _calculateInvariant(uint256[] memory balances, uint256 root3Alpha) internal pure returns (uint256 rootEst) { if (!(balances[0] <= _MAX_BALANCES)) _grequire(false, Gyro3CLPPoolErrors.BALANCES_TOO_LARGE); if (!(balances[1] <= _MAX_BALANCES)) _grequire(false, Gyro3CLPPoolErrors.BALANCES_TOO_LARGE); if (!(balances[2] <= _MAX_BALANCES)) _grequire(false, Gyro3CLPPoolErrors.BALANCES_TOO_LARGE); (uint256 a, uint256 mb, uint256 mc, uint256 md) = _calculateCubicTerms(balances, root3Alpha); return _calculateCubic(a, mb, mc, md, root3Alpha); } /** @dev Prepares cubic coefficients for input to _calculateCubic(). * We will have a > 0, b < 0, c <= 0, and d <= 0 and return a, -b, -c, -d, all >= 0 * Terms come from cubic in Section 3.1.1.*/ function _calculateCubicTerms(uint256[] memory balances, uint256 root3Alpha) internal pure returns ( uint256 a, uint256 mb, uint256 mc, uint256 md ) { // Order of operations is chosen to minimize error amplification. This also duplicates some operations, but // minimizing error is more important than saving gas at this point. a = GyroFixedPoint.ONE - root3Alpha.mulDownU(root3Alpha).mulDownU(root3Alpha); uint256 bterm = balances[0] + balances[1] + balances[2]; mb = bterm.mulDownU(root3Alpha).mulDownU(root3Alpha); uint256 cterm = balances[0].mulDownU(balances[1]) + balances[1].mulDownU(balances[2]) + balances[2].mulDownU(balances[0]); mc = cterm.mulDownU(root3Alpha); md = balances[0].mulDownU(balances[1]).mulDownU(balances[2]); } /** @dev Calculate the maximal root of the polynomial a L^3 - mb L^2 - mc L - md. * This root is always non-negative, and it is the unique positive root unless mb == mc == md == 0. * This function and all following ones require that a = 1 - root3Alpha^3 like in _calculateCubicTerms(), i.e., * this *cannot* be used for *any* cubic equation. We do this because `a` carries an error and to be able to * rearrange operations to reduce error accumulation.*/ function _calculateCubic( uint256 a, uint256 mb, uint256 mc, uint256 md, uint256 root3Alpha ) internal pure returns (uint256 rootEst) { uint256 l_lower; (l_lower, rootEst) = _calculateCubicStartingPoint(a, mb, mc, md); rootEst = _runNewtonIteration(mb, mc, md, root3Alpha, l_lower, rootEst); // Sanity check; the Newton iteration does not check its own final result, only intermediate results. if (!(rootEst <= _L_MAX)) _grequire(false, Gyro3CLPPoolErrors.INVARIANT_TOO_LARGE); } /** @dev (Minimum safe value, starting point for Newton iteration). Calibrated to the particular polynomial for * computing the invariant. For values < l_lower, errors from rounding can amplify too much when l is large. This * is only relevant for the branch of calcNewtonDelta() where rootEst > _L_THRESHOLD_SIMPLE_NUMERICS. */ function _calculateCubicStartingPoint( uint256 a, uint256 mb, uint256 mc, uint256 // md ) internal pure returns (uint256 l_lower, uint256 l0) { uint256 radic = mb.mulUpU(mb) + a.mulUpU(mc * 3); uint256 lplus = (mb + radic._sqrt(5)).divUpU(a * 3); // Upper local minimum // This formula has been found computationally. It is exact for alpha -> 1, where the factor is 1.5. All // factors > 1 are safe. For small alpha values, it is more efficient to fallback to a larger factor. uint256 alpha = GyroFixedPoint.ONE - a; // We know that a is in [0, 1]. l0 = lplus.mulUpU(alpha >= 0.5e18 ? 1.5e18 : 2e18); l_lower = lplus.mulUpU(_L_VS_LPLUS_MIN); } /** @dev Find a root of the given polynomial with the given starting point l. * Safe iff l > the local minimum. * Note that f(l) may be negative for the first iteration and will then be positive (up to rounding errors). * f'(l) is always positive for the range of values we consider. * See write-up, Appendix A.*/ function _runNewtonIteration( uint256 mb, uint256 mc, uint256 md, uint256 root3Alpha, uint256 l_lower, uint256 rootEst ) internal pure returns (uint256) { uint256 deltaAbsPrev = 0; for (uint256 iteration = 0; iteration < 255; ++iteration) { // The delta to the next step can be positive or negative, and we represent its sign separately. (uint256 deltaAbs, bool deltaIsPos) = _calcNewtonDelta(mb, mc, md, root3Alpha, l_lower, rootEst); // Note: If we ever set _INVARIANT_MIN_ITERATIONS=0, the following should include `iteration >= 1`. if (deltaAbs <= 1) return rootEst; if (iteration >= _INVARIANT_MIN_ITERATIONS && deltaIsPos) // This should mathematically never happen. Thus, the numerical error dominates at this point. return rootEst; if (iteration >= _INVARIANT_MIN_ITERATIONS && deltaAbs >= deltaAbsPrev / _INVARIANT_SHRINKING_FACTOR_PER_STEP) { // The iteration has stalled and isn't making significant progress anymore. return rootEst; } deltaAbsPrev = deltaAbs; // Using checked versions of add/sub just to be extra sure if (deltaIsPos) rootEst = rootEst.add(deltaAbs); else rootEst = rootEst.sub(deltaAbs); } _grevert(Gyro3CLPPoolErrors.INVARIANT_DIDNT_CONVERGE); } /** @dev The Newton step -f(l)/f'(l), represented by its absolute value and its sign. * Requires that l is sufficiently large (right of the local minimum) so that f' > 0.*/ function _calcNewtonDelta( uint256 mb, uint256 mc, uint256 md, uint256 root3Alpha, uint256 l_lower, uint256 rootEst ) internal pure returns (uint256 deltaAbs, bool deltaIsPos) { if (!(rootEst <= _L_MAX)) _grequire(false, Gyro3CLPPoolErrors.INVARIANT_TOO_LARGE); // Note: In principle, this check is only relevant for the `else` branch below. But if it's violated, this // points to severe problems anyways, so we keep it here. if (!(rootEst >= l_lower)) _grequire(false, Gyro3CLPPoolErrors.INVARIANT_UNDERFLOW); uint256 rootEst2 = rootEst.mulDownU(rootEst); // The following is equal to dfRootEst^3 * a but with the order of operations optimized for precision. // Subtraction does not underflow since rootEst is chosen so that it's always above the (only) local minimum. // SOMEDAY alternative with very slightly worse rounding and slightly lower gas: // uint256 dfRootEst = 3 * rootEst2; uint256 dfRootEst = (rootEst * 3).mulDown(rootEst); dfRootEst = dfRootEst - dfRootEst.mulDownU(root3Alpha).mulDownU(root3Alpha).mulDownU(root3Alpha); dfRootEst = dfRootEst - 2 * rootEst.mulDownU(mb) - mc; // We distinguish two cases: Relatively small values of rootEst, where we can use simple operations, and larger // values, where the simple operations may overflow and we need to use functions that compensate for that. uint256 deltaMinus; uint256 deltaPlus; if (rootEst <= _L_THRESHOLD_SIMPLE_NUMERICS) { // Calculations are ordered and grouped to minimize rounding error amplification. deltaMinus = rootEst2.mulDownU(rootEst); deltaMinus = deltaMinus - deltaMinus.mulDownU(root3Alpha).mulDownU(root3Alpha).mulDownU(root3Alpha); deltaMinus = deltaMinus.divDownU(dfRootEst); // NB: We could pull apart the different values here and reorder them in much the same way we did above to // reduce errors. But tests show that this has no significant effect, and it would lead to more complex code // and worse gas. deltaPlus = rootEst2.mulDownU(mb); deltaPlus = (deltaPlus + rootEst.mulDownU(mc)).divDownU(dfRootEst); deltaPlus = deltaPlus + md.divDownU(dfRootEst); } else { // Same operations as above, but we replace some of the operations with their variants that work for larger // numbers. deltaMinus = rootEst2.mulDownLargeSmallU(rootEst); deltaMinus = deltaMinus - deltaMinus.mulDownLargeSmallU(root3Alpha).mulDownLargeSmallU(root3Alpha).mulDownLargeSmallU(root3Alpha); // NB: `divDownLarge()` is not exact, but `dfRootEst` is large enough so that the error is on the order of // 1e-18. To see why, and why this doesn't overflow, see the Overflow Analysis writeup. deltaMinus = deltaMinus.divDownLargeU(dfRootEst); // We use mulDownLargeSmall() to prevent an overflow that can occur for large balances and alpha very // close to 1. deltaPlus = rootEst2.mulDownLargeSmallU(mb); // NB: `divDownLarge()` is not exact, but `dfRootEst` is large enough so that the error is on the order of // 1e-18. To see why, and why this doesn't overflow, see the Overflow Analysis writeup. deltaPlus = deltaPlus + mc.mulDownU(rootEst); deltaPlus = deltaPlus.divDownLargeU(dfRootEst, 1e12, 1e6); deltaPlus = deltaPlus + md.divDownU(dfRootEst); } deltaIsPos = (deltaPlus >= deltaMinus); deltaAbs = (deltaIsPos ? deltaPlus - deltaMinus : deltaMinus - deltaPlus); } /** @dev Computes how many tokens can be taken out of a pool if `amountIn` are sent, given the current balances and * price bounds. * See Proposition 13 in 3.1.4. In contrast to the proposition, we use two separate functions for trading given the * out-amount and the in-amount, respectively. * The virtualOffset argument depends on the computed invariant. While the calculation is very precise, small errors * can occur. We add a very small margin to ensure that such errors are not to the detriment of the pool. */ function _calcOutGivenIn( uint256 balanceIn, uint256 balanceOut, uint256 amountIn, uint256 virtualOffset ) internal pure returns (uint256 amountOut) { /********************************************************************************************** // Described for X = `in' asset and Z = `out' asset, but equivalent for the other case // // dX = incrX = amountIn > 0 // // dZ = incrZ = amountOut < 0 // // x = balanceIn x' = x + virtualOffset // // z = balanceOut z' = z + virtualOffset // // L = inv.Liq / x' * z' \ z' * dX // // |dZ| = z' - | -------------------------- | = --------------- // // x' = virtIn \ ( x' + dX) / x' + dX // // z' = virtOut // // Note that -dz > 0 is what the trader receives. // // We exploit the fact that this formula is symmetric and does not depend on which asset is // // which. // We assume that the virtualOffset carries a relative +/- 3e-18 error due to the invariant // // calculation add an appropriate safety margin. // **********************************************************************************************/ { // The factors in total lead to a multiplicative "safety margin" between the employed virtual offsets // very slightly larger than 3e-18, compensating for the maximum multiplicative error in the invariant // computation. // SOMEDAY These factors could further be adjusted to compensate for potential errors in the invariant when // the balances are very large. (likely not needed) uint256 virtInOver = balanceIn + virtualOffset.mulUpU(GyroFixedPoint.ONE + 2); uint256 virtOutUnder = balanceOut + virtualOffset.mulDownU(GyroFixedPoint.ONE - 1); // Note that the user can define amountIn so we have to check for overflows amountOut = virtOutUnder.mulDown(amountIn).divDown(virtInOver.add(amountIn)); } // We need to ensure amountOut <= balanceOut manually if (!(amountOut <= balanceOut)) _grequire(false, Gyro3CLPPoolErrors.ASSET_BOUNDS_EXCEEDED); } /** @dev Computes how many tokens must be sent to a pool in order to take `amountOut`, given the current balances * and price bounds. See documentation for _calcOutGivenIn(), too. */ function _calcInGivenOut( uint256 balanceIn, uint256 balanceOut, uint256 amountOut, uint256 virtualOffset ) internal pure returns (uint256 amountIn) { /********************************************************************************************** // Described for X = `in' asset and Z = `out' asset, but equivalent for the other case // // dX = incrX = amountIn > 0 // // dZ = incrZ = amountOut < 0 // // x = balanceIn x' = x + virtualOffset // // z = balanceOut z' = z + virtualOffset // // L = inv.Liq / x' * z' \ x' * dZ // // dX = | -------------------------- | - x' = --------------- // // x' = virtIn \ ( z' + dZ) / z' - dZ // // z' = virtOut // // Note that dz < 0 < dx. // // We exploit the fact that this formula is symmetric and does not depend on which asset is // // which. // We assume that the virtualOffset carries a relative +/- 3e-18 error due to the invariant // // calculation add an appropriate safety margin. // **********************************************************************************************/ // We need to ensure manually that amountOut <= balanceOut. if (!(amountOut <= balanceOut)) _grequire(false, Gyro3CLPPoolErrors.ASSET_BOUNDS_EXCEEDED); { // The factors in total lead to a multiplicative "safety margin" between the employed virtual offsets // very slightly larger than 3e-18, compensating for the maximum multiplicative error in the invariant // computation. // SOMEDAY These factors could further be adjusted to compensate for potential errors in the invariant when // the balances are very large. (likely not needed) uint256 virtInOver = balanceIn + virtualOffset.mulUpU(GyroFixedPoint.ONE + 2); uint256 virtOutUnder = balanceOut + virtualOffset.mulDownU(GyroFixedPoint.ONE - 1); // Note that the user can define amountOut so we have to check for overflows amountIn = virtInOver.mulUp(amountOut).divUp(virtOutUnder.sub(amountOut)); } } }
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.7.6; // solhint-disable library Gyro3CLPPoolErrors { // Math uint256 internal constant PRICE_BOUNDS_WRONG = 351; uint256 internal constant INVARIANT_DIDNT_CONVERGE = 352; uint256 internal constant ASSET_BOUNDS_EXCEEDED = 357; //NB this is the same as the E-CLP and 2-CLP uint256 internal constant UNDERESTIMATE_INVARIANT_FAILED = 360; uint256 internal constant INVARIANT_TOO_LARGE = 361; uint256 internal constant BALANCES_TOO_LARGE = 362; uint256 internal constant INVARIANT_UNDERFLOW = 363; // Input uint256 internal constant TOKENS_LENGTH_MUST_BE_3 = 353; uint256 internal constant TOKENS_NOT_AMONG_POOL_TOKENS = 354; }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity 0.7.6; pragma experimental ABIEncoderV2; // import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol"; import "../libraries/GyroFixedPoint.sol"; import "../interfaces/ICappedLiquidity.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/IAuthentication.sol"; /** @dev Enables caps on i) per-LP and ii) total caps on the pool size. Caps are in terms of BPT tokens! Pool functions * have to call _ensureCap() to enforce the cap. */ abstract contract CappedLiquidity is ICappedLiquidity { using GyroFixedPoint for uint256; string internal constant _OVER_GLOBAL_CAP = "over global liquidity cap"; string internal constant _OVER_ADDRESS_CAP = "over address liquidity cap"; string internal constant _NOT_AUTHORIZED = "not authorized"; string internal constant _UNCAPPED = "pool is uncapped"; CapParams internal _capParams; address public override capManager; constructor(address _capManager, CapParams memory params) { require(_capManager != address(0), _NOT_AUTHORIZED); capManager = _capManager; _capParams.capEnabled = params.capEnabled; _capParams.perAddressCap = params.perAddressCap; _capParams.globalCap = params.globalCap; } function setCapManager(address _capManager) external { require(msg.sender == capManager, _NOT_AUTHORIZED); capManager = _capManager; emit CapManagerUpdated(_capManager); } function capParams() external view override returns (CapParams memory) { return _capParams; } function setCapParams(CapParams memory params) external override { require(msg.sender == capManager, _NOT_AUTHORIZED); require(_capParams.capEnabled, _UNCAPPED); _capParams.capEnabled = params.capEnabled; _capParams.perAddressCap = params.perAddressCap; _capParams.globalCap = params.globalCap; emit CapParamsUpdated(_capParams); } function _ensureCap( uint256 amountMinted, uint256 userBalance, uint256 currentSupply ) internal view { CapParams memory params = _capParams; require(amountMinted.add(userBalance) <= params.perAddressCap, _OVER_ADDRESS_CAP); require(amountMinted.add(currentSupply) <= params.globalCap, _OVER_GLOBAL_CAP); } }
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.7.6; import "../interfaces/ILocallyPausable.sol"; import "../libraries/GyroErrors.sol"; /** * @notice This contract is used to allow a pool to be paused directly, rather than going through Balancer's * authentication system. */ abstract contract LocallyPausable is ILocallyPausable { address public pauseManager; string internal constant _NOT_PAUSE_MANAGER = "not pause manager"; constructor(address _pauseManager) { _grequire(_pauseManager != address(0), GyroErrors.ZERO_ADDRESS); pauseManager = _pauseManager; } /// @inheritdoc ILocallyPausable function changePauseManager(address _pauseManager) external override { address currentPauseManager = pauseManager; require(currentPauseManager == msg.sender, _NOT_PAUSE_MANAGER); pauseManager = _pauseManager; emit PauseManagerChanged(currentPauseManager, _pauseManager); } /// @inheritdoc ILocallyPausable function pause() external override { require(pauseManager == msg.sender, _NOT_PAUSE_MANAGER); _setPausedState(true); emit PausedLocally(); } /// @inheritdoc ILocallyPausable function unpause() external override { require(pauseManager == msg.sender, _NOT_PAUSE_MANAGER); _setPausedState(false); emit UnpausedLocally(); } function _setPausedState(bool paused) internal virtual; }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-solidity-utils/contracts/math/LogExpMath.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/BalancerErrors.sol"; import "@balancer-labs/v2-solidity-utils/contracts/math/Math.sol"; /* solhint-disable private-vars-leading-underscore */ // Gyroscope: Copied from Balancer's FixedPoint library. We added a few additional functions and made _require()s more // gas-efficient. // We renamed this to `GyroFixedPoint` to avoid name clashes with functions used in other Balancer libraries we use. library GyroFixedPoint { uint256 internal constant ONE = 1e18; // 18 decimal places uint256 internal constant MIDDECIMAL = 1e9; // splits the fixed point decimals into two equal parts. uint256 internal constant MAX_POW_RELATIVE_ERROR = 10000; // 10^(-14) // Minimum base for the power function when the exponent is 'free' (larger than ONE). uint256 internal constant MIN_POW_BASE_FREE_EXPONENT = 0.7e18; function add(uint256 a, uint256 b) internal pure returns (uint256) { // Fixed Point addition is the same as regular checked addition uint256 c = a + b; if (!(c >= a)) { _require(false, Errors.ADD_OVERFLOW); } return c; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { // Fixed Point addition is the same as regular checked addition if (!(b <= a)) { _require(false, Errors.SUB_OVERFLOW); } uint256 c = a - b; return c; } function mulDown(uint256 a, uint256 b) internal pure returns (uint256) { uint256 product = a * b; if (!(a == 0 || product / a == b)) { _require(false, Errors.MUL_OVERFLOW); } return product / ONE; } /// @dev "U" denotes version of the math function that does not check for overflows in order to save gas function mulDownU(uint256 a, uint256 b) internal pure returns (uint256) { return (a * b) / ONE; } function mulUp(uint256 a, uint256 b) internal pure returns (uint256) { uint256 product = a * b; if (!(a == 0 || product / a == b)) { _require(false, Errors.MUL_OVERFLOW); } if (product == 0) { return 0; } // The traditional divUp formula is: // divUp(x, y) := (x + y - 1) / y // To avoid intermediate overflow in the addition, we distribute the division and get: // divUp(x, y) := (x - 1) / y + 1 // Note that this requires x != 0, which we already tested for. return ((product - 1) / ONE) + 1; } function mulUpU(uint256 a, uint256 b) internal pure returns (uint256) { uint256 product = a * b; if (product == 0) { return 0; } // The traditional divUp formula is: // divUp(x, y) := (x + y - 1) / y // To avoid intermediate overflow in the addition, we distribute the division and get: // divUp(x, y) := (x - 1) / y + 1 // Note that this requires x != 0, which we already tested for. return ((product - 1) / ONE) + 1; } function divDown(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { _require(false, Errors.ZERO_DIVISION); } if (a == 0) { return 0; } uint256 aInflated = a * ONE; if (!(aInflated / a == ONE)) { _require(false, Errors.DIV_INTERNAL); // mul overflow } return aInflated / b; } function divDownU(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { _require(false, Errors.ZERO_DIVISION); } return (a * ONE) / b; } function divUp(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { _require(false, Errors.ZERO_DIVISION); } if (a == 0) { return 0; } uint256 aInflated = a * ONE; if (!(aInflated / a == ONE)) { _require(aInflated / a == ONE, Errors.DIV_INTERNAL); // mul overflow } // The traditional divUp formula is: // divUp(x, y) := (x + y - 1) / y // To avoid intermediate overflow in the addition, we distribute the division and get: // divUp(x, y) := (x - 1) / y + 1 // Note that this requires x != 0, which we already tested for. return ((aInflated - 1) / b) + 1; } function divUpU(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { _require(false, Errors.ZERO_DIVISION); } if (a == 0) { return 0; } return ((a * ONE - 1) / b) + 1; } /** * @dev Like mulDown(), but it also works in some situations where mulDown(a, b) would overflow because a * b is too * large. We achieve this by splitting up `a` into its integer and its fractional part. `a` should be the bigger of * the two numbers to achieve the best overflow guarantees. * This won't overflow if both of * - a * b ≤ 1.15e95 (raw values, i.e., a * b ≤ 1.15e59 with respect to the fixed-point values that they describe) * - b ≤ 1.15e59 (raw values, i.e., a ≤ 1.15e41 with respect to the values that a describes) * hold. That's better than mulDown(), where we would need a * b ≤ 1.15e77 approximately. */ function mulDownLargeSmall(uint256 a, uint256 b) internal pure returns (uint256) { return add(Math.mul(a / ONE, b), mulDown(a % ONE, b)); } function mulDownLargeSmallU(uint256 a, uint256 b) internal pure returns (uint256) { return (a / ONE) * b + mulDownU(a % ONE, b); } /** * @dev Like divDown(), but it also works when `a` would overflow in `divDown`. This is safe if both of * - a ≤ 1.15e68 (raw, i.e., a ≤ 1.15e50 with respect to the value that is represented) * - b ≥ 1e9 (raw, i.e., b ≥ 1e-9 with respect to the value represented) * hold. For `divDown` it's 1.15e59 and 1.15e41, respectively. * Introduces some rounding error that is relevant iff b is small. */ function divDownLarge(uint256 a, uint256 b) internal pure returns (uint256) { return divDownLarge(a, b, MIDDECIMAL, MIDDECIMAL); } function divDownLargeU(uint256 a, uint256 b) internal pure returns (uint256) { return divDownLargeU(a, b, MIDDECIMAL, MIDDECIMAL); } /** * @dev Like divDown(), but it also works when `a` would overflow in `divDown`. d and e must be chosen such that * d * e = 1e18 (raw numbers, or d * e = 1e-18 with respect to the numbers they represent in fixed point). Note that * this requires d, e ≤ 1e18 (raw, or d, e ≤ 1 with respect to the numbers represented). * This operation is safe if both of * - a * d ≤ 1.15e77 (raw, i.e., a * d ≤ 1.15e41 with respect to the value that is represented) * - b ≥ e (with respect to raw or represented numbers) * hold. * Introduces some rounding error that is relevant iff b is small and is proportional to e. */ function divDownLarge( uint256 a, uint256 b, uint256 d, uint256 e ) internal pure returns (uint256) { return Math.divDown(Math.mul(a, d), Math.divUp(b, e)); } /// @dev e is assumed to be non-zero, and so division by zero is not checked for it function divDownLargeU( uint256 a, uint256 b, uint256 d, uint256 e ) internal pure returns (uint256) { // (a * d) / (b / e) if (b == 0) { // In this case only, the denominator of the outer division is zero, and we revert _require(false, Errors.ZERO_DIVISION); } uint256 denom = 1 + (b - 1) / e; return (a * d) / denom; } /** * @dev Returns x^y, assuming both are fixed point numbers, rounding down. The result is guaranteed to not be above * the true value (that is, the error function expected - actual is always positive). */ function powDown(uint256 x, uint256 y) internal pure returns (uint256) { uint256 raw = LogExpMath.pow(x, y); uint256 maxError = add(mulUp(raw, MAX_POW_RELATIVE_ERROR), 1); if (raw < maxError) { return 0; } return sub(raw, maxError); } /** * @dev Returns x^y, assuming both are fixed point numbers, rounding up. The result is guaranteed to not be below * the true value (that is, the error function expected - actual is always negative). */ function powUp(uint256 x, uint256 y) internal pure returns (uint256) { uint256 raw = LogExpMath.pow(x, y); uint256 maxError = add(mulUp(raw, MAX_POW_RELATIVE_ERROR), 1); return add(raw, maxError); } /** * @dev Returns the complement of a value (1 - x), capped to 0 if x is larger than 1. * * Useful when computing the complement for values with some level of relative error, as it strips this error and * prevents intermediate negative values. */ function complement(uint256 x) internal pure returns (uint256) { return (x < ONE) ? (ONE - x) : 0; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "../helpers/BalancerErrors.sol"; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow checks. * Adapted from OpenZeppelin's SafeMath library */ library Math { /** * @dev Returns the addition of two unsigned integers of 256 bits, reverting on overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; _require(c >= a, Errors.ADD_OVERFLOW); return c; } /** * @dev Returns the addition of two signed integers, reverting on overflow. */ function add(int256 a, int256 b) internal pure returns (int256) { int256 c = a + b; _require((b >= 0 && c >= a) || (b < 0 && c < a), Errors.ADD_OVERFLOW); return c; } /** * @dev Returns the subtraction of two unsigned integers of 256 bits, reverting on overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { _require(b <= a, Errors.SUB_OVERFLOW); uint256 c = a - b; return c; } /** * @dev Returns the subtraction of two signed integers, reverting on overflow. */ function sub(int256 a, int256 b) internal pure returns (int256) { int256 c = a - b; _require((b >= 0 && c <= a) || (b < 0 && c > a), Errors.SUB_OVERFLOW); return c; } /** * @dev Returns the largest of two numbers of 256 bits. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a >= b ? a : b; } /** * @dev Returns the smallest of two numbers of 256 bits. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } function mul(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a * b; _require(a == 0 || c / a == b, Errors.MUL_OVERFLOW); return c; } function div( uint256 a, uint256 b, bool roundUp ) internal pure returns (uint256) { return roundUp ? divUp(a, b) : divDown(a, b); } function divDown(uint256 a, uint256 b) internal pure returns (uint256) { _require(b != 0, Errors.ZERO_DIVISION); return a / b; } function divUp(uint256 a, uint256 b) internal pure returns (uint256) { _require(b != 0, Errors.ZERO_DIVISION); if (a == 0) { return 0; } else { return 1 + (a - 1) / b; } } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "../openzeppelin/IERC20.sol"; import "./BalancerErrors.sol"; library InputHelpers { function ensureInputLengthMatch(uint256 a, uint256 b) internal pure { _require(a == b, Errors.INPUT_LENGTH_MISMATCH); } function ensureInputLengthMatch( uint256 a, uint256 b, uint256 c ) internal pure { _require(a == b && b == c, Errors.INPUT_LENGTH_MISMATCH); } function ensureArrayIsSorted(IERC20[] memory array) internal pure { address[] memory addressArray; // solhint-disable-next-line no-inline-assembly assembly { addressArray := array } ensureArrayIsSorted(addressArray); } function ensureArrayIsSorted(address[] memory array) internal pure { if (array.length < 2) { return; } address previous = array[0]; for (uint256 i = 1; i < array.length; ++i) { address current = array[i]; _require(previous < current, Errors.UNSORTED_ARRAY); previous = current; } } }
// SPDX-License-Identifier: MIT // Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated // documentation files (the “Software”), to deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to // permit persons to whom the Software is furnished to do so, subject to the following conditions: // The above copyright notice and this permission notice shall be included in all copies or substantial portions of the // Software. // THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE // WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. pragma solidity ^0.7.0; import "../helpers/BalancerErrors.sol"; /* solhint-disable */ /** * @dev Exponentiation and logarithm functions for 18 decimal fixed point numbers (both base and exponent/argument). * * Exponentiation and logarithm with arbitrary bases (x^y and log_x(y)) are implemented by conversion to natural * exponentiation and logarithm (where the base is Euler's number). * * @author Fernando Martinelli - @fernandomartinelli * @author Sergio Yuhjtman - @sergioyuhjtman * @author Daniel Fernandez - @dmf7z */ library LogExpMath { // All fixed point multiplications and divisions are inlined. This means we need to divide by ONE when multiplying // two numbers, and multiply by ONE when dividing them. // All arguments and return values are 18 decimal fixed point numbers. int256 constant ONE_18 = 1e18; // Internally, intermediate values are computed with higher precision as 20 decimal fixed point numbers, and in the // case of ln36, 36 decimals. int256 constant ONE_20 = 1e20; int256 constant ONE_36 = 1e36; // The domain of natural exponentiation is bound by the word size and number of decimals used. // // Because internally the result will be stored using 20 decimals, the largest possible result is // (2^255 - 1) / 10^20, which makes the largest exponent ln((2^255 - 1) / 10^20) = 130.700829182905140221. // The smallest possible result is 10^(-18), which makes largest negative argument // ln(10^(-18)) = -41.446531673892822312. // We use 130.0 and -41.0 to have some safety margin. int256 constant MAX_NATURAL_EXPONENT = 130e18; int256 constant MIN_NATURAL_EXPONENT = -41e18; // Bounds for ln_36's argument. Both ln(0.9) and ln(1.1) can be represented with 36 decimal places in a fixed point // 256 bit integer. int256 constant LN_36_LOWER_BOUND = ONE_18 - 1e17; int256 constant LN_36_UPPER_BOUND = ONE_18 + 1e17; uint256 constant MILD_EXPONENT_BOUND = 2**254 / uint256(ONE_20); // 18 decimal constants int256 constant x0 = 128000000000000000000; // 2ˆ7 int256 constant a0 = 38877084059945950922200000000000000000000000000000000000; // eˆ(x0) (no decimals) int256 constant x1 = 64000000000000000000; // 2ˆ6 int256 constant a1 = 6235149080811616882910000000; // eˆ(x1) (no decimals) // 20 decimal constants int256 constant x2 = 3200000000000000000000; // 2ˆ5 int256 constant a2 = 7896296018268069516100000000000000; // eˆ(x2) int256 constant x3 = 1600000000000000000000; // 2ˆ4 int256 constant a3 = 888611052050787263676000000; // eˆ(x3) int256 constant x4 = 800000000000000000000; // 2ˆ3 int256 constant a4 = 298095798704172827474000; // eˆ(x4) int256 constant x5 = 400000000000000000000; // 2ˆ2 int256 constant a5 = 5459815003314423907810; // eˆ(x5) int256 constant x6 = 200000000000000000000; // 2ˆ1 int256 constant a6 = 738905609893065022723; // eˆ(x6) int256 constant x7 = 100000000000000000000; // 2ˆ0 int256 constant a7 = 271828182845904523536; // eˆ(x7) int256 constant x8 = 50000000000000000000; // 2ˆ-1 int256 constant a8 = 164872127070012814685; // eˆ(x8) int256 constant x9 = 25000000000000000000; // 2ˆ-2 int256 constant a9 = 128402541668774148407; // eˆ(x9) int256 constant x10 = 12500000000000000000; // 2ˆ-3 int256 constant a10 = 113314845306682631683; // eˆ(x10) int256 constant x11 = 6250000000000000000; // 2ˆ-4 int256 constant a11 = 106449445891785942956; // eˆ(x11) /** * @dev Exponentiation (x^y) with unsigned 18 decimal fixed point base and exponent. * * Reverts if ln(x) * y is smaller than `MIN_NATURAL_EXPONENT`, or larger than `MAX_NATURAL_EXPONENT`. */ function pow(uint256 x, uint256 y) internal pure returns (uint256) { if (y == 0) { // We solve the 0^0 indetermination by making it equal one. return uint256(ONE_18); } if (x == 0) { return 0; } // Instead of computing x^y directly, we instead rely on the properties of logarithms and exponentiation to // arrive at that result. In particular, exp(ln(x)) = x, and ln(x^y) = y * ln(x). This means // x^y = exp(y * ln(x)). // The ln function takes a signed value, so we need to make sure x fits in the signed 256 bit range. _require(x < 2**255, Errors.X_OUT_OF_BOUNDS); int256 x_int256 = int256(x); // We will compute y * ln(x) in a single step. Depending on the value of x, we can either use ln or ln_36. In // both cases, we leave the division by ONE_18 (due to fixed point multiplication) to the end. // This prevents y * ln(x) from overflowing, and at the same time guarantees y fits in the signed 256 bit range. _require(y < MILD_EXPONENT_BOUND, Errors.Y_OUT_OF_BOUNDS); int256 y_int256 = int256(y); int256 logx_times_y; if (LN_36_LOWER_BOUND < x_int256 && x_int256 < LN_36_UPPER_BOUND) { int256 ln_36_x = _ln_36(x_int256); // ln_36_x has 36 decimal places, so multiplying by y_int256 isn't as straightforward, since we can't just // bring y_int256 to 36 decimal places, as it might overflow. Instead, we perform two 18 decimal // multiplications and add the results: one with the first 18 decimals of ln_36_x, and one with the // (downscaled) last 18 decimals. logx_times_y = ((ln_36_x / ONE_18) * y_int256 + ((ln_36_x % ONE_18) * y_int256) / ONE_18); } else { logx_times_y = _ln(x_int256) * y_int256; } logx_times_y /= ONE_18; // Finally, we compute exp(y * ln(x)) to arrive at x^y _require( MIN_NATURAL_EXPONENT <= logx_times_y && logx_times_y <= MAX_NATURAL_EXPONENT, Errors.PRODUCT_OUT_OF_BOUNDS ); return uint256(exp(logx_times_y)); } /** * @dev Natural exponentiation (e^x) with signed 18 decimal fixed point exponent. * * Reverts if `x` is smaller than MIN_NATURAL_EXPONENT, or larger than `MAX_NATURAL_EXPONENT`. */ function exp(int256 x) internal pure returns (int256) { _require(x >= MIN_NATURAL_EXPONENT && x <= MAX_NATURAL_EXPONENT, Errors.INVALID_EXPONENT); if (x < 0) { // We only handle positive exponents: e^(-x) is computed as 1 / e^x. We can safely make x positive since it // fits in the signed 256 bit range (as it is larger than MIN_NATURAL_EXPONENT). // Fixed point division requires multiplying by ONE_18. return ((ONE_18 * ONE_18) / exp(-x)); } // First, we use the fact that e^(x+y) = e^x * e^y to decompose x into a sum of powers of two, which we call x_n, // where x_n == 2^(7 - n), and e^x_n = a_n has been precomputed. We choose the first x_n, x0, to equal 2^7 // because all larger powers are larger than MAX_NATURAL_EXPONENT, and therefore not present in the // decomposition. // At the end of this process we will have the product of all e^x_n = a_n that apply, and the remainder of this // decomposition, which will be lower than the smallest x_n. // exp(x) = k_0 * a_0 * k_1 * a_1 * ... + k_n * a_n * exp(remainder), where each k_n equals either 0 or 1. // We mutate x by subtracting x_n, making it the remainder of the decomposition. // The first two a_n (e^(2^7) and e^(2^6)) are too large if stored as 18 decimal numbers, and could cause // intermediate overflows. Instead we store them as plain integers, with 0 decimals. // Additionally, x0 + x1 is larger than MAX_NATURAL_EXPONENT, which means they will not both be present in the // decomposition. // For each x_n, we test if that term is present in the decomposition (if x is larger than it), and if so deduct // it and compute the accumulated product. int256 firstAN; if (x >= x0) { x -= x0; firstAN = a0; } else if (x >= x1) { x -= x1; firstAN = a1; } else { firstAN = 1; // One with no decimal places } // We now transform x into a 20 decimal fixed point number, to have enhanced precision when computing the // smaller terms. x *= 100; // `product` is the accumulated product of all a_n (except a0 and a1), which starts at 20 decimal fixed point // one. Recall that fixed point multiplication requires dividing by ONE_20. int256 product = ONE_20; if (x >= x2) { x -= x2; product = (product * a2) / ONE_20; } if (x >= x3) { x -= x3; product = (product * a3) / ONE_20; } if (x >= x4) { x -= x4; product = (product * a4) / ONE_20; } if (x >= x5) { x -= x5; product = (product * a5) / ONE_20; } if (x >= x6) { x -= x6; product = (product * a6) / ONE_20; } if (x >= x7) { x -= x7; product = (product * a7) / ONE_20; } if (x >= x8) { x -= x8; product = (product * a8) / ONE_20; } if (x >= x9) { x -= x9; product = (product * a9) / ONE_20; } // x10 and x11 are unnecessary here since we have high enough precision already. // Now we need to compute e^x, where x is small (in particular, it is smaller than x9). We use the Taylor series // expansion for e^x: 1 + x + (x^2 / 2!) + (x^3 / 3!) + ... + (x^n / n!). int256 seriesSum = ONE_20; // The initial one in the sum, with 20 decimal places. int256 term; // Each term in the sum, where the nth term is (x^n / n!). // The first term is simply x. term = x; seriesSum += term; // Each term (x^n / n!) equals the previous one times x, divided by n. Since x is a fixed point number, // multiplying by it requires dividing by ONE_20, but dividing by the non-fixed point n values does not. term = ((term * x) / ONE_20) / 2; seriesSum += term; term = ((term * x) / ONE_20) / 3; seriesSum += term; term = ((term * x) / ONE_20) / 4; seriesSum += term; term = ((term * x) / ONE_20) / 5; seriesSum += term; term = ((term * x) / ONE_20) / 6; seriesSum += term; term = ((term * x) / ONE_20) / 7; seriesSum += term; term = ((term * x) / ONE_20) / 8; seriesSum += term; term = ((term * x) / ONE_20) / 9; seriesSum += term; term = ((term * x) / ONE_20) / 10; seriesSum += term; term = ((term * x) / ONE_20) / 11; seriesSum += term; term = ((term * x) / ONE_20) / 12; seriesSum += term; // 12 Taylor terms are sufficient for 18 decimal precision. // We now have the first a_n (with no decimals), and the product of all other a_n present, and the Taylor // approximation of the exponentiation of the remainder (both with 20 decimals). All that remains is to multiply // all three (one 20 decimal fixed point multiplication, dividing by ONE_20, and one integer multiplication), // and then drop two digits to return an 18 decimal value. return (((product * seriesSum) / ONE_20) * firstAN) / 100; } /** * @dev Logarithm (log(arg, base), with signed 18 decimal fixed point base and argument. */ function log(int256 arg, int256 base) internal pure returns (int256) { // This performs a simple base change: log(arg, base) = ln(arg) / ln(base). // Both logBase and logArg are computed as 36 decimal fixed point numbers, either by using ln_36, or by // upscaling. int256 logBase; if (LN_36_LOWER_BOUND < base && base < LN_36_UPPER_BOUND) { logBase = _ln_36(base); } else { logBase = _ln(base) * ONE_18; } int256 logArg; if (LN_36_LOWER_BOUND < arg && arg < LN_36_UPPER_BOUND) { logArg = _ln_36(arg); } else { logArg = _ln(arg) * ONE_18; } // When dividing, we multiply by ONE_18 to arrive at a result with 18 decimal places return (logArg * ONE_18) / logBase; } /** * @dev Natural logarithm (ln(a)) with signed 18 decimal fixed point argument. */ function ln(int256 a) internal pure returns (int256) { // The real natural logarithm is not defined for negative numbers or zero. _require(a > 0, Errors.OUT_OF_BOUNDS); if (LN_36_LOWER_BOUND < a && a < LN_36_UPPER_BOUND) { return _ln_36(a) / ONE_18; } else { return _ln(a); } } /** * @dev Internal natural logarithm (ln(a)) with signed 18 decimal fixed point argument. */ function _ln(int256 a) private pure returns (int256) { if (a < ONE_18) { // Since ln(a^k) = k * ln(a), we can compute ln(a) as ln(a) = ln((1/a)^(-1)) = - ln((1/a)). If a is less // than one, 1/a will be greater than one, and this if statement will not be entered in the recursive call. // Fixed point division requires multiplying by ONE_18. return (-_ln((ONE_18 * ONE_18) / a)); } // First, we use the fact that ln^(a * b) = ln(a) + ln(b) to decompose ln(a) into a sum of powers of two, which // we call x_n, where x_n == 2^(7 - n), which are the natural logarithm of precomputed quantities a_n (that is, // ln(a_n) = x_n). We choose the first x_n, x0, to equal 2^7 because the exponential of all larger powers cannot // be represented as 18 fixed point decimal numbers in 256 bits, and are therefore larger than a. // At the end of this process we will have the sum of all x_n = ln(a_n) that apply, and the remainder of this // decomposition, which will be lower than the smallest a_n. // ln(a) = k_0 * x_0 + k_1 * x_1 + ... + k_n * x_n + ln(remainder), where each k_n equals either 0 or 1. // We mutate a by subtracting a_n, making it the remainder of the decomposition. // For reasons related to how `exp` works, the first two a_n (e^(2^7) and e^(2^6)) are not stored as fixed point // numbers with 18 decimals, but instead as plain integers with 0 decimals, so we need to multiply them by // ONE_18 to convert them to fixed point. // For each a_n, we test if that term is present in the decomposition (if a is larger than it), and if so divide // by it and compute the accumulated sum. int256 sum = 0; if (a >= a0 * ONE_18) { a /= a0; // Integer, not fixed point division sum += x0; } if (a >= a1 * ONE_18) { a /= a1; // Integer, not fixed point division sum += x1; } // All other a_n and x_n are stored as 20 digit fixed point numbers, so we convert the sum and a to this format. sum *= 100; a *= 100; // Because further a_n are 20 digit fixed point numbers, we multiply by ONE_20 when dividing by them. if (a >= a2) { a = (a * ONE_20) / a2; sum += x2; } if (a >= a3) { a = (a * ONE_20) / a3; sum += x3; } if (a >= a4) { a = (a * ONE_20) / a4; sum += x4; } if (a >= a5) { a = (a * ONE_20) / a5; sum += x5; } if (a >= a6) { a = (a * ONE_20) / a6; sum += x6; } if (a >= a7) { a = (a * ONE_20) / a7; sum += x7; } if (a >= a8) { a = (a * ONE_20) / a8; sum += x8; } if (a >= a9) { a = (a * ONE_20) / a9; sum += x9; } if (a >= a10) { a = (a * ONE_20) / a10; sum += x10; } if (a >= a11) { a = (a * ONE_20) / a11; sum += x11; } // a is now a small number (smaller than a_11, which roughly equals 1.06). This means we can use a Taylor series // that converges rapidly for values of `a` close to one - the same one used in ln_36. // Let z = (a - 1) / (a + 1). // ln(a) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1)) // Recall that 20 digit fixed point division requires multiplying by ONE_20, and multiplication requires // division by ONE_20. int256 z = ((a - ONE_20) * ONE_20) / (a + ONE_20); int256 z_squared = (z * z) / ONE_20; // num is the numerator of the series: the z^(2 * n + 1) term int256 num = z; // seriesSum holds the accumulated sum of each term in the series, starting with the initial z int256 seriesSum = num; // In each step, the numerator is multiplied by z^2 num = (num * z_squared) / ONE_20; seriesSum += num / 3; num = (num * z_squared) / ONE_20; seriesSum += num / 5; num = (num * z_squared) / ONE_20; seriesSum += num / 7; num = (num * z_squared) / ONE_20; seriesSum += num / 9; num = (num * z_squared) / ONE_20; seriesSum += num / 11; // 6 Taylor terms are sufficient for 36 decimal precision. // Finally, we multiply by 2 (non fixed point) to compute ln(remainder) seriesSum *= 2; // We now have the sum of all x_n present, and the Taylor approximation of the logarithm of the remainder (both // with 20 decimals). All that remains is to sum these two, and then drop two digits to return a 18 decimal // value. return (sum + seriesSum) / 100; } /** * @dev Intrnal high precision (36 decimal places) natural logarithm (ln(x)) with signed 18 decimal fixed point argument, * for x close to one. * * Should only be used if x is between LN_36_LOWER_BOUND and LN_36_UPPER_BOUND. */ function _ln_36(int256 x) private pure returns (int256) { // Since ln(1) = 0, a value of x close to one will yield a very small result, which makes using 36 digits // worthwhile. // First, we transform x to a 36 digit fixed point value. x *= ONE_18; // We will use the following Taylor expansion, which converges very rapidly. Let z = (x - 1) / (x + 1). // ln(x) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1)) // Recall that 36 digit fixed point division requires multiplying by ONE_36, and multiplication requires // division by ONE_36. int256 z = ((x - ONE_36) * ONE_36) / (x + ONE_36); int256 z_squared = (z * z) / ONE_36; // num is the numerator of the series: the z^(2 * n + 1) term int256 num = z; // seriesSum holds the accumulated sum of each term in the series, starting with the initial z int256 seriesSum = num; // In each step, the numerator is multiplied by z^2 num = (num * z_squared) / ONE_36; seriesSum += num / 3; num = (num * z_squared) / ONE_36; seriesSum += num / 5; num = (num * z_squared) / ONE_36; seriesSum += num / 7; num = (num * z_squared) / ONE_36; seriesSum += num / 9; num = (num * z_squared) / ONE_36; seriesSum += num / 11; num = (num * z_squared) / ONE_36; seriesSum += num / 13; num = (num * z_squared) / ONE_36; seriesSum += num / 15; // 8 Taylor terms are sufficient for 36 decimal precision. // All that remains is multiplying by 2 (non fixed point). return seriesSum * 2; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; // solhint-disable /** * @dev Reverts if `condition` is false, with a revert reason containing `errorCode`. Only codes up to 999 are * supported. */ function _require(bool condition, uint256 errorCode) pure { if (!condition) _revert(errorCode); } /** * @dev Reverts with a revert reason containing `errorCode`. Only codes up to 999 are supported. */ function _revert(uint256 errorCode) pure { // We're going to dynamically create a revert string based on the error code, with the following format: // 'BAL#{errorCode}' // where the code is left-padded with zeroes to three digits (so they range from 000 to 999). // // We don't have revert strings embedded in the contract to save bytecode size: it takes much less space to store a // number (8 to 16 bits) than the individual string characters. // // The dynamic string creation algorithm that follows could be implemented in Solidity, but assembly allows for a // much denser implementation, again saving bytecode size. Given this function unconditionally reverts, this is a // safe place to rely on it without worrying about how its usage might affect e.g. memory contents. assembly { // First, we need to compute the ASCII representation of the error code. We assume that it is in the 0-999 // range, so we only need to convert three digits. To convert the digits to ASCII, we add 0x30, the value for // the '0' character. let units := add(mod(errorCode, 10), 0x30) errorCode := div(errorCode, 10) let tenths := add(mod(errorCode, 10), 0x30) errorCode := div(errorCode, 10) let hundreds := add(mod(errorCode, 10), 0x30) // With the individual characters, we can now construct the full string. The "BAL#" part is a known constant // (0x42414c23): we simply shift this by 24 (to provide space for the 3 bytes of the error code), and add the // characters to it, each shifted by a multiple of 8. // The revert reason is then shifted left by 200 bits (256 minus the length of the string, 7 characters * 8 bits // per character = 56) to locate it in the most significant part of the 256 slot (the beginning of a byte // array). let revertReason := shl(200, add(0x42414c23000000, add(add(units, shl(8, tenths)), shl(16, hundreds)))) // We can now encode the reason in memory, which can be safely overwritten as we're about to revert. The encoded // message will have the following layout: // [ revert reason identifier ] [ string location offset ] [ string length ] [ string contents ] // The Solidity revert reason identifier is 0x08c739a0, the function selector of the Error(string) function. We // also write zeroes to the next 28 bytes of memory, but those are about to be overwritten. mstore(0x0, 0x08c379a000000000000000000000000000000000000000000000000000000000) // Next is the offset to the location of the string, which will be placed immediately after (20 bytes away). mstore(0x04, 0x0000000000000000000000000000000000000000000000000000000000000020) // The string length is fixed: 7 characters. mstore(0x24, 7) // Finally, the string itself is stored. mstore(0x44, revertReason) // Even if the string is only 7 bytes long, we need to return a full 32 byte slot containing it. The length of // the encoded message is therefore 4 + 32 + 32 + 32 = 100. revert(0, 100) } } library Errors { // Math uint256 internal constant ADD_OVERFLOW = 0; uint256 internal constant SUB_OVERFLOW = 1; uint256 internal constant SUB_UNDERFLOW = 2; uint256 internal constant MUL_OVERFLOW = 3; uint256 internal constant ZERO_DIVISION = 4; uint256 internal constant DIV_INTERNAL = 5; uint256 internal constant X_OUT_OF_BOUNDS = 6; uint256 internal constant Y_OUT_OF_BOUNDS = 7; uint256 internal constant PRODUCT_OUT_OF_BOUNDS = 8; uint256 internal constant INVALID_EXPONENT = 9; // Input uint256 internal constant OUT_OF_BOUNDS = 100; uint256 internal constant UNSORTED_ARRAY = 101; uint256 internal constant UNSORTED_TOKENS = 102; uint256 internal constant INPUT_LENGTH_MISMATCH = 103; uint256 internal constant ZERO_TOKEN = 104; // Shared pools uint256 internal constant MIN_TOKENS = 200; uint256 internal constant MAX_TOKENS = 201; uint256 internal constant MAX_SWAP_FEE_PERCENTAGE = 202; uint256 internal constant MIN_SWAP_FEE_PERCENTAGE = 203; uint256 internal constant MINIMUM_BPT = 204; uint256 internal constant CALLER_NOT_VAULT = 205; uint256 internal constant UNINITIALIZED = 206; uint256 internal constant BPT_IN_MAX_AMOUNT = 207; uint256 internal constant BPT_OUT_MIN_AMOUNT = 208; uint256 internal constant EXPIRED_PERMIT = 209; uint256 internal constant NOT_TWO_TOKENS = 210; // Pools uint256 internal constant MIN_AMP = 300; uint256 internal constant MAX_AMP = 301; uint256 internal constant MIN_WEIGHT = 302; uint256 internal constant MAX_STABLE_TOKENS = 303; uint256 internal constant MAX_IN_RATIO = 304; uint256 internal constant MAX_OUT_RATIO = 305; uint256 internal constant MIN_BPT_IN_FOR_TOKEN_OUT = 306; uint256 internal constant MAX_OUT_BPT_FOR_TOKEN_IN = 307; uint256 internal constant NORMALIZED_WEIGHT_INVARIANT = 308; uint256 internal constant INVALID_TOKEN = 309; uint256 internal constant UNHANDLED_JOIN_KIND = 310; uint256 internal constant ZERO_INVARIANT = 311; uint256 internal constant ORACLE_INVALID_SECONDS_QUERY = 312; uint256 internal constant ORACLE_NOT_INITIALIZED = 313; uint256 internal constant ORACLE_QUERY_TOO_OLD = 314; uint256 internal constant ORACLE_INVALID_INDEX = 315; uint256 internal constant ORACLE_BAD_SECS = 316; uint256 internal constant AMP_END_TIME_TOO_CLOSE = 317; uint256 internal constant AMP_ONGOING_UPDATE = 318; uint256 internal constant AMP_RATE_TOO_HIGH = 319; uint256 internal constant AMP_NO_ONGOING_UPDATE = 320; uint256 internal constant STABLE_INVARIANT_DIDNT_CONVERGE = 321; uint256 internal constant STABLE_GET_BALANCE_DIDNT_CONVERGE = 322; uint256 internal constant RELAYER_NOT_CONTRACT = 323; uint256 internal constant BASE_POOL_RELAYER_NOT_CALLED = 324; uint256 internal constant REBALANCING_RELAYER_REENTERED = 325; uint256 internal constant GRADUAL_UPDATE_TIME_TRAVEL = 326; uint256 internal constant SWAPS_DISABLED = 327; uint256 internal constant CALLER_IS_NOT_LBP_OWNER = 328; uint256 internal constant PRICE_RATE_OVERFLOW = 329; uint256 internal constant INVALID_JOIN_EXIT_KIND_WHILE_SWAPS_DISABLED = 330; uint256 internal constant WEIGHT_CHANGE_TOO_FAST = 331; uint256 internal constant LOWER_GREATER_THAN_UPPER_TARGET = 332; uint256 internal constant UPPER_TARGET_TOO_HIGH = 333; uint256 internal constant UNHANDLED_BY_LINEAR_POOL = 334; uint256 internal constant OUT_OF_TARGET_RANGE = 335; uint256 internal constant UNHANDLED_EXIT_KIND = 336; uint256 internal constant UNAUTHORIZED_EXIT = 337; uint256 internal constant MAX_MANAGEMENT_SWAP_FEE_PERCENTAGE = 338; uint256 internal constant UNHANDLED_BY_INVESTMENT_POOL = 339; uint256 internal constant UNHANDLED_BY_PHANTOM_POOL = 340; uint256 internal constant TOKEN_DOES_NOT_HAVE_RATE_PROVIDER = 341; uint256 internal constant INVALID_INITIALIZATION = 342; // Lib uint256 internal constant REENTRANCY = 400; uint256 internal constant SENDER_NOT_ALLOWED = 401; uint256 internal constant PAUSED = 402; uint256 internal constant PAUSE_WINDOW_EXPIRED = 403; uint256 internal constant MAX_PAUSE_WINDOW_DURATION = 404; uint256 internal constant MAX_BUFFER_PERIOD_DURATION = 405; uint256 internal constant INSUFFICIENT_BALANCE = 406; uint256 internal constant INSUFFICIENT_ALLOWANCE = 407; uint256 internal constant ERC20_TRANSFER_FROM_ZERO_ADDRESS = 408; uint256 internal constant ERC20_TRANSFER_TO_ZERO_ADDRESS = 409; uint256 internal constant ERC20_MINT_TO_ZERO_ADDRESS = 410; uint256 internal constant ERC20_BURN_FROM_ZERO_ADDRESS = 411; uint256 internal constant ERC20_APPROVE_FROM_ZERO_ADDRESS = 412; uint256 internal constant ERC20_APPROVE_TO_ZERO_ADDRESS = 413; uint256 internal constant ERC20_TRANSFER_EXCEEDS_ALLOWANCE = 414; uint256 internal constant ERC20_DECREASED_ALLOWANCE_BELOW_ZERO = 415; uint256 internal constant ERC20_TRANSFER_EXCEEDS_BALANCE = 416; uint256 internal constant ERC20_BURN_EXCEEDS_ALLOWANCE = 417; uint256 internal constant SAFE_ERC20_CALL_FAILED = 418; uint256 internal constant ADDRESS_INSUFFICIENT_BALANCE = 419; uint256 internal constant ADDRESS_CANNOT_SEND_VALUE = 420; uint256 internal constant SAFE_CAST_VALUE_CANT_FIT_INT256 = 421; uint256 internal constant GRANT_SENDER_NOT_ADMIN = 422; uint256 internal constant REVOKE_SENDER_NOT_ADMIN = 423; uint256 internal constant RENOUNCE_SENDER_NOT_ALLOWED = 424; uint256 internal constant BUFFER_PERIOD_EXPIRED = 425; uint256 internal constant CALLER_IS_NOT_OWNER = 426; uint256 internal constant NEW_OWNER_IS_ZERO = 427; uint256 internal constant CODE_DEPLOYMENT_FAILED = 428; uint256 internal constant CALL_TO_NON_CONTRACT = 429; uint256 internal constant LOW_LEVEL_CALL_FAILED = 430; // Vault uint256 internal constant INVALID_POOL_ID = 500; uint256 internal constant CALLER_NOT_POOL = 501; uint256 internal constant SENDER_NOT_ASSET_MANAGER = 502; uint256 internal constant USER_DOESNT_ALLOW_RELAYER = 503; uint256 internal constant INVALID_SIGNATURE = 504; uint256 internal constant EXIT_BELOW_MIN = 505; uint256 internal constant JOIN_ABOVE_MAX = 506; uint256 internal constant SWAP_LIMIT = 507; uint256 internal constant SWAP_DEADLINE = 508; uint256 internal constant CANNOT_SWAP_SAME_TOKEN = 509; uint256 internal constant UNKNOWN_AMOUNT_IN_FIRST_SWAP = 510; uint256 internal constant MALCONSTRUCTED_MULTIHOP_SWAP = 511; uint256 internal constant INTERNAL_BALANCE_OVERFLOW = 512; uint256 internal constant INSUFFICIENT_INTERNAL_BALANCE = 513; uint256 internal constant INVALID_ETH_INTERNAL_BALANCE = 514; uint256 internal constant INVALID_POST_LOAN_BALANCE = 515; uint256 internal constant INSUFFICIENT_ETH = 516; uint256 internal constant UNALLOCATED_ETH = 517; uint256 internal constant ETH_TRANSFER = 518; uint256 internal constant CANNOT_USE_ETH_SENTINEL = 519; uint256 internal constant TOKENS_MISMATCH = 520; uint256 internal constant TOKEN_NOT_REGISTERED = 521; uint256 internal constant TOKEN_ALREADY_REGISTERED = 522; uint256 internal constant TOKENS_ALREADY_SET = 523; uint256 internal constant TOKENS_LENGTH_MUST_BE_2 = 524; uint256 internal constant NONZERO_TOKEN_BALANCE = 525; uint256 internal constant BALANCE_TOTAL_OVERFLOW = 526; uint256 internal constant POOL_NO_TOKENS = 527; uint256 internal constant INSUFFICIENT_FLASH_LOAN_BALANCE = 528; // Fees uint256 internal constant SWAP_FEE_PERCENTAGE_TOO_HIGH = 600; uint256 internal constant FLASH_LOAN_FEE_PERCENTAGE_TOO_HIGH = 601; uint256 internal constant INSUFFICIENT_FLASH_LOAN_FEE_AMOUNT = 602; }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address sender, address recipient, uint256 amount ) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "./BasePool.sol"; import "@balancer-labs/v2-vault/contracts/interfaces/IMinimalSwapInfoPool.sol"; /** * @dev Extension of `BasePool`, adding a handler for `IMinimalSwapInfoPool.onSwap`. * * Derived contracts must call `BasePool`'s constructor, and implement `_onSwapGivenIn` and `_onSwapGivenOut` along with * `BasePool`'s virtual functions. Inheriting from this contract lets derived contracts choose the Two Token or Minimal * Swap Info specialization settings. */ abstract contract BaseMinimalSwapInfoPool is IMinimalSwapInfoPool, BasePool { // Swap Hooks function onSwap( SwapRequest memory request, uint256 balanceTokenIn, uint256 balanceTokenOut ) public virtual override onlyVault(request.poolId) returns (uint256) { uint256 scalingFactorTokenIn = _scalingFactor(request.tokenIn); uint256 scalingFactorTokenOut = _scalingFactor(request.tokenOut); if (request.kind == IVault.SwapKind.GIVEN_IN) { // Fees are subtracted before scaling, to reduce the complexity of the rounding direction analysis. uint256 amountInMinusSwapFees = _subtractSwapFeeAmount(request.amount); // Process the (upscaled!) swap fee. uint256 swapFee = request.amount - amountInMinusSwapFees; _processSwapFeeAmount(request.tokenIn, _upscale(swapFee, scalingFactorTokenIn)); request.amount = amountInMinusSwapFees; // All token amounts are upscaled. balanceTokenIn = _upscale(balanceTokenIn, scalingFactorTokenIn); balanceTokenOut = _upscale(balanceTokenOut, scalingFactorTokenOut); request.amount = _upscale(request.amount, scalingFactorTokenIn); uint256 amountOut = _onSwapGivenIn(request, balanceTokenIn, balanceTokenOut); // amountOut tokens are exiting the Pool, so we round down. return _downscaleDown(amountOut, scalingFactorTokenOut); } else { // All token amounts are upscaled. balanceTokenIn = _upscale(balanceTokenIn, scalingFactorTokenIn); balanceTokenOut = _upscale(balanceTokenOut, scalingFactorTokenOut); request.amount = _upscale(request.amount, scalingFactorTokenOut); uint256 amountIn = _onSwapGivenOut(request, balanceTokenIn, balanceTokenOut); // amountIn tokens are entering the Pool, so we round up. amountIn = _downscaleUp(amountIn, scalingFactorTokenIn); // Fees are added after scaling happens, to reduce the complexity of the rounding direction analysis. uint256 amountInPlusSwapFees = _addSwapFeeAmount(amountIn); // Process the (upscaled!) swap fee. uint256 swapFee = amountInPlusSwapFees - amountIn; _processSwapFeeAmount(request.tokenIn, _upscale(swapFee, scalingFactorTokenIn)); return amountInPlusSwapFees; } } /* * @dev Called when a swap with the Pool occurs, where the amount of tokens entering the Pool is known. * * Returns the amount of tokens that will be taken from the Pool in return. * * All amounts inside `swapRequest`, `balanceTokenIn` and `balanceTokenOut` are upscaled. The swap fee has already * been deducted from `swapRequest.amount`. * * The return value is also considered upscaled, and will be downscaled (rounding down) before returning it to the * Vault. */ function _onSwapGivenIn( SwapRequest memory swapRequest, uint256 balanceTokenIn, uint256 balanceTokenOut ) internal virtual returns (uint256); /* * @dev Called when a swap with the Pool occurs, where the amount of tokens exiting the Pool is known. * * Returns the amount of tokens that will be granted to the Pool in return. * * All amounts inside `swapRequest`, `balanceTokenIn` and `balanceTokenOut` are upscaled. * * The return value is also considered upscaled, and will be downscaled (rounding up) before applying the swap fee * and returning it to the Vault. */ function _onSwapGivenOut( SwapRequest memory swapRequest, uint256 balanceTokenIn, uint256 balanceTokenOut ) internal virtual returns (uint256); /** * @dev Called whenever a swap fee is charged. Implementations should call their parents via super, to ensure all * implementations in the inheritance tree are called. * * Callers must call one of the three `_processSwapFeeAmount` functions when swap fees are computed, * and upscale `amount`. */ function _processSwapFeeAmount( uint256, /*index*/ uint256 /*amount*/ ) internal virtual { // solhint-disable-previous-line no-empty-blocks } function _processSwapFeeAmount(IERC20 token, uint256 amount) internal { _processSwapFeeAmount(_tokenAddressToIndex(token), amount); } function _processSwapFeeAmounts(uint256[] memory amounts) internal { InputHelpers.ensureInputLengthMatch(amounts.length, _getTotalTokens()); for (uint256 i = 0; i < _getTotalTokens(); ++i) { _processSwapFeeAmount(i, amounts[i]); } } /** * @dev Returns the index of `token` in the Pool's token array (i.e. the one `vault.getPoolTokens()` would return). * * A trivial (and incorrect!) implementation is already provided for Pools that don't override * `_processSwapFeeAmount` and skip the entire feature. However, Pools that do override `_processSwapFeeAmount` * *must* override this function with a meaningful implementation. */ function _tokenAddressToIndex( IERC20 /*token*/ ) internal view virtual returns (uint256) { return 0; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol"; import "@balancer-labs/v2-solidity-utils/contracts/math/Math.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/InputHelpers.sol"; // These functions start with an underscore, as if they were part of a contract and not a library. At some point this // should be fixed. // solhint-disable private-vars-leading-underscore library WeightedMath { using FixedPoint for uint256; // A minimum normalized weight imposes a maximum weight ratio. We need this due to limitations in the // implementation of the power function, as these ratios are often exponents. uint256 internal constant _MIN_WEIGHT = 0.01e18; // Having a minimum normalized weight imposes a limit on the maximum number of tokens; // i.e., the largest possible pool is one where all tokens have exactly the minimum weight. uint256 internal constant _MAX_WEIGHTED_TOKENS = 100; // Pool limits that arise from limitations in the fixed point power function (and the imposed 1:100 maximum weight // ratio). // Swap limits: amounts swapped may not be larger than this percentage of total balance. uint256 internal constant _MAX_IN_RATIO = 0.3e18; uint256 internal constant _MAX_OUT_RATIO = 0.3e18; // Invariant growth limit: non-proportional joins cannot cause the invariant to increase by more than this ratio. uint256 internal constant _MAX_INVARIANT_RATIO = 3e18; // Invariant shrink limit: non-proportional exits cannot cause the invariant to decrease by less than this ratio. uint256 internal constant _MIN_INVARIANT_RATIO = 0.7e18; // About swap fees on joins and exits: // Any join or exit that is not perfectly balanced (e.g. all single token joins or exits) is mathematically // equivalent to a perfectly balanced join or exit followed by a series of swaps. Since these swaps would charge // swap fees, it follows that (some) joins and exits should as well. // On these operations, we split the token amounts in 'taxable' and 'non-taxable' portions, where the 'taxable' part // is the one to which swap fees are applied. // Invariant is used to collect protocol swap fees by comparing its value between two times. // So we can round always to the same direction. It is also used to initiate the BPT amount // and, because there is a minimum BPT, we round down the invariant. function _calculateInvariant(uint256[] memory normalizedWeights, uint256[] memory balances) internal pure returns (uint256 invariant) { /********************************************************************************************** // invariant _____ // // wi = weight index i | | wi // // bi = balance index i | | bi ^ = i // // i = invariant // **********************************************************************************************/ invariant = FixedPoint.ONE; for (uint256 i = 0; i < normalizedWeights.length; i++) { invariant = invariant.mulDown(balances[i].powDown(normalizedWeights[i])); } _require(invariant > 0, Errors.ZERO_INVARIANT); } // Computes how many tokens can be taken out of a pool if `amountIn` are sent, given the // current balances and weights. function _calcOutGivenIn( uint256 balanceIn, uint256 weightIn, uint256 balanceOut, uint256 weightOut, uint256 amountIn ) internal pure returns (uint256) { /********************************************************************************************** // outGivenIn // // aO = amountOut // // bO = balanceOut // // bI = balanceIn / / bI \ (wI / wO) \ // // aI = amountIn aO = bO * | 1 - | -------------------------- | ^ | // // wI = weightIn \ \ ( bI + aI ) / / // // wO = weightOut // **********************************************************************************************/ // Amount out, so we round down overall. // The multiplication rounds down, and the subtrahend (power) rounds up (so the base rounds up too). // Because bI / (bI + aI) <= 1, the exponent rounds down. // Cannot exceed maximum in ratio _require(amountIn <= balanceIn.mulDown(_MAX_IN_RATIO), Errors.MAX_IN_RATIO); uint256 denominator = balanceIn.add(amountIn); uint256 base = balanceIn.divUp(denominator); uint256 exponent = weightIn.divDown(weightOut); uint256 power = base.powUp(exponent); return balanceOut.mulDown(power.complement()); } // Computes how many tokens must be sent to a pool in order to take `amountOut`, given the // current balances and weights. function _calcInGivenOut( uint256 balanceIn, uint256 weightIn, uint256 balanceOut, uint256 weightOut, uint256 amountOut ) internal pure returns (uint256) { /********************************************************************************************** // inGivenOut // // aO = amountOut // // bO = balanceOut // // bI = balanceIn / / bO \ (wO / wI) \ // // aI = amountIn aI = bI * | | -------------------------- | ^ - 1 | // // wI = weightIn \ \ ( bO - aO ) / / // // wO = weightOut // **********************************************************************************************/ // Amount in, so we round up overall. // The multiplication rounds up, and the power rounds up (so the base rounds up too). // Because b0 / (b0 - a0) >= 1, the exponent rounds up. // Cannot exceed maximum out ratio _require(amountOut <= balanceOut.mulDown(_MAX_OUT_RATIO), Errors.MAX_OUT_RATIO); uint256 base = balanceOut.divUp(balanceOut.sub(amountOut)); uint256 exponent = weightOut.divUp(weightIn); uint256 power = base.powUp(exponent); // Because the base is larger than one (and the power rounds up), the power should always be larger than one, so // the following subtraction should never revert. uint256 ratio = power.sub(FixedPoint.ONE); return balanceIn.mulUp(ratio); } function _calcBptOutGivenExactTokensIn( uint256[] memory balances, uint256[] memory normalizedWeights, uint256[] memory amountsIn, uint256 bptTotalSupply, uint256 swapFeePercentage ) internal pure returns (uint256, uint256[] memory) { // BPT out, so we round down overall. uint256[] memory balanceRatiosWithFee = new uint256[](amountsIn.length); uint256 invariantRatioWithFees = 0; for (uint256 i = 0; i < balances.length; i++) { balanceRatiosWithFee[i] = balances[i].add(amountsIn[i]).divDown(balances[i]); invariantRatioWithFees = invariantRatioWithFees.add(balanceRatiosWithFee[i].mulDown(normalizedWeights[i])); } (uint256 invariantRatio, uint256[] memory swapFees) = _computeJoinExactTokensInInvariantRatio( balances, normalizedWeights, amountsIn, balanceRatiosWithFee, invariantRatioWithFees, swapFeePercentage ); uint256 bptOut = (invariantRatio > FixedPoint.ONE) ? bptTotalSupply.mulDown(invariantRatio.sub(FixedPoint.ONE)) : 0; return (bptOut, swapFees); } /** * @dev Intermediate function to avoid stack-too-deep errors. */ function _computeJoinExactTokensInInvariantRatio( uint256[] memory balances, uint256[] memory normalizedWeights, uint256[] memory amountsIn, uint256[] memory balanceRatiosWithFee, uint256 invariantRatioWithFees, uint256 swapFeePercentage ) private pure returns (uint256 invariantRatio, uint256[] memory swapFees) { // Swap fees are charged on all tokens that are being added in a larger proportion than the overall invariant // increase. swapFees = new uint256[](amountsIn.length); invariantRatio = FixedPoint.ONE; for (uint256 i = 0; i < balances.length; i++) { uint256 amountInWithoutFee; if (balanceRatiosWithFee[i] > invariantRatioWithFees) { uint256 nonTaxableAmount = balances[i].mulDown(invariantRatioWithFees.sub(FixedPoint.ONE)); uint256 taxableAmount = amountsIn[i].sub(nonTaxableAmount); uint256 swapFee = taxableAmount.mulUp(swapFeePercentage); amountInWithoutFee = nonTaxableAmount.add(taxableAmount.sub(swapFee)); swapFees[i] = swapFee; } else { amountInWithoutFee = amountsIn[i]; } uint256 balanceRatio = balances[i].add(amountInWithoutFee).divDown(balances[i]); invariantRatio = invariantRatio.mulDown(balanceRatio.powDown(normalizedWeights[i])); } } function _calcTokenInGivenExactBptOut( uint256 balance, uint256 normalizedWeight, uint256 bptAmountOut, uint256 bptTotalSupply, uint256 swapFeePercentage ) internal pure returns (uint256 amountIn, uint256 swapFee) { /****************************************************************************************** // tokenInForExactBPTOut // // a = amountIn // // b = balance / / totalBPT + bptOut \ (1 / w) \ // // bptOut = bptAmountOut a = b * | | -------------------------- | ^ - 1 | // // bpt = totalBPT \ \ totalBPT / / // // w = weight // ******************************************************************************************/ // Token in, so we round up overall. // Calculate the factor by which the invariant will increase after minting BPTAmountOut uint256 invariantRatio = bptTotalSupply.add(bptAmountOut).divUp(bptTotalSupply); _require(invariantRatio <= _MAX_INVARIANT_RATIO, Errors.MAX_OUT_BPT_FOR_TOKEN_IN); // Calculate by how much the token balance has to increase to match the invariantRatio uint256 balanceRatio = invariantRatio.powUp(FixedPoint.ONE.divUp(normalizedWeight)); uint256 amountInWithoutFee = balance.mulUp(balanceRatio.sub(FixedPoint.ONE)); // We can now compute how much extra balance is being deposited and used in virtual swaps, and charge swap fees // accordingly. uint256 taxablePercentage = normalizedWeight.complement(); uint256 taxableAmount = amountInWithoutFee.mulUp(taxablePercentage); uint256 nonTaxableAmount = amountInWithoutFee.sub(taxableAmount); uint256 taxableAmountPlusFees = taxableAmount.divUp(FixedPoint.ONE.sub(swapFeePercentage)); swapFee = taxableAmountPlusFees - taxableAmount; amountIn = nonTaxableAmount.add(taxableAmountPlusFees); } function _calcAllTokensInGivenExactBptOut( uint256[] memory balances, uint256 bptAmountOut, uint256 totalBPT ) internal pure returns (uint256[] memory) { /************************************************************************************ // tokensInForExactBptOut // // (per token) // // aI = amountIn / bptOut \ // // b = balance aI = b * | ------------ | // // bptOut = bptAmountOut \ totalBPT / // // bpt = totalBPT // ************************************************************************************/ // Tokens in, so we round up overall. uint256 bptRatio = bptAmountOut.divUp(totalBPT); uint256[] memory amountsIn = new uint256[](balances.length); for (uint256 i = 0; i < balances.length; i++) { amountsIn[i] = balances[i].mulUp(bptRatio); } return amountsIn; } function _calcBptInGivenExactTokensOut( uint256[] memory balances, uint256[] memory normalizedWeights, uint256[] memory amountsOut, uint256 bptTotalSupply, uint256 swapFeePercentage ) internal pure returns (uint256, uint256[] memory) { // BPT in, so we round up overall. uint256[] memory balanceRatiosWithoutFee = new uint256[](amountsOut.length); uint256 invariantRatioWithoutFees = 0; for (uint256 i = 0; i < balances.length; i++) { balanceRatiosWithoutFee[i] = balances[i].sub(amountsOut[i]).divUp(balances[i]); invariantRatioWithoutFees = invariantRatioWithoutFees.add( balanceRatiosWithoutFee[i].mulUp(normalizedWeights[i]) ); } (uint256 invariantRatio, uint256[] memory swapFees) = _computeExitExactTokensOutInvariantRatio( balances, normalizedWeights, amountsOut, balanceRatiosWithoutFee, invariantRatioWithoutFees, swapFeePercentage ); uint256 bptIn = bptTotalSupply.mulUp(invariantRatio.complement()); return (bptIn, swapFees); } /** * @dev Intermediate function to avoid stack-too-deep errors. */ function _computeExitExactTokensOutInvariantRatio( uint256[] memory balances, uint256[] memory normalizedWeights, uint256[] memory amountsOut, uint256[] memory balanceRatiosWithoutFee, uint256 invariantRatioWithoutFees, uint256 swapFeePercentage ) private pure returns (uint256 invariantRatio, uint256[] memory swapFees) { swapFees = new uint256[](amountsOut.length); invariantRatio = FixedPoint.ONE; for (uint256 i = 0; i < balances.length; i++) { // Swap fees are typically charged on 'token in', but there is no 'token in' here, so we apply it to // 'token out'. This results in slightly larger price impact. uint256 amountOutWithFee; if (invariantRatioWithoutFees > balanceRatiosWithoutFee[i]) { uint256 nonTaxableAmount = balances[i].mulDown(invariantRatioWithoutFees.complement()); uint256 taxableAmount = amountsOut[i].sub(nonTaxableAmount); uint256 taxableAmountPlusFees = taxableAmount.divUp(FixedPoint.ONE.sub(swapFeePercentage)); swapFees[i] = taxableAmountPlusFees - taxableAmount; amountOutWithFee = nonTaxableAmount.add(taxableAmountPlusFees); } else { amountOutWithFee = amountsOut[i]; } uint256 balanceRatio = balances[i].sub(amountOutWithFee).divDown(balances[i]); invariantRatio = invariantRatio.mulDown(balanceRatio.powDown(normalizedWeights[i])); } } function _calcTokenOutGivenExactBptIn( uint256 balance, uint256 normalizedWeight, uint256 bptAmountIn, uint256 bptTotalSupply, uint256 swapFeePercentage ) internal pure returns (uint256 amountOut, uint256 swapFee) { /***************************************************************************************** // exactBPTInForTokenOut // // a = amountOut // // b = balance / / totalBPT - bptIn \ (1 / w) \ // // bptIn = bptAmountIn a = b * | 1 - | -------------------------- | ^ | // // bpt = totalBPT \ \ totalBPT / / // // w = weight // *****************************************************************************************/ // Token out, so we round down overall. The multiplication rounds down, but the power rounds up (so the base // rounds up). Because (totalBPT - bptIn) / totalBPT <= 1, the exponent rounds down. // Calculate the factor by which the invariant will decrease after burning BPTAmountIn uint256 invariantRatio = bptTotalSupply.sub(bptAmountIn).divUp(bptTotalSupply); _require(invariantRatio >= _MIN_INVARIANT_RATIO, Errors.MIN_BPT_IN_FOR_TOKEN_OUT); // Calculate by how much the token balance has to decrease to match invariantRatio uint256 balanceRatio = invariantRatio.powUp(FixedPoint.ONE.divDown(normalizedWeight)); // Because of rounding up, balanceRatio can be greater than one. Using complement prevents reverts. uint256 amountOutWithoutFee = balance.mulDown(balanceRatio.complement()); // We can now compute how much excess balance is being withdrawn as a result of the virtual swaps, which result // in swap fees. uint256 taxablePercentage = normalizedWeight.complement(); // Swap fees are typically charged on 'token in', but there is no 'token in' here, so we apply it // to 'token out'. This results in slightly larger price impact. Fees are rounded up. uint256 taxableAmount = amountOutWithoutFee.mulUp(taxablePercentage); uint256 nonTaxableAmount = amountOutWithoutFee.sub(taxableAmount); swapFee = taxableAmount.mulUp(swapFeePercentage); amountOut = nonTaxableAmount.add(taxableAmount.sub(swapFee)); } function _calcTokensOutGivenExactBptIn( uint256[] memory balances, uint256 bptAmountIn, uint256 totalBPT ) internal pure returns (uint256[] memory) { /********************************************************************************************** // exactBPTInForTokensOut // // (per token) // // aO = amountOut / bptIn \ // // b = balance a0 = b * | --------------------- | // // bptIn = bptAmountIn \ totalBPT / // // bpt = totalBPT // **********************************************************************************************/ // Since we're computing an amount out, we round down overall. This means rounding down on both the // multiplication and division. uint256 bptRatio = bptAmountIn.divDown(totalBPT); uint256[] memory amountsOut = new uint256[](balances.length); for (uint256 i = 0; i < balances.length; i++) { amountsOut[i] = balances[i].mulDown(bptRatio); } return amountsOut; } function _calcDueTokenProtocolSwapFeeAmount( uint256 balance, uint256 normalizedWeight, uint256 previousInvariant, uint256 currentInvariant, uint256 protocolSwapFeePercentage ) internal pure returns (uint256) { /********************************************************************************* /* protocolSwapFeePercentage * balanceToken * ( 1 - (previousInvariant / currentInvariant) ^ (1 / weightToken)) *********************************************************************************/ if (currentInvariant <= previousInvariant) { // This shouldn't happen outside of rounding errors, but have this safeguard nonetheless to prevent the Pool // from entering a locked state in which joins and exits revert while computing accumulated swap fees. return 0; } // We round down to prevent issues in the Pool's accounting, even if it means paying slightly less in protocol // fees to the Vault. // Fee percentage and balance multiplications round down, while the subtrahend (power) rounds up (as does the // base). Because previousInvariant / currentInvariant <= 1, the exponent rounds down. uint256 base = previousInvariant.divUp(currentInvariant); uint256 exponent = FixedPoint.ONE.divDown(normalizedWeight); // Because the exponent is larger than one, the base of the power function has a lower bound. We cap to this // value to avoid numeric issues, which means in the extreme case (where the invariant growth is larger than // 1 / min exponent) the Pool will pay less in protocol fees than it should. base = Math.max(base, FixedPoint.MIN_POW_BASE_FREE_EXPONENT); uint256 power = base.powUp(exponent); uint256 tokenAccruedFees = balance.mulDown(power.complement()); return tokenAccruedFees.mulDown(protocolSwapFeePercentage); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol"; import "./BaseWeightedPool.sol"; library WeightedPoolUserDataHelpers { function joinKind(bytes memory self) internal pure returns (BaseWeightedPool.JoinKind) { return abi.decode(self, (BaseWeightedPool.JoinKind)); } function exitKind(bytes memory self) internal pure returns (BaseWeightedPool.ExitKind) { return abi.decode(self, (BaseWeightedPool.ExitKind)); } // Joins function initialAmountsIn(bytes memory self) internal pure returns (uint256[] memory amountsIn) { (, amountsIn) = abi.decode(self, (BaseWeightedPool.JoinKind, uint256[])); } function exactTokensInForBptOut(bytes memory self) internal pure returns (uint256[] memory amountsIn, uint256 minBPTAmountOut) { (, amountsIn, minBPTAmountOut) = abi.decode(self, (BaseWeightedPool.JoinKind, uint256[], uint256)); } function tokenInForExactBptOut(bytes memory self) internal pure returns (uint256 bptAmountOut, uint256 tokenIndex) { (, bptAmountOut, tokenIndex) = abi.decode(self, (BaseWeightedPool.JoinKind, uint256, uint256)); } function allTokensInForExactBptOut(bytes memory self) internal pure returns (uint256 bptAmountOut) { (, bptAmountOut) = abi.decode(self, (BaseWeightedPool.JoinKind, uint256)); } // Exits function exactBptInForTokenOut(bytes memory self) internal pure returns (uint256 bptAmountIn, uint256 tokenIndex) { (, bptAmountIn, tokenIndex) = abi.decode(self, (BaseWeightedPool.ExitKind, uint256, uint256)); } function exactBptInForTokensOut(bytes memory self) internal pure returns (uint256 bptAmountIn) { (, bptAmountIn) = abi.decode(self, (BaseWeightedPool.ExitKind, uint256)); } function bptInForExactTokensOut(bytes memory self) internal pure returns (uint256[] memory amountsOut, uint256 maxBPTAmountIn) { (, amountsOut, maxBPTAmountIn) = abi.decode(self, (BaseWeightedPool.ExitKind, uint256[], uint256)); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/math/Math.sol"; import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/InputHelpers.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/TemporarilyPausable.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/WordCodec.sol"; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ERC20.sol"; import "@balancer-labs/v2-vault/contracts/interfaces/IVault.sol"; import "@balancer-labs/v2-vault/contracts/interfaces/IBasePool.sol"; import "@balancer-labs/v2-asset-manager-utils/contracts/IAssetManager.sol"; import "./BalancerPoolToken.sol"; import "./BasePoolAuthorization.sol"; // solhint-disable max-states-count /** * @dev Reference implementation for the base layer of a Pool contract that manages a single Pool with optional * Asset Managers, an admin-controlled swap fee percentage, and an emergency pause mechanism. * * Note that neither swap fees nor the pause mechanism are used by this contract. They are passed through so that * derived contracts can use them via the `_addSwapFeeAmount` and `_subtractSwapFeeAmount` functions, and the * `whenNotPaused` modifier. * * No admin permissions are checked here: instead, this contract delegates that to the Vault's own Authorizer. * * Because this contract doesn't implement the swap hooks, derived contracts should generally inherit from * BaseGeneralPool or BaseMinimalSwapInfoPool. Otherwise, subclasses must inherit from the corresponding interfaces * and implement the swap callbacks themselves. */ abstract contract BasePool is IBasePool, BasePoolAuthorization, BalancerPoolToken, TemporarilyPausable { using WordCodec for bytes32; using FixedPoint for uint256; uint256 private constant _MIN_TOKENS = 2; uint256 private constant _MINIMUM_BPT = 1e6; // 1e18 corresponds to 1.0, or a 100% fee uint256 private constant _MIN_SWAP_FEE_PERCENTAGE = 1e12; // 0.0001% uint256 private constant _MAX_SWAP_FEE_PERCENTAGE = 1e17; // 10% - this fits in 64 bits // Storage slot that can be used to store unrelated pieces of information. In particular, by default is used // to store only the swap fee percentage of a pool. But it can be extended to store some more pieces of information. // The swap fee percentage is stored in the most-significant 64 bits, therefore the remaining 192 bits can be // used to store any other piece of information. bytes32 private _miscData; uint256 private constant _SWAP_FEE_PERCENTAGE_OFFSET = 192; bytes32 private immutable _poolId; event SwapFeePercentageChanged(uint256 swapFeePercentage); constructor( IVault vault, IVault.PoolSpecialization specialization, string memory name, string memory symbol, IERC20[] memory tokens, address[] memory assetManagers, uint256 swapFeePercentage, uint256 pauseWindowDuration, uint256 bufferPeriodDuration, address owner ) // Base Pools are expected to be deployed using factories. By using the factory address as the action // disambiguator, we make all Pools deployed by the same factory share action identifiers. This allows for // simpler management of permissions (such as being able to manage granting the 'set fee percentage' action in // any Pool created by the same factory), while still making action identifiers unique among different factories // if the selectors match, preventing accidental errors. Authentication(bytes32(uint256(msg.sender))) BalancerPoolToken(name, symbol, vault) BasePoolAuthorization(owner) TemporarilyPausable(pauseWindowDuration, bufferPeriodDuration) { _require(tokens.length >= _MIN_TOKENS, Errors.MIN_TOKENS); _require(tokens.length <= _getMaxTokens(), Errors.MAX_TOKENS); // The Vault only requires the token list to be ordered for the Two Token Pools specialization. However, // to make the developer experience consistent, we are requiring this condition for all the native pools. // Also, since these Pools will register tokens only once, we can ensure the Pool tokens will follow the same // order. We rely on this property to make Pools simpler to write, as it lets us assume that the // order of token-specific parameters (such as token weights) will not change. InputHelpers.ensureArrayIsSorted(tokens); _setSwapFeePercentage(swapFeePercentage); bytes32 poolId = vault.registerPool(specialization); vault.registerTokens(poolId, tokens, assetManagers); // Set immutable state variables - these cannot be read from during construction _poolId = poolId; } // Getters / Setters function getPoolId() public view override returns (bytes32) { return _poolId; } function _getTotalTokens() internal view virtual returns (uint256); function _getMaxTokens() internal pure virtual returns (uint256); function _getMinimumBpt() internal pure virtual returns (uint256) { return _MINIMUM_BPT; } function getSwapFeePercentage() public view returns (uint256) { return _miscData.decodeUint64(_SWAP_FEE_PERCENTAGE_OFFSET); } function setSwapFeePercentage(uint256 swapFeePercentage) external virtual authenticate whenNotPaused { _setSwapFeePercentage(swapFeePercentage); } function _setSwapFeePercentage(uint256 swapFeePercentage) private { _require(swapFeePercentage >= _MIN_SWAP_FEE_PERCENTAGE, Errors.MIN_SWAP_FEE_PERCENTAGE); _require(swapFeePercentage <= _MAX_SWAP_FEE_PERCENTAGE, Errors.MAX_SWAP_FEE_PERCENTAGE); _miscData = _miscData.insertUint64(swapFeePercentage, _SWAP_FEE_PERCENTAGE_OFFSET); emit SwapFeePercentageChanged(swapFeePercentage); } function setAssetManagerPoolConfig(IERC20 token, bytes memory poolConfig) public virtual authenticate whenNotPaused { _setAssetManagerPoolConfig(token, poolConfig); } function _setAssetManagerPoolConfig(IERC20 token, bytes memory poolConfig) private { bytes32 poolId = getPoolId(); (, , , address assetManager) = getVault().getPoolTokenInfo(poolId, token); IAssetManager(assetManager).setConfig(poolId, poolConfig); } function setPaused(bool paused) external authenticate { _setPaused(paused); } function _isOwnerOnlyAction(bytes32 actionId) internal view virtual override returns (bool) { return (actionId == getActionId(this.setSwapFeePercentage.selector)) || (actionId == getActionId(this.setAssetManagerPoolConfig.selector)); } function _getMiscData() internal view returns (bytes32) { return _miscData; } /** * Inserts data into the least-significant 192 bits of the misc data storage slot. * Note that the remaining 64 bits are used for the swap fee percentage and cannot be overloaded. */ function _setMiscData(bytes32 newData) internal { _miscData = _miscData.insertBits192(newData, 0); } // Join / Exit Hooks modifier onlyVault(bytes32 poolId) { _require(msg.sender == address(getVault()), Errors.CALLER_NOT_VAULT); _require(poolId == getPoolId(), Errors.INVALID_POOL_ID); _; } function onJoinPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) public virtual override onlyVault(poolId) returns (uint256[] memory, uint256[] memory) { uint256[] memory scalingFactors = _scalingFactors(); if (totalSupply() == 0) { (uint256 bptAmountOut, uint256[] memory amountsIn) = _onInitializePool( poolId, sender, recipient, scalingFactors, userData ); // On initialization, we lock _getMinimumBpt() by minting it for the zero address. This BPT acts as a // minimum as it will never be burned, which reduces potential issues with rounding, and also prevents the // Pool from ever being fully drained. _require(bptAmountOut >= _getMinimumBpt(), Errors.MINIMUM_BPT); _mintPoolTokens(address(0), _getMinimumBpt()); _mintPoolTokens(recipient, bptAmountOut - _getMinimumBpt()); // amountsIn are amounts entering the Pool, so we round up. _downscaleUpArray(amountsIn, scalingFactors); return (amountsIn, new uint256[](_getTotalTokens())); } else { _upscaleArray(balances, scalingFactors); (uint256 bptAmountOut, uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts) = _onJoinPool( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, scalingFactors, userData ); // Note we no longer use `balances` after calling `_onJoinPool`, which may mutate it. _mintPoolTokens(recipient, bptAmountOut); // amountsIn are amounts entering the Pool, so we round up. _downscaleUpArray(amountsIn, scalingFactors); // dueProtocolFeeAmounts are amounts exiting the Pool, so we round down. _downscaleDownArray(dueProtocolFeeAmounts, scalingFactors); return (amountsIn, dueProtocolFeeAmounts); } } function onExitPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) public virtual override onlyVault(poolId) returns (uint256[] memory, uint256[] memory) { uint256[] memory scalingFactors = _scalingFactors(); _upscaleArray(balances, scalingFactors); (uint256 bptAmountIn, uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts) = _onExitPool( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, scalingFactors, userData ); // Note we no longer use `balances` after calling `_onExitPool`, which may mutate it. _burnPoolTokens(sender, bptAmountIn); // Both amountsOut and dueProtocolFeeAmounts are amounts exiting the Pool, so we round down. _downscaleDownArray(amountsOut, scalingFactors); _downscaleDownArray(dueProtocolFeeAmounts, scalingFactors); return (amountsOut, dueProtocolFeeAmounts); } // Query functions /** * @dev Returns the amount of BPT that would be granted to `recipient` if the `onJoinPool` hook were called by the * Vault with the same arguments, along with the number of tokens `sender` would have to supply. * * This function is not meant to be called directly, but rather from a helper contract that fetches current Vault * data, such as the protocol swap fee percentage and Pool balances. * * Like `IVault.queryBatchSwap`, this function is not view due to internal implementation details: the caller must * explicitly use eth_call instead of eth_sendTransaction. */ function queryJoin( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) external returns (uint256 bptOut, uint256[] memory amountsIn) { InputHelpers.ensureInputLengthMatch(balances.length, _getTotalTokens()); _queryAction( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, userData, _onJoinPool, _downscaleUpArray ); // The `return` opcode is executed directly inside `_queryAction`, so execution never reaches this statement, // and we don't need to return anything here - it just silences compiler warnings. return (bptOut, amountsIn); } /** * @dev Returns the amount of BPT that would be burned from `sender` if the `onExitPool` hook were called by the * Vault with the same arguments, along with the number of tokens `recipient` would receive. * * This function is not meant to be called directly, but rather from a helper contract that fetches current Vault * data, such as the protocol swap fee percentage and Pool balances. * * Like `IVault.queryBatchSwap`, this function is not view due to internal implementation details: the caller must * explicitly use eth_call instead of eth_sendTransaction. */ function queryExit( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) external returns (uint256 bptIn, uint256[] memory amountsOut) { InputHelpers.ensureInputLengthMatch(balances.length, _getTotalTokens()); _queryAction( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, userData, _onExitPool, _downscaleDownArray ); // The `return` opcode is executed directly inside `_queryAction`, so execution never reaches this statement, // and we don't need to return anything here - it just silences compiler warnings. return (bptIn, amountsOut); } // Internal hooks to be overridden by derived contracts - all token amounts (except BPT) in these interfaces are // upscaled. /** * @dev Called when the Pool is joined for the first time; that is, when the BPT total supply is zero. * * Returns the amount of BPT to mint, and the token amounts the Pool will receive in return. * * Minted BPT will be sent to `recipient`, except for _getMinimumBpt(), which will be deducted from this amount and * sent to the zero address instead. This will cause that BPT to remain forever locked there, preventing total BTP * from ever dropping below that value, and ensuring `_onInitializePool` can only be called once in the entire * Pool's lifetime. * * The tokens granted to the Pool will be transferred from `sender`. These amounts are considered upscaled and will * be downscaled (rounding up) before being returned to the Vault. */ function _onInitializePool( bytes32 poolId, address sender, address recipient, uint256[] memory scalingFactors, bytes memory userData ) internal virtual returns (uint256 bptAmountOut, uint256[] memory amountsIn); /** * @dev Called whenever the Pool is joined after the first initialization join (see `_onInitializePool`). * * Returns the amount of BPT to mint, the token amounts that the Pool will receive in return, and the number of * tokens to pay in protocol swap fees. * * Implementations of this function might choose to mutate the `balances` array to save gas (e.g. when * performing intermediate calculations, such as subtraction of due protocol fees). This can be done safely. * * Minted BPT will be sent to `recipient`. * * The tokens granted to the Pool will be transferred from `sender`. These amounts are considered upscaled and will * be downscaled (rounding up) before being returned to the Vault. * * Due protocol swap fees will be taken from the Pool's balance in the Vault (see `IBasePool.onJoinPool`). These * amounts are considered upscaled and will be downscaled (rounding down) before being returned to the Vault. */ function _onJoinPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, uint256[] memory scalingFactors, bytes memory userData ) internal virtual returns ( uint256 bptAmountOut, uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts ); /** * @dev Called whenever the Pool is exited. * * Returns the amount of BPT to burn, the token amounts for each Pool token that the Pool will grant in return, and * the number of tokens to pay in protocol swap fees. * * Implementations of this function might choose to mutate the `balances` array to save gas (e.g. when * performing intermediate calculations, such as subtraction of due protocol fees). This can be done safely. * * BPT will be burnt from `sender`. * * The Pool will grant tokens to `recipient`. These amounts are considered upscaled and will be downscaled * (rounding down) before being returned to the Vault. * * Due protocol swap fees will be taken from the Pool's balance in the Vault (see `IBasePool.onExitPool`). These * amounts are considered upscaled and will be downscaled (rounding down) before being returned to the Vault. */ function _onExitPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, uint256[] memory scalingFactors, bytes memory userData ) internal virtual returns ( uint256 bptAmountIn, uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts ); // Internal functions /** * @dev Adds swap fee amount to `amount`, returning a higher value. */ function _addSwapFeeAmount(uint256 amount) internal view returns (uint256) { // This returns amount + fee amount, so we round up (favoring a higher fee amount). return amount.divUp(FixedPoint.ONE.sub(getSwapFeePercentage())); } /** * @dev Subtracts swap fee amount from `amount`, returning a lower value. */ function _subtractSwapFeeAmount(uint256 amount) internal view returns (uint256) { // This returns amount - fee amount, so we round up (favoring a higher fee amount). uint256 feeAmount = amount.mulUp(getSwapFeePercentage()); return amount.sub(feeAmount); } // Scaling /** * @dev Returns a scaling factor that, when multiplied to a token amount for `token`, normalizes its balance as if * it had 18 decimals. */ function _computeScalingFactor(IERC20 token) internal view returns (uint256) { if (address(token) == address(this)) { return FixedPoint.ONE; } // Tokens that don't implement the `decimals` method are not supported. uint256 tokenDecimals = ERC20(address(token)).decimals(); // Tokens with more than 18 decimals are not supported. uint256 decimalsDifference = Math.sub(18, tokenDecimals); return FixedPoint.ONE * 10**decimalsDifference; } /** * @dev Returns the scaling factor for one of the Pool's tokens. Reverts if `token` is not a token registered by the * Pool. * * All scaling factors are fixed-point values with 18 decimals, to allow for this function to be overridden by * derived contracts that need to apply further scaling, making these factors potentially non-integer. * * The largest 'base' scaling factor (i.e. in tokens with less than 18 decimals) is 10**18, which in fixed-point is * 10**36. This value can be multiplied with a 112 bit Vault balance with no overflow by a factor of ~1e7, making * even relatively 'large' factors safe to use. * * The 1e7 figure is the result of 2**256 / (1e18 * 1e18 * 2**112). */ function _scalingFactor(IERC20 token) internal view virtual returns (uint256); /** * @dev Same as `_scalingFactor()`, except for all registered tokens (in the same order as registered). The Vault * will always pass balances in this order when calling any of the Pool hooks. */ function _scalingFactors() internal view virtual returns (uint256[] memory); function getScalingFactors() external view returns (uint256[] memory) { return _scalingFactors(); } /** * @dev Applies `scalingFactor` to `amount`, resulting in a larger or equal value depending on whether it needed * scaling or not. */ function _upscale(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) { // Upscale rounding wouldn't necessarily always go in the same direction: in a swap for example the balance of // token in should be rounded up, and that of token out rounded down. This is the only place where we round in // the same direction for all amounts, as the impact of this rounding is expected to be minimal (and there's no // rounding error unless `_scalingFactor()` is overriden). return FixedPoint.mulDown(amount, scalingFactor); } /** * @dev Same as `_upscale`, but for an entire array. This function does not return anything, but instead *mutates* * the `amounts` array. */ function _upscaleArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal view { for (uint256 i = 0; i < _getTotalTokens(); ++i) { amounts[i] = FixedPoint.mulDown(amounts[i], scalingFactors[i]); } } /** * @dev Reverses the `scalingFactor` applied to `amount`, resulting in a smaller or equal value depending on * whether it needed scaling or not. The result is rounded down. */ function _downscaleDown(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) { return FixedPoint.divDown(amount, scalingFactor); } /** * @dev Same as `_downscaleDown`, but for an entire array. This function does not return anything, but instead * *mutates* the `amounts` array. */ function _downscaleDownArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal view { for (uint256 i = 0; i < _getTotalTokens(); ++i) { amounts[i] = FixedPoint.divDown(amounts[i], scalingFactors[i]); } } /** * @dev Reverses the `scalingFactor` applied to `amount`, resulting in a smaller or equal value depending on * whether it needed scaling or not. The result is rounded up. */ function _downscaleUp(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) { return FixedPoint.divUp(amount, scalingFactor); } /** * @dev Same as `_downscaleUp`, but for an entire array. This function does not return anything, but instead * *mutates* the `amounts` array. */ function _downscaleUpArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal view { for (uint256 i = 0; i < _getTotalTokens(); ++i) { amounts[i] = FixedPoint.divUp(amounts[i], scalingFactors[i]); } } function _getAuthorizer() internal view override returns (IAuthorizer) { // Access control management is delegated to the Vault's Authorizer. This lets Balancer Governance manage which // accounts can call permissioned functions: for example, to perform emergency pauses. // If the owner is delegated, then *all* permissioned functions, including `setSwapFeePercentage`, will be under // Governance control. return getVault().getAuthorizer(); } function _queryAction( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData, function(bytes32, address, address, uint256[] memory, uint256, uint256, uint256[] memory, bytes memory) internal returns (uint256, uint256[] memory, uint256[] memory) _action, function(uint256[] memory, uint256[] memory) internal view _downscaleArray ) private { // This uses the same technique used by the Vault in queryBatchSwap. Refer to that function for a detailed // explanation. if (msg.sender != address(this)) { // We perform an external call to ourselves, forwarding the same calldata. In this call, the else clause of // the preceding if statement will be executed instead. // solhint-disable-next-line avoid-low-level-calls (bool success, ) = address(this).call(msg.data); // solhint-disable-next-line no-inline-assembly assembly { // This call should always revert to decode the bpt and token amounts from the revert reason switch success case 0 { // Note we are manually writing the memory slot 0. We can safely overwrite whatever is // stored there as we take full control of the execution and then immediately return. // We copy the first 4 bytes to check if it matches with the expected signature, otherwise // there was another revert reason and we should forward it. returndatacopy(0, 0, 0x04) let error := and(mload(0), 0xffffffff00000000000000000000000000000000000000000000000000000000) // If the first 4 bytes don't match with the expected signature, we forward the revert reason. if eq(eq(error, 0x43adbafb00000000000000000000000000000000000000000000000000000000), 0) { returndatacopy(0, 0, returndatasize()) revert(0, returndatasize()) } // The returndata contains the signature, followed by the raw memory representation of the // `bptAmount` and `tokenAmounts` (array: length + data). We need to return an ABI-encoded // representation of these. // An ABI-encoded response will include one additional field to indicate the starting offset of // the `tokenAmounts` array. The `bptAmount` will be laid out in the first word of the // returndata. // // In returndata: // [ signature ][ bptAmount ][ tokenAmounts length ][ tokenAmounts values ] // [ 4 bytes ][ 32 bytes ][ 32 bytes ][ (32 * length) bytes ] // // We now need to return (ABI-encoded values): // [ bptAmount ][ tokeAmounts offset ][ tokenAmounts length ][ tokenAmounts values ] // [ 32 bytes ][ 32 bytes ][ 32 bytes ][ (32 * length) bytes ] // We copy 32 bytes for the `bptAmount` from returndata into memory. // Note that we skip the first 4 bytes for the error signature returndatacopy(0, 0x04, 32) // The offsets are 32-bytes long, so the array of `tokenAmounts` will start after // the initial 64 bytes. mstore(0x20, 64) // We now copy the raw memory array for the `tokenAmounts` from returndata into memory. // Since bpt amount and offset take up 64 bytes, we start copying at address 0x40. We also // skip the first 36 bytes from returndata, which correspond to the signature plus bpt amount. returndatacopy(0x40, 0x24, sub(returndatasize(), 36)) // We finally return the ABI-encoded uint256 and the array, which has a total length equal to // the size of returndata, plus the 32 bytes of the offset but without the 4 bytes of the // error signature. return(0, add(returndatasize(), 28)) } default { // This call should always revert, but we fail nonetheless if that didn't happen invalid() } } } else { uint256[] memory scalingFactors = _scalingFactors(); _upscaleArray(balances, scalingFactors); (uint256 bptAmount, uint256[] memory tokenAmounts, ) = _action( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, scalingFactors, userData ); _downscaleArray(tokenAmounts, scalingFactors); // solhint-disable-next-line no-inline-assembly assembly { // We will return a raw representation of `bptAmount` and `tokenAmounts` in memory, which is composed of // a 32-byte uint256, followed by a 32-byte for the array length, and finally the 32-byte uint256 values // Because revert expects a size in bytes, we multiply the array length (stored at `tokenAmounts`) by 32 let size := mul(mload(tokenAmounts), 32) // We store the `bptAmount` in the previous slot to the `tokenAmounts` array. We can make sure there // will be at least one available slot due to how the memory scratch space works. // We can safely overwrite whatever is stored in this slot as we will revert immediately after that. let start := sub(tokenAmounts, 0x20) mstore(start, bptAmount) // We send one extra value for the error signature "QueryError(uint256,uint256[])" which is 0x43adbafb // We use the previous slot to `bptAmount`. mstore(sub(start, 0x20), 0x0000000000000000000000000000000000000000000000000000000043adbafb) start := sub(start, 0x04) // When copying from `tokenAmounts` into returndata, we copy the additional 68 bytes to also return // the `bptAmount`, the array 's length, and the error signature. revert(start, add(size, 68)) } } } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "./IBasePool.sol"; /** * @dev Pool contracts with the MinimalSwapInfo or TwoToken specialization settings should implement this interface. * * This is called by the Vault when a user calls `IVault.swap` or `IVault.batchSwap` to swap with this Pool. * Returns the number of tokens the Pool will grant to the user in a 'given in' swap, or that the user will grant * to the pool in a 'given out' swap. * * This can often be implemented by a `view` function, since many pricing algorithms don't need to track state * changes in swaps. However, contracts implementing this in non-view functions should check that the caller is * indeed the Vault. */ interface IMinimalSwapInfoPool is IBasePool { function onSwap( SwapRequest memory swapRequest, uint256 currentBalanceTokenIn, uint256 currentBalanceTokenOut ) external returns (uint256 amount); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "./LogExpMath.sol"; import "../helpers/BalancerErrors.sol"; /* solhint-disable private-vars-leading-underscore */ library FixedPoint { uint256 internal constant ONE = 1e18; // 18 decimal places uint256 internal constant MAX_POW_RELATIVE_ERROR = 10000; // 10^(-14) // Minimum base for the power function when the exponent is 'free' (larger than ONE). uint256 internal constant MIN_POW_BASE_FREE_EXPONENT = 0.7e18; function add(uint256 a, uint256 b) internal pure returns (uint256) { // Fixed Point addition is the same as regular checked addition uint256 c = a + b; _require(c >= a, Errors.ADD_OVERFLOW); return c; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { // Fixed Point addition is the same as regular checked addition _require(b <= a, Errors.SUB_OVERFLOW); uint256 c = a - b; return c; } function mulDown(uint256 a, uint256 b) internal pure returns (uint256) { uint256 product = a * b; _require(a == 0 || product / a == b, Errors.MUL_OVERFLOW); return product / ONE; } function mulUp(uint256 a, uint256 b) internal pure returns (uint256) { uint256 product = a * b; _require(a == 0 || product / a == b, Errors.MUL_OVERFLOW); if (product == 0) { return 0; } else { // The traditional divUp formula is: // divUp(x, y) := (x + y - 1) / y // To avoid intermediate overflow in the addition, we distribute the division and get: // divUp(x, y) := (x - 1) / y + 1 // Note that this requires x != 0, which we already tested for. return ((product - 1) / ONE) + 1; } } function divDown(uint256 a, uint256 b) internal pure returns (uint256) { _require(b != 0, Errors.ZERO_DIVISION); if (a == 0) { return 0; } else { uint256 aInflated = a * ONE; _require(aInflated / a == ONE, Errors.DIV_INTERNAL); // mul overflow return aInflated / b; } } function divUp(uint256 a, uint256 b) internal pure returns (uint256) { _require(b != 0, Errors.ZERO_DIVISION); if (a == 0) { return 0; } else { uint256 aInflated = a * ONE; _require(aInflated / a == ONE, Errors.DIV_INTERNAL); // mul overflow // The traditional divUp formula is: // divUp(x, y) := (x + y - 1) / y // To avoid intermediate overflow in the addition, we distribute the division and get: // divUp(x, y) := (x - 1) / y + 1 // Note that this requires x != 0, which we already tested for. return ((aInflated - 1) / b) + 1; } } /** * @dev Returns x^y, assuming both are fixed point numbers, rounding down. The result is guaranteed to not be above * the true value (that is, the error function expected - actual is always positive). */ function powDown(uint256 x, uint256 y) internal pure returns (uint256) { uint256 raw = LogExpMath.pow(x, y); uint256 maxError = add(mulUp(raw, MAX_POW_RELATIVE_ERROR), 1); if (raw < maxError) { return 0; } else { return sub(raw, maxError); } } /** * @dev Returns x^y, assuming both are fixed point numbers, rounding up. The result is guaranteed to not be below * the true value (that is, the error function expected - actual is always negative). */ function powUp(uint256 x, uint256 y) internal pure returns (uint256) { uint256 raw = LogExpMath.pow(x, y); uint256 maxError = add(mulUp(raw, MAX_POW_RELATIVE_ERROR), 1); return add(raw, maxError); } /** * @dev Returns the complement of a value (1 - x), capped to 0 if x is larger than 1. * * Useful when computing the complement for values with some level of relative error, as it strips this error and * prevents intermediate negative values. */ function complement(uint256 x) internal pure returns (uint256) { return (x < ONE) ? (ONE - x) : 0; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "./BalancerErrors.sol"; import "./ITemporarilyPausable.sol"; /** * @dev Allows for a contract to be paused during an initial period after deployment, disabling functionality. Can be * used as an emergency switch in case a security vulnerability or threat is identified. * * The contract can only be paused during the Pause Window, a period that starts at deployment. It can also be * unpaused and repaused any number of times during this period. This is intended to serve as a safety measure: it lets * system managers react quickly to potentially dangerous situations, knowing that this action is reversible if careful * analysis later determines there was a false alarm. * * If the contract is paused when the Pause Window finishes, it will remain in the paused state through an additional * Buffer Period, after which it will be automatically unpaused forever. This is to ensure there is always enough time * to react to an emergency, even if the threat is discovered shortly before the Pause Window expires. * * Note that since the contract can only be paused within the Pause Window, unpausing during the Buffer Period is * irreversible. */ abstract contract TemporarilyPausable is ITemporarilyPausable { // The Pause Window and Buffer Period are timestamp-based: they should not be relied upon for sub-minute accuracy. // solhint-disable not-rely-on-time uint256 private constant _MAX_PAUSE_WINDOW_DURATION = 90 days; uint256 private constant _MAX_BUFFER_PERIOD_DURATION = 30 days; uint256 private immutable _pauseWindowEndTime; uint256 private immutable _bufferPeriodEndTime; bool private _paused; constructor(uint256 pauseWindowDuration, uint256 bufferPeriodDuration) { _require(pauseWindowDuration <= _MAX_PAUSE_WINDOW_DURATION, Errors.MAX_PAUSE_WINDOW_DURATION); _require(bufferPeriodDuration <= _MAX_BUFFER_PERIOD_DURATION, Errors.MAX_BUFFER_PERIOD_DURATION); uint256 pauseWindowEndTime = block.timestamp + pauseWindowDuration; _pauseWindowEndTime = pauseWindowEndTime; _bufferPeriodEndTime = pauseWindowEndTime + bufferPeriodDuration; } /** * @dev Reverts if the contract is paused. */ modifier whenNotPaused() { _ensureNotPaused(); _; } /** * @dev Returns the current contract pause status, as well as the end times of the Pause Window and Buffer * Period. */ function getPausedState() external view override returns ( bool paused, uint256 pauseWindowEndTime, uint256 bufferPeriodEndTime ) { paused = !_isNotPaused(); pauseWindowEndTime = _getPauseWindowEndTime(); bufferPeriodEndTime = _getBufferPeriodEndTime(); } /** * @dev Sets the pause state to `paused`. The contract can only be paused until the end of the Pause Window, and * unpaused until the end of the Buffer Period. * * Once the Buffer Period expires, this function reverts unconditionally. */ function _setPaused(bool paused) internal { if (paused) { _require(block.timestamp < _getPauseWindowEndTime(), Errors.PAUSE_WINDOW_EXPIRED); } else { _require(block.timestamp < _getBufferPeriodEndTime(), Errors.BUFFER_PERIOD_EXPIRED); } _paused = paused; emit PausedStateChanged(paused); } /** * @dev Reverts if the contract is paused. */ function _ensureNotPaused() internal view { _require(_isNotPaused(), Errors.PAUSED); } /** * @dev Returns true if the contract is unpaused. * * Once the Buffer Period expires, the gas cost of calling this function is reduced dramatically, as storage is no * longer accessed. */ function _isNotPaused() internal view returns (bool) { // After the Buffer Period, the (inexpensive) timestamp check short-circuits the storage access. return block.timestamp > _getBufferPeriodEndTime() || !_paused; } // These getters lead to reduced bytecode size by inlining the immutable variables in a single place. function _getPauseWindowEndTime() private view returns (uint256) { return _pauseWindowEndTime; } function _getBufferPeriodEndTime() private view returns (uint256) { return _bufferPeriodEndTime; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; /** * @dev Library for encoding and decoding values stored inside a 256 bit word. Typically used to pack multiple values in * a single storage slot, saving gas by performing less storage accesses. * * Each value is defined by its size and the least significant bit in the word, also known as offset. For example, two * 128 bit values may be encoded in a word by assigning one an offset of 0, and the other an offset of 128. * * We could use Solidity structs to pack values together in a single storage slot instead of relying on a custom and * error-prone library, but unfortunately Solidity only allows for structs to live in either storage, calldata or * memory. Because a memory struct uses not just memory but also a slot in the stack (to store its memory location), * using memory for word-sized values (i.e. of 256 bits or less) is strictly less gas performant, and doesn't even * prevent stack-too-deep issues. This is compounded by the fact that Balancer contracts typically are memory-intensive, * and the cost of accesing memory increases quadratically with the number of allocated words. Manual packing and * unpacking is therefore the preferred approach. */ library WordCodec { // Masks are values with the least significant N bits set. They can be used to extract an encoded value from a word, // or to insert a new one replacing the old. uint256 private constant _MASK_1 = 2**(1) - 1; uint256 private constant _MASK_5 = 2**(5) - 1; uint256 private constant _MASK_7 = 2**(7) - 1; uint256 private constant _MASK_10 = 2**(10) - 1; uint256 private constant _MASK_16 = 2**(16) - 1; uint256 private constant _MASK_22 = 2**(22) - 1; uint256 private constant _MASK_31 = 2**(31) - 1; uint256 private constant _MASK_32 = 2**(32) - 1; uint256 private constant _MASK_53 = 2**(53) - 1; uint256 private constant _MASK_64 = 2**(64) - 1; uint256 private constant _MASK_128 = 2**(128) - 1; uint256 private constant _MASK_192 = 2**(192) - 1; // Largest positive values that can be represented as N bits signed integers. int256 private constant _MAX_INT_22 = 2**(21) - 1; int256 private constant _MAX_INT_53 = 2**(52) - 1; // In-place insertion /** * @dev Inserts a boolean value shifted by an offset into a 256 bit word, replacing the old value. Returns the new * word. */ function insertBool( bytes32 word, bool value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_1 << offset)); return clearedWord | bytes32(uint256(value ? 1 : 0) << offset); } // Unsigned /** * @dev Inserts a 5 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` only uses its least significant 5 bits, otherwise it may overwrite sibling bytes. */ function insertUint5( bytes32 word, uint256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_5 << offset)); return clearedWord | bytes32(value << offset); } /** * @dev Inserts a 7 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` only uses its least significant 7 bits, otherwise it may overwrite sibling bytes. */ function insertUint7( bytes32 word, uint256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_7 << offset)); return clearedWord | bytes32(value << offset); } /** * @dev Inserts a 10 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` only uses its least significant 10 bits, otherwise it may overwrite sibling bytes. */ function insertUint10( bytes32 word, uint256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_10 << offset)); return clearedWord | bytes32(value << offset); } /** * @dev Inserts a 16 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. * Returns the new word. * * Assumes `value` only uses its least significant 16 bits, otherwise it may overwrite sibling bytes. */ function insertUint16( bytes32 word, uint256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_16 << offset)); return clearedWord | bytes32(value << offset); } /** * @dev Inserts a 31 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` can be represented using 31 bits. */ function insertUint31( bytes32 word, uint256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_31 << offset)); return clearedWord | bytes32(value << offset); } /** * @dev Inserts a 32 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` only uses its least significant 32 bits, otherwise it may overwrite sibling bytes. */ function insertUint32( bytes32 word, uint256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_32 << offset)); return clearedWord | bytes32(value << offset); } /** * @dev Inserts a 64 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` only uses its least significant 64 bits, otherwise it may overwrite sibling bytes. */ function insertUint64( bytes32 word, uint256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_64 << offset)); return clearedWord | bytes32(value << offset); } // Signed /** * @dev Inserts a 22 bits signed integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` can be represented using 22 bits. */ function insertInt22( bytes32 word, int256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_22 << offset)); // Integer values need masking to remove the upper bits of negative values. return clearedWord | bytes32((uint256(value) & _MASK_22) << offset); } // Bytes /** * @dev Inserts 192 bit shifted by an offset into a 256 bit word, replacing the old value. Returns the new word. * * Assumes `value` can be represented using 192 bits. */ function insertBits192( bytes32 word, bytes32 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_192 << offset)); return clearedWord | bytes32((uint256(value) & _MASK_192) << offset); } // Encoding // Unsigned /** * @dev Encodes an unsigned integer shifted by an offset. This performs no size checks: it is up to the caller to * ensure that the values are bounded. * * The return value can be logically ORed with other encoded values to form a 256 bit word. */ function encodeUint(uint256 value, uint256 offset) internal pure returns (bytes32) { return bytes32(value << offset); } // Signed /** * @dev Encodes a 22 bits signed integer shifted by an offset. * * The return value can be logically ORed with other encoded values to form a 256 bit word. */ function encodeInt22(int256 value, uint256 offset) internal pure returns (bytes32) { // Integer values need masking to remove the upper bits of negative values. return bytes32((uint256(value) & _MASK_22) << offset); } /** * @dev Encodes a 53 bits signed integer shifted by an offset. * * The return value can be logically ORed with other encoded values to form a 256 bit word. */ function encodeInt53(int256 value, uint256 offset) internal pure returns (bytes32) { // Integer values need masking to remove the upper bits of negative values. return bytes32((uint256(value) & _MASK_53) << offset); } // Decoding /** * @dev Decodes and returns a boolean shifted by an offset from a 256 bit word. */ function decodeBool(bytes32 word, uint256 offset) internal pure returns (bool) { return (uint256(word >> offset) & _MASK_1) == 1; } // Unsigned /** * @dev Decodes and returns a 5 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint5(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_5; } /** * @dev Decodes and returns a 7 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint7(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_7; } /** * @dev Decodes and returns a 10 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint10(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_10; } /** * @dev Decodes and returns a 16 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint16(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_16; } /** * @dev Decodes and returns a 31 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint31(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_31; } /** * @dev Decodes and returns a 32 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint32(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_32; } /** * @dev Decodes and returns a 64 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint64(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_64; } /** * @dev Decodes and returns a 128 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint128(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_128; } // Signed /** * @dev Decodes and returns a 22 bits signed integer shifted by an offset from a 256 bit word. */ function decodeInt22(bytes32 word, uint256 offset) internal pure returns (int256) { int256 value = int256(uint256(word >> offset) & _MASK_22); // In case the decoded value is greater than the max positive integer that can be represented with 22 bits, // we know it was originally a negative integer. Therefore, we mask it to restore the sign in the 256 bit // representation. return value > _MAX_INT_22 ? (value | int256(~_MASK_22)) : value; } /** * @dev Decodes and returns a 53 bits signed integer shifted by an offset from a 256 bit word. */ function decodeInt53(bytes32 word, uint256 offset) internal pure returns (int256) { int256 value = int256(uint256(word >> offset) & _MASK_53); // In case the decoded value is greater than the max positive integer that can be represented with 53 bits, // we know it was originally a negative integer. Therefore, we mask it to restore the sign in the 256 bit // representation. return value > _MAX_INT_53 ? (value | int256(~_MASK_53)) : value; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "../helpers/BalancerErrors.sol"; import "./IERC20.sol"; import "./SafeMath.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is IERC20 { using SafeMath for uint256; mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; uint8 private _decimals; /** * @dev Sets the values for {name} and {symbol}, initializes {decimals} with * a default value of 18. * * To select a different value for {decimals}, use {_setupDecimals}. * * All three of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; _decimals = 18; } /** * @dev Returns the name of the token. */ function name() public view returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is * called. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view returns (uint8) { return _decimals; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(msg.sender, recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(msg.sender, spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * Requirements: * * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom( address sender, address recipient, uint256 amount ) public virtual override returns (bool) { _transfer(sender, recipient, amount); _approve( sender, msg.sender, _allowances[sender][msg.sender].sub(amount, Errors.ERC20_TRANSFER_EXCEEDS_ALLOWANCE) ); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve(msg.sender, spender, _allowances[msg.sender][spender].add(addedValue)); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { _approve( msg.sender, spender, _allowances[msg.sender][spender].sub(subtractedValue, Errors.ERC20_DECREASED_ALLOWANCE_BELOW_ZERO) ); return true; } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer( address sender, address recipient, uint256 amount ) internal virtual { _require(sender != address(0), Errors.ERC20_TRANSFER_FROM_ZERO_ADDRESS); _require(recipient != address(0), Errors.ERC20_TRANSFER_TO_ZERO_ADDRESS); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, Errors.ERC20_TRANSFER_EXCEEDS_BALANCE); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { _beforeTokenTransfer(address(0), account, amount); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { _require(account != address(0), Errors.ERC20_BURN_FROM_ZERO_ADDRESS); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub(amount, Errors.ERC20_BURN_EXCEEDS_ALLOWANCE); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve( address owner, address spender, uint256 amount ) internal virtual { _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {} }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/ISignaturesValidator.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/ITemporarilyPausable.sol"; import "@balancer-labs/v2-solidity-utils/contracts/misc/IWETH.sol"; import "./IAsset.sol"; import "./IAuthorizer.sol"; import "./IFlashLoanRecipient.sol"; import "./IProtocolFeesCollector.sol"; pragma solidity ^0.7.0; /** * @dev Full external interface for the Vault core contract - no external or public methods exist in the contract that * don't override one of these declarations. */ interface IVault is ISignaturesValidator, ITemporarilyPausable { // Generalities about the Vault: // // - Whenever documentation refers to 'tokens', it strictly refers to ERC20-compliant token contracts. Tokens are // transferred out of the Vault by calling the `IERC20.transfer` function, and transferred in by calling // `IERC20.transferFrom`. In these cases, the sender must have previously allowed the Vault to use their tokens by // calling `IERC20.approve`. The only deviation from the ERC20 standard that is supported is functions not returning // a boolean value: in these scenarios, a non-reverting call is assumed to be successful. // // - All non-view functions in the Vault are non-reentrant: calling them while another one is mid-execution (e.g. // while execution control is transferred to a token contract during a swap) will result in a revert. View // functions can be called in a re-reentrant way, but doing so might cause them to return inconsistent results. // Contracts calling view functions in the Vault must make sure the Vault has not already been entered. // // - View functions revert if referring to either unregistered Pools, or unregistered tokens for registered Pools. // Authorizer // // Some system actions are permissioned, like setting and collecting protocol fees. This permissioning system exists // outside of the Vault in the Authorizer contract: the Vault simply calls the Authorizer to check if the caller // can perform a given action. /** * @dev Returns the Vault's Authorizer. */ function getAuthorizer() external view returns (IAuthorizer); /** * @dev Sets a new Authorizer for the Vault. The caller must be allowed by the current Authorizer to do this. * * Emits an `AuthorizerChanged` event. */ function setAuthorizer(IAuthorizer newAuthorizer) external; /** * @dev Emitted when a new authorizer is set by `setAuthorizer`. */ event AuthorizerChanged(IAuthorizer indexed newAuthorizer); // Relayers // // Additionally, it is possible for an account to perform certain actions on behalf of another one, using their // Vault ERC20 allowance and Internal Balance. These accounts are said to be 'relayers' for these Vault functions, // and are expected to be smart contracts with sound authentication mechanisms. For an account to be able to wield // this power, two things must occur: // - The Authorizer must grant the account the permission to be a relayer for the relevant Vault function. This // means that Balancer governance must approve each individual contract to act as a relayer for the intended // functions. // - Each user must approve the relayer to act on their behalf. // This double protection means users cannot be tricked into approving malicious relayers (because they will not // have been allowed by the Authorizer via governance), nor can malicious relayers approved by a compromised // Authorizer or governance drain user funds, since they would also need to be approved by each individual user. /** * @dev Returns true if `user` has approved `relayer` to act as a relayer for them. */ function hasApprovedRelayer(address user, address relayer) external view returns (bool); /** * @dev Allows `relayer` to act as a relayer for `sender` if `approved` is true, and disallows it otherwise. * * Emits a `RelayerApprovalChanged` event. */ function setRelayerApproval( address sender, address relayer, bool approved ) external; /** * @dev Emitted every time a relayer is approved or disapproved by `setRelayerApproval`. */ event RelayerApprovalChanged(address indexed relayer, address indexed sender, bool approved); // Internal Balance // // Users can deposit tokens into the Vault, where they are allocated to their Internal Balance, and later // transferred or withdrawn. It can also be used as a source of tokens when joining Pools, as a destination // when exiting them, and as either when performing swaps. This usage of Internal Balance results in greatly reduced // gas costs when compared to relying on plain ERC20 transfers, leading to large savings for frequent users. // // Internal Balance management features batching, which means a single contract call can be used to perform multiple // operations of different kinds, with different senders and recipients, at once. /** * @dev Returns `user`'s Internal Balance for a set of tokens. */ function getInternalBalance(address user, IERC20[] memory tokens) external view returns (uint256[] memory); /** * @dev Performs a set of user balance operations, which involve Internal Balance (deposit, withdraw or transfer) * and plain ERC20 transfers using the Vault's allowance. This last feature is particularly useful for relayers, as * it lets integrators reuse a user's Vault allowance. * * For each operation, if the caller is not `sender`, it must be an authorized relayer for them. */ function manageUserBalance(UserBalanceOp[] memory ops) external payable; /** * @dev Data for `manageUserBalance` operations, which include the possibility for ETH to be sent and received without manual WETH wrapping or unwrapping. */ struct UserBalanceOp { UserBalanceOpKind kind; IAsset asset; uint256 amount; address sender; address payable recipient; } // There are four possible operations in `manageUserBalance`: // // - DEPOSIT_INTERNAL // Increases the Internal Balance of the `recipient` account by transferring tokens from the corresponding // `sender`. The sender must have allowed the Vault to use their tokens via `IERC20.approve()`. // // ETH can be used by passing the ETH sentinel value as the asset and forwarding ETH in the call: it will be wrapped // and deposited as WETH. Any ETH amount remaining will be sent back to the caller (not the sender, which is // relevant for relayers). // // Emits an `InternalBalanceChanged` event. // // // - WITHDRAW_INTERNAL // Decreases the Internal Balance of the `sender` account by transferring tokens to the `recipient`. // // ETH can be used by passing the ETH sentinel value as the asset. This will deduct WETH instead, unwrap it and send // it to the recipient as ETH. // // Emits an `InternalBalanceChanged` event. // // // - TRANSFER_INTERNAL // Transfers tokens from the Internal Balance of the `sender` account to the Internal Balance of `recipient`. // // Reverts if the ETH sentinel value is passed. // // Emits an `InternalBalanceChanged` event. // // // - TRANSFER_EXTERNAL // Transfers tokens from `sender` to `recipient`, using the Vault's ERC20 allowance. This is typically used by // relayers, as it lets them reuse a user's Vault allowance. // // Reverts if the ETH sentinel value is passed. // // Emits an `ExternalBalanceTransfer` event. enum UserBalanceOpKind { DEPOSIT_INTERNAL, WITHDRAW_INTERNAL, TRANSFER_INTERNAL, TRANSFER_EXTERNAL } /** * @dev Emitted when a user's Internal Balance changes, either from calls to `manageUserBalance`, or through * interacting with Pools using Internal Balance. * * Because Internal Balance works exclusively with ERC20 tokens, ETH deposits and withdrawals will use the WETH * address. */ event InternalBalanceChanged(address indexed user, IERC20 indexed token, int256 delta); /** * @dev Emitted when a user's Vault ERC20 allowance is used by the Vault to transfer tokens to an external account. */ event ExternalBalanceTransfer(IERC20 indexed token, address indexed sender, address recipient, uint256 amount); // Pools // // There are three specialization settings for Pools, which allow for cheaper swaps at the cost of reduced // functionality: // // - General: no specialization, suited for all Pools. IGeneralPool is used for swap request callbacks, passing the // balance of all tokens in the Pool. These Pools have the largest swap costs (because of the extra storage reads), // which increase with the number of registered tokens. // // - Minimal Swap Info: IMinimalSwapInfoPool is used instead of IGeneralPool, which saves gas by only passing the // balance of the two tokens involved in the swap. This is suitable for some pricing algorithms, like the weighted // constant product one popularized by Balancer V1. Swap costs are smaller compared to general Pools, and are // independent of the number of registered tokens. // // - Two Token: only allows two tokens to be registered. This achieves the lowest possible swap gas cost. Like // minimal swap info Pools, these are called via IMinimalSwapInfoPool. enum PoolSpecialization { GENERAL, MINIMAL_SWAP_INFO, TWO_TOKEN } /** * @dev Registers the caller account as a Pool with a given specialization setting. Returns the Pool's ID, which * is used in all Pool-related functions. Pools cannot be deregistered, nor can the Pool's specialization be * changed. * * The caller is expected to be a smart contract that implements either `IGeneralPool` or `IMinimalSwapInfoPool`, * depending on the chosen specialization setting. This contract is known as the Pool's contract. * * Note that the same contract may register itself as multiple Pools with unique Pool IDs, or in other words, * multiple Pools may share the same contract. * * Emits a `PoolRegistered` event. */ function registerPool(PoolSpecialization specialization) external returns (bytes32); /** * @dev Emitted when a Pool is registered by calling `registerPool`. */ event PoolRegistered(bytes32 indexed poolId, address indexed poolAddress, PoolSpecialization specialization); /** * @dev Returns a Pool's contract address and specialization setting. */ function getPool(bytes32 poolId) external view returns (address, PoolSpecialization); /** * @dev Registers `tokens` for the `poolId` Pool. Must be called by the Pool's contract. * * Pools can only interact with tokens they have registered. Users join a Pool by transferring registered tokens, * exit by receiving registered tokens, and can only swap registered tokens. * * Each token can only be registered once. For Pools with the Two Token specialization, `tokens` must have a length * of two, that is, both tokens must be registered in the same `registerTokens` call, and they must be sorted in * ascending order. * * The `tokens` and `assetManagers` arrays must have the same length, and each entry in these indicates the Asset * Manager for the corresponding token. Asset Managers can manage a Pool's tokens via `managePoolBalance`, * depositing and withdrawing them directly, and can even set their balance to arbitrary amounts. They are therefore * expected to be highly secured smart contracts with sound design principles, and the decision to register an * Asset Manager should not be made lightly. * * Pools can choose not to assign an Asset Manager to a given token by passing in the zero address. Once an Asset * Manager is set, it cannot be changed except by deregistering the associated token and registering again with a * different Asset Manager. * * Emits a `TokensRegistered` event. */ function registerTokens( bytes32 poolId, IERC20[] memory tokens, address[] memory assetManagers ) external; /** * @dev Emitted when a Pool registers tokens by calling `registerTokens`. */ event TokensRegistered(bytes32 indexed poolId, IERC20[] tokens, address[] assetManagers); /** * @dev Deregisters `tokens` for the `poolId` Pool. Must be called by the Pool's contract. * * Only registered tokens (via `registerTokens`) can be deregistered. Additionally, they must have zero total * balance. For Pools with the Two Token specialization, `tokens` must have a length of two, that is, both tokens * must be deregistered in the same `deregisterTokens` call. * * A deregistered token can be re-registered later on, possibly with a different Asset Manager. * * Emits a `TokensDeregistered` event. */ function deregisterTokens(bytes32 poolId, IERC20[] memory tokens) external; /** * @dev Emitted when a Pool deregisters tokens by calling `deregisterTokens`. */ event TokensDeregistered(bytes32 indexed poolId, IERC20[] tokens); /** * @dev Returns detailed information for a Pool's registered token. * * `cash` is the number of tokens the Vault currently holds for the Pool. `managed` is the number of tokens * withdrawn and held outside the Vault by the Pool's token Asset Manager. The Pool's total balance for `token` * equals the sum of `cash` and `managed`. * * Internally, `cash` and `managed` are stored using 112 bits. No action can ever cause a Pool's token `cash`, * `managed` or `total` balance to be greater than 2^112 - 1. * * `lastChangeBlock` is the number of the block in which `token`'s total balance was last modified (via either a * join, exit, swap, or Asset Manager update). This value is useful to avoid so-called 'sandwich attacks', for * example when developing price oracles. A change of zero (e.g. caused by a swap with amount zero) is considered a * change for this purpose, and will update `lastChangeBlock`. * * `assetManager` is the Pool's token Asset Manager. */ function getPoolTokenInfo(bytes32 poolId, IERC20 token) external view returns ( uint256 cash, uint256 managed, uint256 lastChangeBlock, address assetManager ); /** * @dev Returns a Pool's registered tokens, the total balance for each, and the latest block when *any* of * the tokens' `balances` changed. * * The order of the `tokens` array is the same order that will be used in `joinPool`, `exitPool`, as well as in all * Pool hooks (where applicable). Calls to `registerTokens` and `deregisterTokens` may change this order. * * If a Pool only registers tokens once, and these are sorted in ascending order, they will be stored in the same * order as passed to `registerTokens`. * * Total balances include both tokens held by the Vault and those withdrawn by the Pool's Asset Managers. These are * the amounts used by joins, exits and swaps. For a detailed breakdown of token balances, use `getPoolTokenInfo` * instead. */ function getPoolTokens(bytes32 poolId) external view returns ( IERC20[] memory tokens, uint256[] memory balances, uint256 lastChangeBlock ); /** * @dev Called by users to join a Pool, which transfers tokens from `sender` into the Pool's balance. This will * trigger custom Pool behavior, which will typically grant something in return to `recipient` - often tokenized * Pool shares. * * If the caller is not `sender`, it must be an authorized relayer for them. * * The `assets` and `maxAmountsIn` arrays must have the same length, and each entry indicates the maximum amount * to send for each asset. The amounts to send are decided by the Pool and not the Vault: it just enforces * these maximums. * * If joining a Pool that holds WETH, it is possible to send ETH directly: the Vault will do the wrapping. To enable * this mechanism, the IAsset sentinel value (the zero address) must be passed in the `assets` array instead of the * WETH address. Note that it is not possible to combine ETH and WETH in the same join. Any excess ETH will be sent * back to the caller (not the sender, which is important for relayers). * * `assets` must have the same length and order as the array returned by `getPoolTokens`. This prevents issues when * interacting with Pools that register and deregister tokens frequently. If sending ETH however, the array must be * sorted *before* replacing the WETH address with the ETH sentinel value (the zero address), which means the final * `assets` array might not be sorted. Pools with no registered tokens cannot be joined. * * If `fromInternalBalance` is true, the caller's Internal Balance will be preferred: ERC20 transfers will only * be made for the difference between the requested amount and Internal Balance (if any). Note that ETH cannot be * withdrawn from Internal Balance: attempting to do so will trigger a revert. * * This causes the Vault to call the `IBasePool.onJoinPool` hook on the Pool's contract, where Pools implement * their own custom logic. This typically requires additional information from the user (such as the expected number * of Pool shares). This can be encoded in the `userData` argument, which is ignored by the Vault and passed * directly to the Pool's contract, as is `recipient`. * * Emits a `PoolBalanceChanged` event. */ function joinPool( bytes32 poolId, address sender, address recipient, JoinPoolRequest memory request ) external payable; struct JoinPoolRequest { IAsset[] assets; uint256[] maxAmountsIn; bytes userData; bool fromInternalBalance; } /** * @dev Called by users to exit a Pool, which transfers tokens from the Pool's balance to `recipient`. This will * trigger custom Pool behavior, which will typically ask for something in return from `sender` - often tokenized * Pool shares. The amount of tokens that can be withdrawn is limited by the Pool's `cash` balance (see * `getPoolTokenInfo`). * * If the caller is not `sender`, it must be an authorized relayer for them. * * The `tokens` and `minAmountsOut` arrays must have the same length, and each entry in these indicates the minimum * token amount to receive for each token contract. The amounts to send are decided by the Pool and not the Vault: * it just enforces these minimums. * * If exiting a Pool that holds WETH, it is possible to receive ETH directly: the Vault will do the unwrapping. To * enable this mechanism, the IAsset sentinel value (the zero address) must be passed in the `assets` array instead * of the WETH address. Note that it is not possible to combine ETH and WETH in the same exit. * * `assets` must have the same length and order as the array returned by `getPoolTokens`. This prevents issues when * interacting with Pools that register and deregister tokens frequently. If receiving ETH however, the array must * be sorted *before* replacing the WETH address with the ETH sentinel value (the zero address), which means the * final `assets` array might not be sorted. Pools with no registered tokens cannot be exited. * * If `toInternalBalance` is true, the tokens will be deposited to `recipient`'s Internal Balance. Otherwise, * an ERC20 transfer will be performed. Note that ETH cannot be deposited to Internal Balance: attempting to * do so will trigger a revert. * * `minAmountsOut` is the minimum amount of tokens the user expects to get out of the Pool, for each token in the * `tokens` array. This array must match the Pool's registered tokens. * * This causes the Vault to call the `IBasePool.onExitPool` hook on the Pool's contract, where Pools implement * their own custom logic. This typically requires additional information from the user (such as the expected number * of Pool shares to return). This can be encoded in the `userData` argument, which is ignored by the Vault and * passed directly to the Pool's contract. * * Emits a `PoolBalanceChanged` event. */ function exitPool( bytes32 poolId, address sender, address payable recipient, ExitPoolRequest memory request ) external; struct ExitPoolRequest { IAsset[] assets; uint256[] minAmountsOut; bytes userData; bool toInternalBalance; } /** * @dev Emitted when a user joins or exits a Pool by calling `joinPool` or `exitPool`, respectively. */ event PoolBalanceChanged( bytes32 indexed poolId, address indexed liquidityProvider, IERC20[] tokens, int256[] deltas, uint256[] protocolFeeAmounts ); enum PoolBalanceChangeKind { JOIN, EXIT } // Swaps // // Users can swap tokens with Pools by calling the `swap` and `batchSwap` functions. To do this, // they need not trust Pool contracts in any way: all security checks are made by the Vault. They must however be // aware of the Pools' pricing algorithms in order to estimate the prices Pools will quote. // // The `swap` function executes a single swap, while `batchSwap` can perform multiple swaps in sequence. // In each individual swap, tokens of one kind are sent from the sender to the Pool (this is the 'token in'), // and tokens of another kind are sent from the Pool to the recipient in exchange (this is the 'token out'). // More complex swaps, such as one token in to multiple tokens out can be achieved by batching together // individual swaps. // // There are two swap kinds: // - 'given in' swaps, where the amount of tokens in (sent to the Pool) is known, and the Pool determines (via the // `onSwap` hook) the amount of tokens out (to send to the recipient). // - 'given out' swaps, where the amount of tokens out (received from the Pool) is known, and the Pool determines // (via the `onSwap` hook) the amount of tokens in (to receive from the sender). // // Additionally, it is possible to chain swaps using a placeholder input amount, which the Vault replaces with // the calculated output of the previous swap. If the previous swap was 'given in', this will be the calculated // tokenOut amount. If the previous swap was 'given out', it will use the calculated tokenIn amount. These extended // swaps are known as 'multihop' swaps, since they 'hop' through a number of intermediate tokens before arriving at // the final intended token. // // In all cases, tokens are only transferred in and out of the Vault (or withdrawn from and deposited into Internal // Balance) after all individual swaps have been completed, and the net token balance change computed. This makes // certain swap patterns, such as multihops, or swaps that interact with the same token pair in multiple Pools, cost // much less gas than they would otherwise. // // It also means that under certain conditions it is possible to perform arbitrage by swapping with multiple // Pools in a way that results in net token movement out of the Vault (profit), with no tokens being sent in (only // updating the Pool's internal accounting). // // To protect users from front-running or the market changing rapidly, they supply a list of 'limits' for each token // involved in the swap, where either the maximum number of tokens to send (by passing a positive value) or the // minimum amount of tokens to receive (by passing a negative value) is specified. // // Additionally, a 'deadline' timestamp can also be provided, forcing the swap to fail if it occurs after // this point in time (e.g. if the transaction failed to be included in a block promptly). // // If interacting with Pools that hold WETH, it is possible to both send and receive ETH directly: the Vault will do // the wrapping and unwrapping. To enable this mechanism, the IAsset sentinel value (the zero address) must be // passed in the `assets` array instead of the WETH address. Note that it is possible to combine ETH and WETH in the // same swap. Any excess ETH will be sent back to the caller (not the sender, which is relevant for relayers). // // Finally, Internal Balance can be used when either sending or receiving tokens. enum SwapKind { GIVEN_IN, GIVEN_OUT } /** * @dev Performs a swap with a single Pool. * * If the swap is 'given in' (the number of tokens to send to the Pool is known), it returns the amount of tokens * taken from the Pool, which must be greater than or equal to `limit`. * * If the swap is 'given out' (the number of tokens to take from the Pool is known), it returns the amount of tokens * sent to the Pool, which must be less than or equal to `limit`. * * Internal Balance usage and the recipient are determined by the `funds` struct. * * Emits a `Swap` event. */ function swap( SingleSwap memory singleSwap, FundManagement memory funds, uint256 limit, uint256 deadline ) external payable returns (uint256); /** * @dev Data for a single swap executed by `swap`. `amount` is either `amountIn` or `amountOut` depending on * the `kind` value. * * `assetIn` and `assetOut` are either token addresses, or the IAsset sentinel value for ETH (the zero address). * Note that Pools never interact with ETH directly: it will be wrapped to or unwrapped from WETH by the Vault. * * The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be * used to extend swap behavior. */ struct SingleSwap { bytes32 poolId; SwapKind kind; IAsset assetIn; IAsset assetOut; uint256 amount; bytes userData; } /** * @dev Performs a series of swaps with one or multiple Pools. In each individual swap, the caller determines either * the amount of tokens sent to or received from the Pool, depending on the `kind` value. * * Returns an array with the net Vault asset balance deltas. Positive amounts represent tokens (or ETH) sent to the * Vault, and negative amounts represent tokens (or ETH) sent by the Vault. Each delta corresponds to the asset at * the same index in the `assets` array. * * Swaps are executed sequentially, in the order specified by the `swaps` array. Each array element describes a * Pool, the token to be sent to this Pool, the token to receive from it, and an amount that is either `amountIn` or * `amountOut` depending on the swap kind. * * Multihop swaps can be executed by passing an `amount` value of zero for a swap. This will cause the amount in/out * of the previous swap to be used as the amount in for the current one. In a 'given in' swap, 'tokenIn' must equal * the previous swap's `tokenOut`. For a 'given out' swap, `tokenOut` must equal the previous swap's `tokenIn`. * * The `assets` array contains the addresses of all assets involved in the swaps. These are either token addresses, * or the IAsset sentinel value for ETH (the zero address). Each entry in the `swaps` array specifies tokens in and * out by referencing an index in `assets`. Note that Pools never interact with ETH directly: it will be wrapped to * or unwrapped from WETH by the Vault. * * Internal Balance usage, sender, and recipient are determined by the `funds` struct. The `limits` array specifies * the minimum or maximum amount of each token the vault is allowed to transfer. * * `batchSwap` can be used to make a single swap, like `swap` does, but doing so requires more gas than the * equivalent `swap` call. * * Emits `Swap` events. */ function batchSwap( SwapKind kind, BatchSwapStep[] memory swaps, IAsset[] memory assets, FundManagement memory funds, int256[] memory limits, uint256 deadline ) external payable returns (int256[] memory); /** * @dev Data for each individual swap executed by `batchSwap`. The asset in and out fields are indexes into the * `assets` array passed to that function, and ETH assets are converted to WETH. * * If `amount` is zero, the multihop mechanism is used to determine the actual amount based on the amount in/out * from the previous swap, depending on the swap kind. * * The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be * used to extend swap behavior. */ struct BatchSwapStep { bytes32 poolId; uint256 assetInIndex; uint256 assetOutIndex; uint256 amount; bytes userData; } /** * @dev Emitted for each individual swap performed by `swap` or `batchSwap`. */ event Swap( bytes32 indexed poolId, IERC20 indexed tokenIn, IERC20 indexed tokenOut, uint256 amountIn, uint256 amountOut ); /** * @dev All tokens in a swap are either sent from the `sender` account to the Vault, or from the Vault to the * `recipient` account. * * If the caller is not `sender`, it must be an authorized relayer for them. * * If `fromInternalBalance` is true, the `sender`'s Internal Balance will be preferred, performing an ERC20 * transfer for the difference between the requested amount and the User's Internal Balance (if any). The `sender` * must have allowed the Vault to use their tokens via `IERC20.approve()`. This matches the behavior of * `joinPool`. * * If `toInternalBalance` is true, tokens will be deposited to `recipient`'s internal balance instead of * transferred. This matches the behavior of `exitPool`. * * Note that ETH cannot be deposited to or withdrawn from Internal Balance: attempting to do so will trigger a * revert. */ struct FundManagement { address sender; bool fromInternalBalance; address payable recipient; bool toInternalBalance; } /** * @dev Simulates a call to `batchSwap`, returning an array of Vault asset deltas. Calls to `swap` cannot be * simulated directly, but an equivalent `batchSwap` call can and will yield the exact same result. * * Each element in the array corresponds to the asset at the same index, and indicates the number of tokens (or ETH) * the Vault would take from the sender (if positive) or send to the recipient (if negative). The arguments it * receives are the same that an equivalent `batchSwap` call would receive. * * Unlike `batchSwap`, this function performs no checks on the sender or recipient field in the `funds` struct. * This makes it suitable to be called by off-chain applications via eth_call without needing to hold tokens, * approve them for the Vault, or even know a user's address. * * Note that this function is not 'view' (due to implementation details): the client code must explicitly execute * eth_call instead of eth_sendTransaction. */ function queryBatchSwap( SwapKind kind, BatchSwapStep[] memory swaps, IAsset[] memory assets, FundManagement memory funds ) external returns (int256[] memory assetDeltas); // Flash Loans /** * @dev Performs a 'flash loan', sending tokens to `recipient`, executing the `receiveFlashLoan` hook on it, * and then reverting unless the tokens plus a proportional protocol fee have been returned. * * The `tokens` and `amounts` arrays must have the same length, and each entry in these indicates the loan amount * for each token contract. `tokens` must be sorted in ascending order. * * The 'userData' field is ignored by the Vault, and forwarded as-is to `recipient` as part of the * `receiveFlashLoan` call. * * Emits `FlashLoan` events. */ function flashLoan( IFlashLoanRecipient recipient, IERC20[] memory tokens, uint256[] memory amounts, bytes memory userData ) external; /** * @dev Emitted for each individual flash loan performed by `flashLoan`. */ event FlashLoan(IFlashLoanRecipient indexed recipient, IERC20 indexed token, uint256 amount, uint256 feeAmount); // Asset Management // // Each token registered for a Pool can be assigned an Asset Manager, which is able to freely withdraw the Pool's // tokens from the Vault, deposit them, or assign arbitrary values to its `managed` balance (see // `getPoolTokenInfo`). This makes them extremely powerful and dangerous. Even if an Asset Manager only directly // controls one of the tokens in a Pool, a malicious manager could set that token's balance to manipulate the // prices of the other tokens, and then drain the Pool with swaps. The risk of using Asset Managers is therefore // not constrained to the tokens they are managing, but extends to the entire Pool's holdings. // // However, a properly designed Asset Manager smart contract can be safely used for the Pool's benefit, // for example by lending unused tokens out for interest, or using them to participate in voting protocols. // // This concept is unrelated to the IAsset interface. /** * @dev Performs a set of Pool balance operations, which may be either withdrawals, deposits or updates. * * Pool Balance management features batching, which means a single contract call can be used to perform multiple * operations of different kinds, with different Pools and tokens, at once. * * For each operation, the caller must be registered as the Asset Manager for `token` in `poolId`. */ function managePoolBalance(PoolBalanceOp[] memory ops) external; struct PoolBalanceOp { PoolBalanceOpKind kind; bytes32 poolId; IERC20 token; uint256 amount; } /** * Withdrawals decrease the Pool's cash, but increase its managed balance, leaving the total balance unchanged. * * Deposits increase the Pool's cash, but decrease its managed balance, leaving the total balance unchanged. * * Updates don't affect the Pool's cash balance, but because the managed balance changes, it does alter the total. * The external amount can be either increased or decreased by this call (i.e., reporting a gain or a loss). */ enum PoolBalanceOpKind { WITHDRAW, DEPOSIT, UPDATE } /** * @dev Emitted when a Pool's token Asset Manager alters its balance via `managePoolBalance`. */ event PoolBalanceManaged( bytes32 indexed poolId, address indexed assetManager, IERC20 indexed token, int256 cashDelta, int256 managedDelta ); // Protocol Fees // // Some operations cause the Vault to collect tokens in the form of protocol fees, which can then be withdrawn by // permissioned accounts. // // There are two kinds of protocol fees: // // - flash loan fees: charged on all flash loans, as a percentage of the amounts lent. // // - swap fees: a percentage of the fees charged by Pools when performing swaps. For a number of reasons, including // swap gas costs and interface simplicity, protocol swap fees are not charged on each individual swap. Rather, // Pools are expected to keep track of how much they have charged in swap fees, and pay any outstanding debts to the // Vault when they are joined or exited. This prevents users from joining a Pool with unpaid debt, as well as // exiting a Pool in debt without first paying their share. /** * @dev Returns the current protocol fee module. */ function getProtocolFeesCollector() external view returns (IProtocolFeesCollector); /** * @dev Safety mechanism to pause most Vault operations in the event of an emergency - typically detection of an * error in some part of the system. * * The Vault can only be paused during an initial time period, after which pausing is forever disabled. * * While the contract is paused, the following features are disabled: * - depositing and transferring internal balance * - transferring external balance (using the Vault's allowance) * - swaps * - joining Pools * - Asset Manager interactions * * Internal Balance can still be withdrawn, and Pools exited. */ function setPaused(bool paused) external; /** * @dev Returns the Vault's WETH instance. */ function WETH() external view returns (IWETH); // solhint-disable-previous-line func-name-mixedcase }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "./IVault.sol"; import "./IPoolSwapStructs.sol"; /** * @dev Interface for adding and removing liquidity that all Pool contracts should implement. Note that this is not * the complete Pool contract interface, as it is missing the swap hooks. Pool contracts should also inherit from * either IGeneralPool or IMinimalSwapInfoPool */ interface IBasePool is IPoolSwapStructs { /** * @dev Called by the Vault when a user calls `IVault.joinPool` to add liquidity to this Pool. Returns how many of * each registered token the user should provide, as well as the amount of protocol fees the Pool owes to the Vault. * The Vault will then take tokens from `sender` and add them to the Pool's balances, as well as collect * the reported amount in protocol fees, which the pool should calculate based on `protocolSwapFeePercentage`. * * Protocol fees are reported and charged on join events so that the Pool is free of debt whenever new users join. * * `sender` is the account performing the join (from which tokens will be withdrawn), and `recipient` is the account * designated to receive any benefits (typically pool shares). `balances` contains the total balances * for each token the Pool registered in the Vault, in the same order that `IVault.getPoolTokens` would return. * * `lastChangeBlock` is the last block in which *any* of the Pool's registered tokens last changed its total * balance. * * `userData` contains any pool-specific instructions needed to perform the calculations, such as the type of * join (e.g., proportional given an amount of pool shares, single-asset, multi-asset, etc.) * * Contracts implementing this function should check that the caller is indeed the Vault before performing any * state-changing operations, such as minting pool shares. */ function onJoinPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) external returns (uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts); /** * @dev Called by the Vault when a user calls `IVault.exitPool` to remove liquidity from this Pool. Returns how many * tokens the Vault should deduct from the Pool's balances, as well as the amount of protocol fees the Pool owes * to the Vault. The Vault will then take tokens from the Pool's balances and send them to `recipient`, * as well as collect the reported amount in protocol fees, which the Pool should calculate based on * `protocolSwapFeePercentage`. * * Protocol fees are charged on exit events to guarantee that users exiting the Pool have paid their share. * * `sender` is the account performing the exit (typically the pool shareholder), and `recipient` is the account * to which the Vault will send the proceeds. `balances` contains the total token balances for each token * the Pool registered in the Vault, in the same order that `IVault.getPoolTokens` would return. * * `lastChangeBlock` is the last block in which *any* of the Pool's registered tokens last changed its total * balance. * * `userData` contains any pool-specific instructions needed to perform the calculations, such as the type of * exit (e.g., proportional given an amount of pool shares, single-asset, multi-asset, etc.) * * Contracts implementing this function should check that the caller is indeed the Vault before performing any * state-changing operations, such as burning pool shares. */ function onExitPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) external returns (uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts); function getPoolId() external view returns (bytes32); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol"; interface IAssetManager { /** * @notice Emitted when asset manager is rebalanced */ event Rebalance(bytes32 poolId); /** * @notice Sets the config */ function setConfig(bytes32 poolId, bytes calldata config) external; /** * Note: No function to read the asset manager config is included in IAssetManager * as the signature is expected to vary between asset manager implementations */ /** * @notice Returns the asset manager's token */ function getToken() external view returns (IERC20); /** * @return the current assets under management of this asset manager */ function getAUM(bytes32 poolId) external view returns (uint256); /** * @return poolCash - The up-to-date cash balance of the pool * @return poolManaged - The up-to-date managed balance of the pool */ function getPoolBalances(bytes32 poolId) external view returns (uint256 poolCash, uint256 poolManaged); /** * @return The difference in tokens between the target investment * and the currently invested amount (i.e. the amount that can be invested) */ function maxInvestableBalance(bytes32 poolId) external view returns (int256); /** * @notice Updates the Vault on the value of the pool's investment returns */ function updateBalanceOfPool(bytes32 poolId) external; /** * @notice Determines whether the pool should rebalance given the provided balances */ function shouldRebalance(uint256 cash, uint256 managed) external view returns (bool); /** * @notice Rebalances funds between the pool and the asset manager to maintain target investment percentage. * @param poolId - the poolId of the pool to be rebalanced * @param force - a boolean representing whether a rebalance should be forced even when the pool is near balance */ function rebalance(bytes32 poolId, bool force) external; /** * @notice allows an authorized rebalancer to remove capital to facilitate large withdrawals * @param poolId - the poolId of the pool to withdraw funds back to * @param amount - the amount of tokens to withdraw back to the pool */ function capitalOut(bytes32 poolId, uint256 amount) external; }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ERC20.sol"; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ERC20Permit.sol"; import "@balancer-labs/v2-vault/contracts/interfaces/IVault.sol"; /** * @title Highly opinionated token implementation * @author Balancer Labs * @dev * - Includes functions to increase and decrease allowance as a workaround * for the well-known issue with `approve`: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * - Allows for 'infinite allowance', where an allowance of 0xff..ff is not * decreased by calls to transferFrom * - Lets a token holder use `transferFrom` to send their own tokens, * without first setting allowance * - Emits 'Approval' events whenever allowance is changed by `transferFrom` * - Assigns infinite allowance for all token holders to the Vault */ contract BalancerPoolToken is ERC20, ERC20Permit { IVault private immutable _vault; constructor( string memory tokenName, string memory tokenSymbol, IVault vault ) ERC20(tokenName, tokenSymbol) ERC20Permit(tokenName) { _vault = vault; } function getVault() public view returns (IVault) { return _vault; } // Overrides /** * @dev Override to grant the Vault infinite allowance, causing for Pool Tokens to not require approval. * * This is sound as the Vault already provides authorization mechanisms when initiation token transfers, which this * contract inherits. */ function allowance(address owner, address spender) public view override returns (uint256) { if (spender == address(getVault())) { return uint256(-1); } else { return super.allowance(owner, spender); } } /** * @dev Override to allow for 'infinite allowance' and let the token owner use `transferFrom` with no self-allowance */ function transferFrom( address sender, address recipient, uint256 amount ) public override returns (bool) { uint256 currentAllowance = allowance(sender, msg.sender); _require(msg.sender == sender || currentAllowance >= amount, Errors.ERC20_TRANSFER_EXCEEDS_ALLOWANCE); _transfer(sender, recipient, amount); if (msg.sender != sender && currentAllowance != uint256(-1)) { // Because of the previous require, we know that if msg.sender != sender then currentAllowance >= amount _approve(sender, msg.sender, currentAllowance - amount); } return true; } /** * @dev Override to allow decreasing allowance by more than the current amount (setting it to zero) */ function decreaseAllowance(address spender, uint256 amount) public override returns (bool) { uint256 currentAllowance = allowance(msg.sender, spender); if (amount >= currentAllowance) { _approve(msg.sender, spender, 0); } else { // No risk of underflow due to if condition _approve(msg.sender, spender, currentAllowance - amount); } return true; } // Internal functions function _mintPoolTokens(address recipient, uint256 amount) internal { _mint(recipient, amount); } function _burnPoolTokens(address sender, uint256 amount) internal { _burn(sender, amount); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-solidity-utils/contracts/helpers/Authentication.sol"; import "@balancer-labs/v2-vault/contracts/interfaces/IAuthorizer.sol"; import "./BasePool.sol"; /** * @dev Base authorization layer implementation for Pools. * * The owner account can call some of the permissioned functions - access control of the rest is delegated to the * Authorizer. Note that this owner is immutable: more sophisticated permission schemes, such as multiple ownership, * granular roles, etc., could be built on top of this by making the owner a smart contract. * * Access control of all other permissioned functions is delegated to an Authorizer. It is also possible to delegate * control of *all* permissioned functions to the Authorizer by setting the owner address to `_DELEGATE_OWNER`. */ abstract contract BasePoolAuthorization is Authentication { address private immutable _owner; address private constant _DELEGATE_OWNER = 0xBA1BA1ba1BA1bA1bA1Ba1BA1ba1BA1bA1ba1ba1B; constructor(address owner) { _owner = owner; } function getOwner() public view returns (address) { return _owner; } function getAuthorizer() external view returns (IAuthorizer) { return _getAuthorizer(); } function _canPerform(bytes32 actionId, address account) internal view override returns (bool) { if ((getOwner() != _DELEGATE_OWNER) && _isOwnerOnlyAction(actionId)) { // Only the owner can perform "owner only" actions, unless the owner is delegated. return msg.sender == getOwner(); } else { // Non-owner actions are always processed via the Authorizer, as "owner only" ones are when delegated. return _getAuthorizer().canPerform(actionId, account, address(this)); } } function _isOwnerOnlyAction(bytes32 actionId) internal view virtual returns (bool); function _getAuthorizer() internal view virtual returns (IAuthorizer); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; /** * @dev Interface for the TemporarilyPausable helper. */ interface ITemporarilyPausable { /** * @dev Emitted every time the pause state changes by `_setPaused`. */ event PausedStateChanged(bool paused); /** * @dev Returns the current paused state. */ function getPausedState() external view returns ( bool paused, uint256 pauseWindowEndTime, uint256 bufferPeriodEndTime ); }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "../helpers/BalancerErrors.sol"; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; _require(c >= a, Errors.ADD_OVERFLOW); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, Errors.SUB_OVERFLOW); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, uint256 errorCode) internal pure returns (uint256) { _require(b <= a, errorCode); uint256 c = a - b; return c; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; /** * @dev Interface for the SignatureValidator helper, used to support meta-transactions. */ interface ISignaturesValidator { /** * @dev Returns the EIP712 domain separator. */ function getDomainSeparator() external view returns (bytes32); /** * @dev Returns the next nonce used by an address to sign messages. */ function getNextNonce(address user) external view returns (uint256); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "../openzeppelin/IERC20.sol"; /** * @dev Interface for WETH9. * See https://github.com/gnosis/canonical-weth/blob/0dd1ea3e295eef916d0c6223ec63141137d22d67/contracts/WETH9.sol */ interface IWETH is IERC20 { function deposit() external payable; function withdraw(uint256 amount) external; }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; /** * @dev This is an empty interface used to represent either ERC20-conforming token contracts or ETH (using the zero * address sentinel value). We're just relying on the fact that `interface` can be used to declare new address-like * types. * * This concept is unrelated to a Pool's Asset Managers. */ interface IAsset { // solhint-disable-previous-line no-empty-blocks }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; interface IAuthorizer { /** * @dev Returns true if `account` can perform the action described by `actionId` in the contract `where`. */ function canPerform( bytes32 actionId, address account, address where ) external view returns (bool); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; // Inspired by Aave Protocol's IFlashLoanReceiver. import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol"; interface IFlashLoanRecipient { /** * @dev When `flashLoan` is called on the Vault, it invokes the `receiveFlashLoan` hook on the recipient. * * At the time of the call, the Vault will have transferred `amounts` for `tokens` to the recipient. Before this * call returns, the recipient must have transferred `amounts` plus `feeAmounts` for each token back to the * Vault, or else the entire flash loan will revert. * * `userData` is the same value passed in the `IVault.flashLoan` call. */ function receiveFlashLoan( IERC20[] memory tokens, uint256[] memory amounts, uint256[] memory feeAmounts, bytes memory userData ) external; }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol"; import "./IVault.sol"; import "./IAuthorizer.sol"; interface IProtocolFeesCollector { event SwapFeePercentageChanged(uint256 newSwapFeePercentage); event FlashLoanFeePercentageChanged(uint256 newFlashLoanFeePercentage); function withdrawCollectedFees( IERC20[] calldata tokens, uint256[] calldata amounts, address recipient ) external; function setSwapFeePercentage(uint256 newSwapFeePercentage) external; function setFlashLoanFeePercentage(uint256 newFlashLoanFeePercentage) external; function getSwapFeePercentage() external view returns (uint256); function getFlashLoanFeePercentage() external view returns (uint256); function getCollectedFeeAmounts(IERC20[] memory tokens) external view returns (uint256[] memory feeAmounts); function getAuthorizer() external view returns (IAuthorizer); function vault() external view returns (IVault); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol"; import "./IVault.sol"; interface IPoolSwapStructs { // This is not really an interface - it just defines common structs used by other interfaces: IGeneralPool and // IMinimalSwapInfoPool. // // This data structure represents a request for a token swap, where `kind` indicates the swap type ('given in' or // 'given out') which indicates whether or not the amount sent by the pool is known. // // The pool receives `tokenIn` and sends `tokenOut`. `amount` is the number of `tokenIn` tokens the pool will take // in, or the number of `tokenOut` tokens the Pool will send out, depending on the given swap `kind`. // // All other fields are not strictly necessary for most swaps, but are provided to support advanced scenarios in // some Pools. // // `poolId` is the ID of the Pool involved in the swap - this is useful for Pool contracts that implement more than // one Pool. // // The meaning of `lastChangeBlock` depends on the Pool specialization: // - Two Token or Minimal Swap Info: the last block in which either `tokenIn` or `tokenOut` changed its total // balance. // - General: the last block in which *any* of the Pool's registered tokens changed its total balance. // // `from` is the origin address for the funds the Pool receives, and `to` is the destination address // where the Pool sends the outgoing tokens. // // `userData` is extra data provided by the caller - typically a signature from a trusted party. struct SwapRequest { IVault.SwapKind kind; IERC20 tokenIn; IERC20 tokenOut; uint256 amount; // Misc data bytes32 poolId; uint256 lastChangeBlock; address from; address to; bytes userData; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "./ERC20.sol"; import "./IERC20Permit.sol"; import "./EIP712.sol"; /** * @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. * * _Available since v3.4._ */ abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712 { mapping(address => uint256) private _nonces; // solhint-disable-next-line var-name-mixedcase bytes32 private immutable _PERMIT_TYPEHASH = keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"); /** * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`. * * It's a good idea to use the same `name` that is defined as the ERC20 token name. */ constructor(string memory name) EIP712(name, "1") {} /** * @dev See {IERC20Permit-permit}. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual override { // solhint-disable-next-line not-rely-on-time _require(block.timestamp <= deadline, Errors.EXPIRED_PERMIT); uint256 nonce = _nonces[owner]; bytes32 structHash = keccak256(abi.encode(_PERMIT_TYPEHASH, owner, spender, value, nonce, deadline)); bytes32 hash = _hashTypedDataV4(structHash); address signer = ecrecover(hash, v, r, s); _require((signer != address(0)) && (signer == owner), Errors.INVALID_SIGNATURE); _nonces[owner] = nonce + 1; _approve(owner, spender, value); } /** * @dev See {IERC20Permit-nonces}. */ function nonces(address owner) public view override returns (uint256) { return _nonces[owner]; } /** * @dev See {IERC20Permit-DOMAIN_SEPARATOR}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view override returns (bytes32) { return _domainSeparatorV4(); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over `owner`'s tokens, * given `owner`'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for `permit`, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /** * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data. * * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible, * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding * they need in their contracts using a combination of `abi.encode` and `keccak256`. * * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA * ({_hashTypedDataV4}). * * The implementation of the domain separator was designed to be as efficient as possible while still properly updating * the chain id to protect against replay attacks on an eventual fork of the chain. * * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask]. * * _Available since v3.4._ */ abstract contract EIP712 { /* solhint-disable var-name-mixedcase */ bytes32 private immutable _HASHED_NAME; bytes32 private immutable _HASHED_VERSION; bytes32 private immutable _TYPE_HASH; /* solhint-enable var-name-mixedcase */ /** * @dev Initializes the domain separator and parameter caches. * * The meaning of `name` and `version` is specified in * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]: * * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol. * - `version`: the current major version of the signing domain. * * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart * contract upgrade]. */ constructor(string memory name, string memory version) { _HASHED_NAME = keccak256(bytes(name)); _HASHED_VERSION = keccak256(bytes(version)); _TYPE_HASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"); } /** * @dev Returns the domain separator for the current chain. */ function _domainSeparatorV4() internal view virtual returns (bytes32) { return keccak256(abi.encode(_TYPE_HASH, _HASHED_NAME, _HASHED_VERSION, _getChainId(), address(this))); } /** * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this * function returns the hash of the fully encoded EIP712 message for this domain. * * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example: * * ```solidity * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode( * keccak256("Mail(address to,string contents)"), * mailTo, * keccak256(bytes(mailContents)) * ))); * address signer = ECDSA.recover(digest, signature); * ``` */ function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) { return keccak256(abi.encodePacked("\x19\x01", _domainSeparatorV4(), structHash)); } function _getChainId() private view returns (uint256 chainId) { // Silence state mutability warning without generating bytecode. // See https://github.com/ethereum/solidity/issues/10090#issuecomment-741789128 and // https://github.com/ethereum/solidity/issues/2691 this; // solhint-disable-next-line no-inline-assembly assembly { chainId := chainid() } } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "./BalancerErrors.sol"; import "./IAuthentication.sol"; /** * @dev Building block for performing access control on external functions. * * This contract is used via the `authenticate` modifier (or the `_authenticateCaller` function), which can be applied * to external functions to only make them callable by authorized accounts. * * Derived contracts must implement the `_canPerform` function, which holds the actual access control logic. */ abstract contract Authentication is IAuthentication { bytes32 private immutable _actionIdDisambiguator; /** * @dev The main purpose of the `actionIdDisambiguator` is to prevent accidental function selector collisions in * multi contract systems. * * There are two main uses for it: * - if the contract is a singleton, any unique identifier can be used to make the associated action identifiers * unique. The contract's own address is a good option. * - if the contract belongs to a family that shares action identifiers for the same functions, an identifier * shared by the entire family (and no other contract) should be used instead. */ constructor(bytes32 actionIdDisambiguator) { _actionIdDisambiguator = actionIdDisambiguator; } /** * @dev Reverts unless the caller is allowed to call this function. Should only be applied to external functions. */ modifier authenticate() { _authenticateCaller(); _; } /** * @dev Reverts unless the caller is allowed to call the entry point function. */ function _authenticateCaller() internal view { bytes32 actionId = getActionId(msg.sig); _require(_canPerform(actionId, msg.sender), Errors.SENDER_NOT_ALLOWED); } function getActionId(bytes4 selector) public view override returns (bytes32) { // Each external function is dynamically assigned an action identifier as the hash of the disambiguator and the // function selector. Disambiguation is necessary to avoid potential collisions in the function selectors of // multiple contracts. return keccak256(abi.encodePacked(_actionIdDisambiguator, selector)); } function _canPerform(bytes32 actionId, address user) internal view virtual returns (bool); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; interface IAuthentication { /** * @dev Returns the action identifier associated with the external function described by `selector`. */ function getActionId(bytes4 selector) external view returns (bytes32); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/InputHelpers.sol"; import "@balancer-labs/v2-pool-utils/contracts/BaseMinimalSwapInfoPool.sol"; import "./WeightedMath.sol"; import "./WeightedPoolUserDataHelpers.sol"; /** * @dev Base class for WeightedPools containing swap, join and exit logic, but leaving storage and management of * the weights to subclasses. Derived contracts can choose to make weights immutable, mutable, or even dynamic * based on local or external logic. */ abstract contract BaseWeightedPool is BaseMinimalSwapInfoPool { using FixedPoint for uint256; using WeightedPoolUserDataHelpers for bytes; uint256 private _lastInvariant; // For backwards compatibility, make sure new join and exit kinds are added at the end of the enum. enum JoinKind { INIT, EXACT_TOKENS_IN_FOR_BPT_OUT, TOKEN_IN_FOR_EXACT_BPT_OUT, ALL_TOKENS_IN_FOR_EXACT_BPT_OUT } enum ExitKind { EXACT_BPT_IN_FOR_ONE_TOKEN_OUT, EXACT_BPT_IN_FOR_TOKENS_OUT, BPT_IN_FOR_EXACT_TOKENS_OUT, MANAGEMENT_FEE_TOKENS_OUT // for InvestmentPool } constructor( IVault vault, string memory name, string memory symbol, IERC20[] memory tokens, address[] memory assetManagers, uint256 swapFeePercentage, uint256 pauseWindowDuration, uint256 bufferPeriodDuration, address owner ) BasePool( vault, // Given BaseMinimalSwapInfoPool supports both of these specializations, and this Pool never registers or // deregisters any tokens after construction, picking Two Token when the Pool only has two tokens is free // gas savings. tokens.length == 2 ? IVault.PoolSpecialization.TWO_TOKEN : IVault.PoolSpecialization.MINIMAL_SWAP_INFO, name, symbol, tokens, assetManagers, swapFeePercentage, pauseWindowDuration, bufferPeriodDuration, owner ) { // solhint-disable-previous-line no-empty-blocks } // Virtual functions /** * @dev Returns the normalized weight of `token`. Weights are fixed point numbers that sum to FixedPoint.ONE. */ function _getNormalizedWeight(IERC20 token) internal view virtual returns (uint256); /** * @dev Returns all normalized weights, in the same order as the Pool's tokens. */ function _getNormalizedWeights() internal view virtual returns (uint256[] memory); /** * @dev Returns all normalized weights, in the same order as the Pool's tokens, along with the index of the token * with the highest weight. */ function _getNormalizedWeightsAndMaxWeightIndex() internal view virtual returns (uint256[] memory, uint256); function getLastInvariant() public view virtual returns (uint256) { return _lastInvariant; } /** * @dev Returns the current value of the invariant. */ function getInvariant() public view returns (uint256) { (, uint256[] memory balances, ) = getVault().getPoolTokens(getPoolId()); // Since the Pool hooks always work with upscaled balances, we manually // upscale here for consistency _upscaleArray(balances, _scalingFactors()); (uint256[] memory normalizedWeights, ) = _getNormalizedWeightsAndMaxWeightIndex(); return WeightedMath._calculateInvariant(normalizedWeights, balances); } function getNormalizedWeights() external view returns (uint256[] memory) { return _getNormalizedWeights(); } // Base Pool handlers // Swap function _onSwapGivenIn( SwapRequest memory swapRequest, uint256 currentBalanceTokenIn, uint256 currentBalanceTokenOut ) internal view virtual override whenNotPaused returns (uint256) { // Swaps are disabled while the contract is paused. return WeightedMath._calcOutGivenIn( currentBalanceTokenIn, _getNormalizedWeight(swapRequest.tokenIn), currentBalanceTokenOut, _getNormalizedWeight(swapRequest.tokenOut), swapRequest.amount ); } function _onSwapGivenOut( SwapRequest memory swapRequest, uint256 currentBalanceTokenIn, uint256 currentBalanceTokenOut ) internal view virtual override whenNotPaused returns (uint256) { // Swaps are disabled while the contract is paused. return WeightedMath._calcInGivenOut( currentBalanceTokenIn, _getNormalizedWeight(swapRequest.tokenIn), currentBalanceTokenOut, _getNormalizedWeight(swapRequest.tokenOut), swapRequest.amount ); } // Initialize function _onInitializePool( bytes32, address, address, uint256[] memory scalingFactors, bytes memory userData ) internal virtual override whenNotPaused returns (uint256, uint256[] memory) { // It would be strange for the Pool to be paused before it is initialized, but for consistency we prevent // initialization in this case. JoinKind kind = userData.joinKind(); _require(kind == JoinKind.INIT, Errors.UNINITIALIZED); uint256[] memory amountsIn = userData.initialAmountsIn(); InputHelpers.ensureInputLengthMatch(_getTotalTokens(), amountsIn.length); _upscaleArray(amountsIn, scalingFactors); (uint256[] memory normalizedWeights, ) = _getNormalizedWeightsAndMaxWeightIndex(); uint256 invariantAfterJoin = WeightedMath._calculateInvariant(normalizedWeights, amountsIn); // Set the initial BPT to the value of the invariant times the number of tokens. This makes BPT supply more // consistent in Pools with similar compositions but different number of tokens. uint256 bptAmountOut = Math.mul(invariantAfterJoin, _getTotalTokens()); _lastInvariant = invariantAfterJoin; return (bptAmountOut, amountsIn); } // Join function _onJoinPool( bytes32, address, address, uint256[] memory balances, uint256, uint256 protocolSwapFeePercentage, uint256[] memory scalingFactors, bytes memory userData ) internal virtual override whenNotPaused returns ( uint256, uint256[] memory, uint256[] memory ) { // All joins are disabled while the contract is paused. (uint256[] memory normalizedWeights, uint256 maxWeightTokenIndex) = _getNormalizedWeightsAndMaxWeightIndex(); // Due protocol swap fee amounts are computed by measuring the growth of the invariant between the previous join // or exit event and now - the invariant's growth is due exclusively to swap fees. This avoids spending gas // computing them on each individual swap uint256 invariantBeforeJoin = WeightedMath._calculateInvariant(normalizedWeights, balances); uint256[] memory dueProtocolFeeAmounts = _getDueProtocolFeeAmounts( balances, normalizedWeights, maxWeightTokenIndex, _lastInvariant, invariantBeforeJoin, protocolSwapFeePercentage ); // Update current balances by subtracting the protocol fee amounts _mutateAmounts(balances, dueProtocolFeeAmounts, FixedPoint.sub); (uint256 bptAmountOut, uint256[] memory amountsIn) = _doJoin( balances, normalizedWeights, scalingFactors, userData ); // Update the invariant with the balances the Pool will have after the join, in order to compute the // protocol swap fee amounts due in future joins and exits. _lastInvariant = _invariantAfterJoin(balances, amountsIn, normalizedWeights); return (bptAmountOut, amountsIn, dueProtocolFeeAmounts); } function _doJoin( uint256[] memory balances, uint256[] memory normalizedWeights, uint256[] memory scalingFactors, bytes memory userData ) internal returns (uint256, uint256[] memory) { JoinKind kind = userData.joinKind(); if (kind == JoinKind.EXACT_TOKENS_IN_FOR_BPT_OUT) { return _joinExactTokensInForBPTOut(balances, normalizedWeights, scalingFactors, userData); } else if (kind == JoinKind.TOKEN_IN_FOR_EXACT_BPT_OUT) { return _joinTokenInForExactBPTOut(balances, normalizedWeights, userData); } else if (kind == JoinKind.ALL_TOKENS_IN_FOR_EXACT_BPT_OUT) { return _joinAllTokensInForExactBPTOut(balances, userData); } else { _revert(Errors.UNHANDLED_JOIN_KIND); } } function _joinExactTokensInForBPTOut( uint256[] memory balances, uint256[] memory normalizedWeights, uint256[] memory scalingFactors, bytes memory userData ) private returns (uint256, uint256[] memory) { (uint256[] memory amountsIn, uint256 minBPTAmountOut) = userData.exactTokensInForBptOut(); InputHelpers.ensureInputLengthMatch(_getTotalTokens(), amountsIn.length); _upscaleArray(amountsIn, scalingFactors); (uint256 bptAmountOut, uint256[] memory swapFees) = WeightedMath._calcBptOutGivenExactTokensIn( balances, normalizedWeights, amountsIn, totalSupply(), getSwapFeePercentage() ); // Note that swapFees is already upscaled _processSwapFeeAmounts(swapFees); _require(bptAmountOut >= minBPTAmountOut, Errors.BPT_OUT_MIN_AMOUNT); return (bptAmountOut, amountsIn); } function _joinTokenInForExactBPTOut( uint256[] memory balances, uint256[] memory normalizedWeights, bytes memory userData ) private returns (uint256, uint256[] memory) { (uint256 bptAmountOut, uint256 tokenIndex) = userData.tokenInForExactBptOut(); // Note that there is no maximum amountIn parameter: this is handled by `IVault.joinPool`. _require(tokenIndex < _getTotalTokens(), Errors.OUT_OF_BOUNDS); (uint256 amountIn, uint256 swapFee) = WeightedMath._calcTokenInGivenExactBptOut( balances[tokenIndex], normalizedWeights[tokenIndex], bptAmountOut, totalSupply(), getSwapFeePercentage() ); // Note that swapFee is already upscaled _processSwapFeeAmount(tokenIndex, swapFee); // We join in a single token, so we initialize amountsIn with zeros uint256[] memory amountsIn = new uint256[](_getTotalTokens()); // And then assign the result to the selected token amountsIn[tokenIndex] = amountIn; return (bptAmountOut, amountsIn); } function _joinAllTokensInForExactBPTOut(uint256[] memory balances, bytes memory userData) private view returns (uint256, uint256[] memory) { uint256 bptAmountOut = userData.allTokensInForExactBptOut(); // Note that there is no maximum amountsIn parameter: this is handled by `IVault.joinPool`. uint256[] memory amountsIn = WeightedMath._calcAllTokensInGivenExactBptOut( balances, bptAmountOut, totalSupply() ); return (bptAmountOut, amountsIn); } // Exit function _onExitPool( bytes32, address, address, uint256[] memory balances, uint256, uint256 protocolSwapFeePercentage, uint256[] memory scalingFactors, bytes memory userData ) internal virtual override returns ( uint256 bptAmountIn, uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts ) { (uint256[] memory normalizedWeights, uint256 maxWeightTokenIndex) = _getNormalizedWeightsAndMaxWeightIndex(); // Exits are not completely disabled while the contract is paused: proportional exits (exact BPT in for tokens // out) remain functional. if (_isNotPaused()) { // Due protocol swap fee amounts are computed by measuring the growth of the invariant between the previous // join or exit event and now - the invariant's growth is due exclusively to swap fees. This avoids // spending gas calculating the fees on each individual swap. uint256 invariantBeforeExit = WeightedMath._calculateInvariant(normalizedWeights, balances); dueProtocolFeeAmounts = _getDueProtocolFeeAmounts( balances, normalizedWeights, maxWeightTokenIndex, _lastInvariant, invariantBeforeExit, protocolSwapFeePercentage ); // Update current balances by subtracting the protocol fee amounts _mutateAmounts(balances, dueProtocolFeeAmounts, FixedPoint.sub); } else { // If the contract is paused, swap protocol fee amounts are not charged to avoid extra calculations and // reduce the potential for errors. dueProtocolFeeAmounts = new uint256[](_getTotalTokens()); } (bptAmountIn, amountsOut) = _doExit(balances, normalizedWeights, scalingFactors, userData); // Update the invariant with the balances the Pool will have after the exit, in order to compute the // protocol swap fees due in future joins and exits. _lastInvariant = _invariantAfterExit(balances, amountsOut, normalizedWeights); return (bptAmountIn, amountsOut, dueProtocolFeeAmounts); } function _doExit( uint256[] memory balances, uint256[] memory normalizedWeights, uint256[] memory scalingFactors, bytes memory userData ) internal returns (uint256, uint256[] memory) { ExitKind kind = userData.exitKind(); if (kind == ExitKind.EXACT_BPT_IN_FOR_ONE_TOKEN_OUT) { return _exitExactBPTInForTokenOut(balances, normalizedWeights, userData); } else if (kind == ExitKind.EXACT_BPT_IN_FOR_TOKENS_OUT) { return _exitExactBPTInForTokensOut(balances, userData); } else if (kind == ExitKind.BPT_IN_FOR_EXACT_TOKENS_OUT) { return _exitBPTInForExactTokensOut(balances, normalizedWeights, scalingFactors, userData); } else { _revert(Errors.UNHANDLED_EXIT_KIND); } } function _exitExactBPTInForTokenOut( uint256[] memory balances, uint256[] memory normalizedWeights, bytes memory userData ) private whenNotPaused returns (uint256, uint256[] memory) { // This exit function is disabled if the contract is paused. (uint256 bptAmountIn, uint256 tokenIndex) = userData.exactBptInForTokenOut(); // Note that there is no minimum amountOut parameter: this is handled by `IVault.exitPool`. _require(tokenIndex < _getTotalTokens(), Errors.OUT_OF_BOUNDS); (uint256 amountOut, uint256 swapFee) = WeightedMath._calcTokenOutGivenExactBptIn( balances[tokenIndex], normalizedWeights[tokenIndex], bptAmountIn, totalSupply(), getSwapFeePercentage() ); // This is an exceptional situation in which the fee is charged on a token out instead of a token in. // Note that swapFee is already upscaled. _processSwapFeeAmount(tokenIndex, swapFee); // We exit in a single token, so we initialize amountsOut with zeros uint256[] memory amountsOut = new uint256[](_getTotalTokens()); // And then assign the result to the selected token amountsOut[tokenIndex] = amountOut; return (bptAmountIn, amountsOut); } function _exitExactBPTInForTokensOut(uint256[] memory balances, bytes memory userData) private view returns (uint256, uint256[] memory) { // This exit function is the only one that is not disabled if the contract is paused: it remains unrestricted // in an attempt to provide users with a mechanism to retrieve their tokens in case of an emergency. // This particular exit function is the only one that remains available because it is the simplest one, and // therefore the one with the lowest likelihood of errors. uint256 bptAmountIn = userData.exactBptInForTokensOut(); // Note that there is no minimum amountOut parameter: this is handled by `IVault.exitPool`. uint256[] memory amountsOut = WeightedMath._calcTokensOutGivenExactBptIn(balances, bptAmountIn, totalSupply()); return (bptAmountIn, amountsOut); } function _exitBPTInForExactTokensOut( uint256[] memory balances, uint256[] memory normalizedWeights, uint256[] memory scalingFactors, bytes memory userData ) private whenNotPaused returns (uint256, uint256[] memory) { // This exit function is disabled if the contract is paused. (uint256[] memory amountsOut, uint256 maxBPTAmountIn) = userData.bptInForExactTokensOut(); InputHelpers.ensureInputLengthMatch(amountsOut.length, _getTotalTokens()); _upscaleArray(amountsOut, scalingFactors); (uint256 bptAmountIn, uint256[] memory swapFees) = WeightedMath._calcBptInGivenExactTokensOut( balances, normalizedWeights, amountsOut, totalSupply(), getSwapFeePercentage() ); _require(bptAmountIn <= maxBPTAmountIn, Errors.BPT_IN_MAX_AMOUNT); // This is an exceptional situation in which the fee is charged on a token out instead of a token in. // Note that swapFee is already upscaled. _processSwapFeeAmounts(swapFees); return (bptAmountIn, amountsOut); } // Helpers function _getDueProtocolFeeAmounts( uint256[] memory balances, uint256[] memory normalizedWeights, uint256 maxWeightTokenIndex, uint256 previousInvariant, uint256 currentInvariant, uint256 protocolSwapFeePercentage ) private view returns (uint256[] memory) { // Initialize with zeros uint256[] memory dueProtocolFeeAmounts = new uint256[](_getTotalTokens()); // Early return if the protocol swap fee percentage is zero, saving gas. if (protocolSwapFeePercentage == 0) { return dueProtocolFeeAmounts; } // The protocol swap fees are always paid using the token with the largest weight in the Pool. As this is the // token that is expected to have the largest balance, using it to pay fees should not unbalance the Pool. dueProtocolFeeAmounts[maxWeightTokenIndex] = WeightedMath._calcDueTokenProtocolSwapFeeAmount( balances[maxWeightTokenIndex], normalizedWeights[maxWeightTokenIndex], previousInvariant, currentInvariant, protocolSwapFeePercentage ); return dueProtocolFeeAmounts; } /** * @dev Returns the value of the invariant given `balances`, assuming they are increased by `amountsIn`. All * amounts are expected to be upscaled. */ function _invariantAfterJoin( uint256[] memory balances, uint256[] memory amountsIn, uint256[] memory normalizedWeights ) private view returns (uint256) { _mutateAmounts(balances, amountsIn, FixedPoint.add); return WeightedMath._calculateInvariant(normalizedWeights, balances); } function _invariantAfterExit( uint256[] memory balances, uint256[] memory amountsOut, uint256[] memory normalizedWeights ) private view returns (uint256) { _mutateAmounts(balances, amountsOut, FixedPoint.sub); return WeightedMath._calculateInvariant(normalizedWeights, balances); } /** * @dev Mutates `amounts` by applying `mutation` with each entry in `arguments`. * * Equivalent to `amounts = amounts.map(mutation)`. */ function _mutateAmounts( uint256[] memory toMutate, uint256[] memory arguments, function(uint256, uint256) pure returns (uint256) mutation ) private view { for (uint256 i = 0; i < _getTotalTokens(); ++i) { toMutate[i] = mutation(toMutate[i], arguments[i]); } } /** * @dev This function returns the appreciation of one BPT relative to the * underlying tokens. This starts at 1 when the pool is created and grows over time */ function getRate() public view returns (uint256) { // The initial BPT supply is equal to the invariant times the number of tokens. return Math.mul(getInvariant(), _getTotalTokens()).divDown(totalSupply()); } }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity 0.7.6; pragma experimental ABIEncoderV2; interface ICappedLiquidity { event CapParamsUpdated(CapParams params); event CapManagerUpdated(address capManager); struct CapParams { bool capEnabled; uint120 perAddressCap; uint128 globalCap; } function setCapParams(CapParams memory params) external; function capParams() external view returns (CapParams memory); function capManager() external view returns (address); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.7.0; interface ILocallyPausable { event PausedLocally(); event UnpausedLocally(); event PauseManagerChanged(address oldPauseManager, address newPauseManager); /// @notice Changes the account that is allowed to pause a pool. function changePauseManager(address _pauseManager) external; /// @notice Pauses the pool. /// Can only be called by the pause manager. function pause() external; /// @notice Unpauses the pool. /// Can only be called by the pause manager. function unpause() external; }
{ "optimizer": { "enabled": true, "runs": 200 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"components":[{"internalType":"contract IVault","name":"vault","type":"address"},{"internalType":"address","name":"configAddress","type":"address"},{"components":[{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"contract IERC20[]","name":"tokens","type":"address[]"},{"internalType":"uint256","name":"swapFeePercentage","type":"uint256"},{"internalType":"uint256","name":"root3Alpha","type":"uint256"},{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"capManager","type":"address"},{"components":[{"internalType":"bool","name":"capEnabled","type":"bool"},{"internalType":"uint120","name":"perAddressCap","type":"uint120"},{"internalType":"uint128","name":"globalCap","type":"uint128"}],"internalType":"struct ICappedLiquidity.CapParams","name":"capParams","type":"tuple"},{"internalType":"address","name":"pauseManager","type":"address"}],"internalType":"struct Gyro3CLPPool.NewPoolConfigParams","name":"config","type":"tuple"},{"internalType":"uint256","name":"pauseWindowDuration","type":"uint256"},{"internalType":"uint256","name":"bufferPeriodDuration","type":"uint256"}],"internalType":"struct Gyro3CLPPool.NewPoolParams","name":"params","type":"tuple"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"capManager","type":"address"}],"name":"CapManagerUpdated","type":"event"},{"anonymous":false,"inputs":[{"components":[{"internalType":"bool","name":"capEnabled","type":"bool"},{"internalType":"uint120","name":"perAddressCap","type":"uint120"},{"internalType":"uint128","name":"globalCap","type":"uint128"}],"indexed":false,"internalType":"struct ICappedLiquidity.CapParams","name":"params","type":"tuple"}],"name":"CapParamsUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"oldPauseManager","type":"address"},{"indexed":false,"internalType":"address","name":"newPauseManager","type":"address"}],"name":"PauseManagerChanged","type":"event"},{"anonymous":false,"inputs":[],"name":"PausedLocally","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"paused","type":"bool"}],"name":"PausedStateChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"swapFeePercentage","type":"uint256"}],"name":"SwapFeePercentageChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[],"name":"UnpausedLocally","type":"event"},{"inputs":[],"name":"DOMAIN_SEPARATOR","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"capManager","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"capParams","outputs":[{"components":[{"internalType":"bool","name":"capEnabled","type":"bool"},{"internalType":"uint120","name":"perAddressCap","type":"uint120"},{"internalType":"uint128","name":"globalCap","type":"uint128"}],"internalType":"struct ICappedLiquidity.CapParams","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_pauseManager","type":"address"}],"name":"changePauseManager","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"selector","type":"bytes4"}],"name":"getActionId","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAuthorizer","outputs":[{"internalType":"contract IAuthorizer","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getInvariant","outputs":[{"internalType":"uint256","name":"invariant","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getLastInvariant","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getNormalizedWeights","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPausedState","outputs":[{"internalType":"bool","name":"paused","type":"bool"},{"internalType":"uint256","name":"pauseWindowEndTime","type":"uint256"},{"internalType":"uint256","name":"bufferPeriodEndTime","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPoolId","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getRate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getRoot3Alpha","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getScalingFactors","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getSwapFeePercentage","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getVault","outputs":[{"internalType":"contract IVault","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"gyroConfig","outputs":[{"internalType":"contract IGyroConfig","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"onExitPool","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"},{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"onJoinPool","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"},{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"enum IVault.SwapKind","name":"kind","type":"uint8"},{"internalType":"contract IERC20","name":"tokenIn","type":"address"},{"internalType":"contract IERC20","name":"tokenOut","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"bytes","name":"userData","type":"bytes"}],"internalType":"struct IPoolSwapStructs.SwapRequest","name":"request","type":"tuple"},{"internalType":"uint256","name":"balanceTokenIn","type":"uint256"},{"internalType":"uint256","name":"balanceTokenOut","type":"uint256"}],"name":"onSwap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"pauseManager","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"permit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"queryExit","outputs":[{"internalType":"uint256","name":"bptIn","type":"uint256"},{"internalType":"uint256[]","name":"amountsOut","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"queryJoin","outputs":[{"internalType":"uint256","name":"bptOut","type":"uint256"},{"internalType":"uint256[]","name":"amountsIn","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"bytes","name":"poolConfig","type":"bytes"}],"name":"setAssetManagerPoolConfig","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_capManager","type":"address"}],"name":"setCapManager","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"bool","name":"capEnabled","type":"bool"},{"internalType":"uint120","name":"perAddressCap","type":"uint120"},{"internalType":"uint128","name":"globalCap","type":"uint128"}],"internalType":"struct ICappedLiquidity.CapParams","name":"params","type":"tuple"}],"name":"setCapParams","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"paused","type":"bool"}],"name":"setPaused","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"swapFeePercentage","type":"uint256"}],"name":"setSwapFeePercentage","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"unpause","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
6102a06040527f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9610120523480156200003757600080fd5b50604051620058ee380380620058ee8339810160408190526200005a9162000c97565b60408181015161010081015160c082015160e0830151855184516020860151958701518751600380825260808201909952959794969395929491939290918160200160208202803683370190505088604001516060015189606001518a608001518b6040015160a00151888651600214620000d7576001620000da565b60025b8989898989898989828289898d8280604051806040016040528060018152602001603160f81b81525085858a336001600160a01b031660001b806080818152505050806001600160a01b031660a0816001600160a01b031660601b815250505081600390805190602001906200015292919062000936565b5080516200016890600490602084019062000936565b505060058054601260ff1990911617905550815160209283012060c052805191012060e052507f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f6101005260601b6001600160601b0319166101405250620001db90506276a7008311156101946200061f565b620001ef62278d008211156101956200061f565b429091016101608190520161018052855162000211906002111560c86200061f565b6200022b6200021f62000634565b8751111560c96200061f565b62000241866200063960201b620013951760201c565b6200024c8462000645565b6040516309b2760f60e01b81526000906001600160a01b038c16906309b2760f906200027d908d9060040162000e17565b602060405180830381600087803b1580156200029857600080fd5b505af1158015620002ad573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190620002d3919062000c7e565b604051633354e3e960e11b81529091506001600160a01b038c16906366a9c7d290620003089084908b908b9060040162000d7d565b600060405180830381600087803b1580156200032357600080fd5b505af115801562000338573d6000803e3d6000fd5b50505050806101a08181525050505050505050505050505050505050505050505060006001600160a01b0316826001600160a01b031614156040518060400160405280600e81526020016d1b9bdd08185d5d1a1bdc9a5e995960921b81525090620003c15760405162461bcd60e51b8152600401620003b8919062000e2c565b60405180910390fd5b50600b80546001600160a01b0319166001600160a01b039384161790558051600a8054602084015160409094015160ff1990911692151592909217610100600160801b0319166101006001600160781b0390941693909302929092176001600160801b03908116600160801b91909216021790556200044690821615156069620006d1565b600c80546001600160a01b0319166001600160a01b0392909216919091179055604081810151015180516200048190600314610161620006d1565b62000497816200063960201b620013951760201c565b6020820151620004b4906001600160a01b031615156069620006d1565b80600081518110620004c257fe5b60200260200101516001600160a01b03166101e0816001600160a01b031660601b8152505080600181518110620004f557fe5b60200260200101516001600160a01b0316610200816001600160a01b031660601b81525050806002815181106200052857fe5b60200260200101516001600160a01b0316610220816001600160a01b031660601b8152505062000573816000815181106200055f57fe5b6020026020010151620006e260201b60201c565b6102405280516200058c90829060019081106200055f57fe5b610260528051620005a590829060029081106200055f57fe5b61028052604082015160800151620005e890670233f548dddd560211801590620005df5750670de098625faac3a883604001516080015111155b61015f620006d1565b506040810151608001516101c05260200151600d80546001600160a01b0319166001600160a01b0390921691909117905562000ed7565b8162000630576200063081620007b6565b5050565b600390565b80620006308162000809565b6200065a64e8d4a5100082101560cb6200061f565b6200067267016345785d8a000082111560ca6200061f565b620006918160c06008546200089660201b6200139f179092919060201c565b6008556040517fa9ba3ffe0b6c366b81232caab38605a0699ad5398d6cce76f91ee809e322dafc90620006c690839062000e61565b60405180910390a150565b8162000630576200063081620008ab565b60006001600160a01b038216301415620007065750670de0b6b3a7640000620007b1565b6000826001600160a01b031663313ce5676040518163ffffffff1660e01b815260040160206040518083038186803b1580156200074257600080fd5b505afa15801562000757573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906200077d919062000d53565b60ff16905060006200079c601283620008bd60201b620013b41760201c565b905080600a0a670de0b6b3a764000002925050505b919050565b62461bcd60e51b6000908152602060045260076024526642414c23000030600a808404818106603090810160081b95839006959095019082900491820690940160101b939093010160c81b604452606490fd5b6002815110156200081a5762000893565b6000816000815181106200082a57fe5b602002602001015190506000600190505b8251811015620008905760008382815181106200085457fe5b6020026020010151905062000885816001600160a01b0316846001600160a01b03161060656200061f60201b60201c565b91506001016200083b565b50505b50565b6001600160401b03811b1992909216911b1790565b62000893816223aca960e91b620008d5565b6000620008cf8383111560016200061f565b50900390565b62461bcd60e51b600090815260206004526007602452600a808404818106603090810160081b958390069590950190829004918206850160101b01602363ffffff0060e086901c160160181b0190930160c81b60445260e882901c90606490fd5b828054600181600116156101000203166002900490600052602060002090601f0160209004810192826200096e5760008555620009b9565b82601f106200098957805160ff1916838001178555620009b9565b82800160010185558215620009b9579182015b82811115620009b95782518255916020019190600101906200099c565b50620009c7929150620009cb565b5090565b5b80821115620009c75760008155600101620009cc565b8051620007b18162000ec1565b600082601f83011262000a00578081fd5b815160206001600160401b0382111562000a1657fe5b80820262000a2682820162000e6a565b83815282810190868401838801850189101562000a41578687fd5b8693505b8584101562000a7057805162000a5b8162000ec1565b83526001939093019291840191840162000a45565b50979650505050505050565b600082601f83011262000a8d578081fd5b81516001600160401b0381111562000aa157fe5b62000ab6601f8201601f191660200162000e6a565b81815284602083860101111562000acb578283fd5b62000ade82602083016020870162000e8e565b949350505050565b60006060828403121562000af8578081fd5b604051606081016001600160401b038111828210171562000b1557fe5b80604052508091508251801515811462000b2e57600080fd5b815260208301516001600160781b038116811462000b4b57600080fd5b602082015260408301516001600160801b038116811462000b6b57600080fd5b6040919091015292915050565b6000610160828403121562000b8b578081fd5b62000b9861012062000e6a565b82519091506001600160401b038082111562000bb357600080fd5b62000bc18583860162000a7c565b8352602084015191508082111562000bd857600080fd5b62000be68583860162000a7c565b6020840152604084015191508082111562000c0057600080fd5b5062000c0f84828501620009ef565b604083015250606082015160608201526080820151608082015262000c3760a08301620009e2565b60a082015262000c4a60c08301620009e2565b60c082015262000c5e8360e0840162000ae6565b60e082015262000c726101408301620009e2565b61010082015292915050565b60006020828403121562000c90578081fd5b5051919050565b60006020828403121562000ca9578081fd5b81516001600160401b038082111562000cc0578283fd5b9083019060a0828603121562000cd4578283fd5b60405160a08101818110838211171562000cea57fe5b60405262000cf883620009e2565b815262000d0860208401620009e2565b602082015260408301518281111562000d1f578485fd5b62000d2d8782860162000b78565b604083015250606083015160608201526080830151608082015280935050505092915050565b60006020828403121562000d65578081fd5b815160ff8116811462000d76578182fd5b9392505050565b60006060820185835260206060818501528186518084526080860191508288019350845b8181101562000dc85784516001600160a01b03168352938301939183019160010162000da1565b505084810360408601528551808252908201925081860190845b8181101562000e095782516001600160a01b03168552938301939183019160010162000de2565b509298975050505050505050565b602081016003831062000e2657fe5b91905290565b600060208252825180602084015262000e4d81604085016020870162000e8e565b601f01601f19169190910160400192915050565b90815260200190565b6040518181016001600160401b038111828210171562000e8657fe5b604052919050565b60005b8381101562000eab57818101518382015260200162000e91565b8381111562000ebb576000848401525b50505050565b6001600160a01b03811681146200089357600080fd5b60805160a05160601c60c05160e05161010051610120516101405160601c61016051610180516101a0516101c0516101e05160601c6102005160601c6102205160601c6102405161026051610280516148d36200101b600039806116045280611f035280612aed528061312e5250806115ca5280611ea25280612a8a52806131be5250806115905280611e415280612a27528061328a525080611ec85280612acc528061310b52806131545280613220525080611e675280612a6952806130d0528061319b52806131e4525080611e065280612a065280613096528061326852508061132c52806119b35280611ce8528061208b5280612158528061335b5250806107a35250806115195250806114f5525080610e365250806110ba52508061173b52508061177d52508061175c525080610e12525080610d9752506148d36000f3fe608060405234801561001057600080fd5b50600436106102745760003560e01c806374f3b009116101515780639d2c110c116100c3578063c0ff1a1511610087578063c0ff1a1514610500578063d505accf14610508578063d5c096c41461051b578063d60ca6031461052e578063dd62ed3e14610536578063f89f27ed1461054957610274565b80639d2c110c146104b7578063a457c2d7146104ca578063a9059cbb146104dd578063aaabadc5146104f0578063abd13afe146104f857610274565b8063851c1bb311610115578063851c1bb31461047157806387ec681714610484578063893d20e8146104975780638d928af81461049f57806395d89b41146104a75780639b02cdde146104af57610274565b806374f3b0091461040f57806376e54a46146104305780637ecebe00146104435780638002df18146104565780638456cb591461046957610274565b806338fff2d0116101ea57806350dd6ed9116101ae57806350dd6ed9146103b057806355c67628146103c35780636028bfd4146103cb578063679aefce146103ec5780636d785a87146103f457806370a08231146103fc57610274565b806338fff2d014610363578063395093511461036b5780633aeae0d31461037e5780633f4ba83a1461039357806344bbdb551461039b57610274565b80631c0de0511161023c5780631c0de051146102f45780631dd746ea1461030b57806323b872dd14610320578063313ce567146103335780633644e5151461034857806338e9922e1461035057610274565b806306fdde0314610279578063095ea7b3146102975780630e608b30146102b757806316c38b3c146102cc57806318160ddd146102df575b600080fd5b610281610551565b60405161028e91906147cb565b60405180910390f35b6102aa6102a53660046142e5565b6105e7565b60405161028e919061476f565b6102ca6102c53660046141c0565b6105fe565b005b6102ca6102da366004614310565b6106af565b6102e76106c3565b60405161028e9190614792565b6102fc6106c9565b60405161028e9392919061477a565b6103136106f2565b60405161028e9190614737565b6102aa61032e366004614230565b610701565b61033b610775565b60405161028e9190614857565b6102e761077e565b6102ca61035e36600461461e565b610788565b6102e76107a1565b6102aa6103793660046142e5565b6107c5565b610386610800565b60405161028e91906147de565b6102ca61084b565b6103a3610940565b60405161028e9190614723565b6102ca6103be36600461445d565b61094f565b6102e761096d565b6103de6103d936600461432a565b61097e565b60405161028e92919061483e565b6102e76109b5565b6103a36109e0565b6102e761040a3660046141c0565b6109ef565b61042261041d36600461432a565b610a0e565b60405161028e92919061474a565b6102ca61043e3660046144aa565b610ab1565b6102e76104513660046141c0565b610bd8565b6102ca6104643660046141c0565b610bf3565b6102ca610cd9565b6102e761047f366004614435565b610d91565b6103de61049236600461432a565b610dea565b6103a3610e10565b6103a3610e34565b610281610e58565b6102e7610eb9565b6102e76104c5366004614528565b610ebf565b6102aa6104d83660046142e5565b61101d565b6102aa6104eb3660046142e5565b61105b565b6103a3611068565b6103a3611072565b6102e7611081565b6102ca610516366004614270565b61108b565b61042261052936600461432a565b6111fb565b6102e761132a565b6102e76105443660046141f8565b61134e565b61031361138b565b60038054604080516020601f60026000196101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156105dd5780601f106105b2576101008083540402835291602001916105dd565b820191906000526020600020905b8154815290600101906020018083116105c057829003601f168201915b5050505050905090565b60006105f43384846113ca565b5060015b92915050565b600b5460408051808201909152600e81526d1b9bdd08185d5d1a1bdc9a5e995960921b6020820152906001600160a01b031633146106585760405162461bcd60e51b815260040161064f91906147cb565b60405180910390fd5b50600b80546001600160a01b0319166001600160a01b0383161790556040517fb8fd9afc34c38fcd13b9a3b7646482eb1fddcefb40af2c70609972816eba3208906106a4908390614723565b60405180910390a150565b6106b761142c565b6106c08161145a565b50565b60025490565b60008060006106d66114d6565b1592506106e16114f3565b91506106eb611517565b9050909192565b60606106fc61153b565b905090565b60008061070e853361134e565b9050610732336001600160a01b038716148061072a5750838210155b61019e611641565b61073d85858561164f565b336001600160a01b0386161480159061075857506000198114155b1561076a5761076a85338584036113ca565b506001949350505050565b60055460ff1690565b60006106fc611737565b61079061142c565b6107986117f5565b6106c08161180a565b7f000000000000000000000000000000000000000000000000000000000000000090565b3360008181526001602090815260408083206001600160a01b038716845290915281205490916105f49185906107fb9086611875565b6113ca565b610808614112565b5060408051606081018252600a5460ff81161515825261010081046001600160781b03166020830152600160801b90046001600160801b03169181019190915290565b600c546040805180820190915260118152703737ba103830bab9b29036b0b730b3b2b960791b6020820152906001600160a01b0316331461090a5760405162461bcd60e51b81526004018080602001828103825283818151815260200191508051906020019080838360005b838110156108cf5781810151838201526020016108b7565b50505050905090810190601f1680156108fc5780820380516001836020036101000a031916815260200191505b509250505060405180910390fd5b5061091560006106b7565b6040517f215385c8bfc731925ec8068d7baa50f6b6f34417cc7804f7273dc2c0b3db279090600090a1565b600d546001600160a01b031681565b61095761142c565b61095f6117f5565b610969828261188e565b5050565b6008546000906106fc9060c061198d565b60006060610994865161098f61199a565b61199f565b6109a9898989898989896119ac611a70611ad6565b97509795505050505050565b60006106fc6109c26106c3565b6109da6109cd611081565b6109d561199a565b611bf8565b90611c1c565b600b546001600160a01b031681565b6001600160a01b0381166000908152602081905260409020545b919050565b60608088610a38610a1d610e34565b6001600160a01b0316336001600160a01b03161460cd611641565b610a4d610a436107a1565b82146101f4611641565b6000610a5761153b565b9050610a638882611c76565b6000806000610a788e8e8e8e8e8e8a8f6119ac565b925092509250610a888d84611cd7565b610a928285611a70565b610a9c8185611a70565b909550935050505b5097509795505050505050565b600b5460408051808201909152600e81526d1b9bdd08185d5d1a1bdc9a5e995960921b6020820152906001600160a01b03163314610b025760405162461bcd60e51b815260040161064f91906147cb565b50600a5460408051808201909152601081526f1c1bdbdb081a5cc81d5b98d85c1c195960821b60208201529060ff16610b4e5760405162461bcd60e51b815260040161064f91906147cb565b508051600a8054602084015160408086015160ff19909316941515949094176fffffffffffffffffffffffffffffff0019166101006001600160781b0390921691909102176001600160801b03908116600160801b919092160217815590517f2abf5970d7bc1a2b36eaae52dd2cc353edb0337c7284ef8a01973081b4e04424916106a491614813565b6001600160a01b031660009081526006602052604090205490565b600c546040805180820190915260118152703737ba103830bab9b29036b0b730b3b2b960791b60208201526001600160a01b0390911690338214610c785760405162461bcd60e51b81526020600482018181528351602484015283519092839260449091019190850190808383600083156108cf5781810151838201526020016108b7565b50600c80546001600160a01b0319166001600160a01b03848116918217909255604080519284168352602083019190915280517f1ffccd1fa96f4fb3415df8048a0fd107344e262d2d246c85105e2a3f8f3e81989281900390910190a15050565b600c546040805180820190915260118152703737ba103830bab9b29036b0b730b3b2b960791b6020820152906001600160a01b03163314610d5b5760405162461bcd60e51b81526020600482018181528351602484015283519092839260449091019190850190808383600083156108cf5781810151838201526020016108b7565b50610d6660016106b7565b6040517f681eace576127d0553b224436a09801fb47d042942cbff59d7d4ff04d8fa03d790600090a1565b604080517f00000000000000000000000000000000000000000000000000000000000000006020808301919091526001600160e01b03198416828401528251602481840301815260449092019092528051910120919050565b60006060610dfb865161098f61199a565b6109a989898989898989611ce1611da1611ad6565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b60048054604080516020601f60026000196101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156105dd5780601f106105b2576101008083540402835291602001916105dd565b60095490565b60008360800151610ed1610a1d610e34565b610edc610a436107a1565b6000610eeb8660200151611e02565b90506000610efc8760400151611e02565b9050600087516001811115610f0d57fe5b1415610f9d576000610f228860600151611f32565b90506000818960600151039050610f468960200151610f418387611f53565b611f5f565b60608901829052610f578885611f53565b9750610f638784611f53565b9650610f73896060015185611f53565b60608a01526000610f858a8a8a611f71565b9050610f918185611f9f565b96505050505050611015565b610fa78683611f53565b9550610fb38582611f53565b9450610fc3876060015182611f53565b60608801526000610fd5888888611fab565b9050610fe18184611fd0565b90506000610fee82611fdc565b9050600082820390506110098a60200151610f418388611f53565b50945061101592505050565b509392505050565b60008061102a338561134e565b90508083106110445761103f338560006113ca565b611051565b61105133858584036113ca565b5060019392505050565b60006105f433848461164f565b60006106fc612002565b600c546001600160a01b031681565b60006106fc61207c565b6110998442111560d1611641565b6001600160a01b0380881660008181526006602090815260408083205481517f00000000000000000000000000000000000000000000000000000000000000008185015280830195909552948b166060850152608084018a905260a0840185905260c08085018a90528151808603909101815260e09094019052825192019190912090611125826120af565b9050600060018288888860405160008152602001604052604051808581526020018460ff1681526020018381526020018281526020019450505050506020604051602081039080840390855afa158015611183573d6000803e3d6000fd5b5050604051601f19015191506111c590506001600160a01b038216158015906111bd57508b6001600160a01b0316826001600160a01b0316145b6101f8611641565b6001600160a01b038b1660009081526006602052604090206001850190556111ee8b8b8b6113ca565b5050505050505050505050565b6060808861120a610a1d610e34565b611215610a436107a1565b600061121f61153b565b90506112296106c3565b6112da5760008061123d8d8d8d868b6120fb565b9150915061125661124c6121a2565b83101560cc611641565b61126860006112636121a2565b6121a9565b61127b8b6112746121a2565b84036121a9565b6112858184611da1565b8061128e61199a565b6001600160401b03811180156112a357600080fd5b506040519080825280602002602001820160405280156112cd578160200160208202803683370190505b5095509550505050610aa4565b6112e48882611c76565b60008060006112f98e8e8e8e8e8e8a8f611ce1565b9250925092506113098c846121a9565b6113138285611da1565b61131d8185611a70565b9095509350610aa4915050565b7f000000000000000000000000000000000000000000000000000000000000000090565b6000611358610e34565b6001600160a01b0316826001600160a01b0316141561137a57506000196105f8565b61138483836121b3565b90506105f8565b60606106fc6121de565b8061096981612275565b6001600160401b03811b1992909216911b1790565b60006113c4838311156001611641565b50900390565b6001600160a01b03808416600081815260016020908152604080832094871680845294825291829020859055815185815291517f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b9259281900390910190a3505050565b60006114436000356001600160e01b031916610d91565b90506106c061145282336122ee565b610191611641565b801561147a5761147561146b6114f3565b4210610193611641565b61148f565b61148f611485611517565b42106101a9611641565b6007805482151560ff19909116811790915560408051918252517f9e3a5e37224532dea67b89face185703738a228a6e8a23dee546960180d3be649181900360200190a150565b60006114e0611517565b4211806106fc57505060075460ff161590565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b6060600061154761199a565b90506000816001600160401b038111801561156157600080fd5b5060405190808252806020026020018201604052801561158b578160200160208202803683370190505b5090507f0000000000000000000000000000000000000000000000000000000000000000816000815181106115bc57fe5b6020026020010181815250507f0000000000000000000000000000000000000000000000000000000000000000816001815181106115f657fe5b6020026020010181815250507f00000000000000000000000000000000000000000000000000000000000000008160028151811061163057fe5b602090810291909101015291505090565b8161096957610969816123f0565b6116666001600160a01b0384161515610198611641565b61167d6001600160a01b0383161515610199611641565b611688838383611ad1565b6001600160a01b0383166000908152602081905260409020546116ae90826101a0612443565b6001600160a01b0380851660009081526020819052604080822093909355908416815220546116dd9082611875565b6001600160a01b038084166000818152602081815260409182902094909455805185815290519193928716927fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef92918290030190a3505050565b60007f00000000000000000000000000000000000000000000000000000000000000007f00000000000000000000000000000000000000000000000000000000000000007f00000000000000000000000000000000000000000000000000000000000000006117a4612459565b3060405160200180868152602001858152602001848152602001838152602001826001600160a01b031681526020019550505050505060405160208183030381529060405280519060200120905090565b6118086118006114d6565b610192611641565b565b61181d64e8d4a5100082101560cb611641565b61183367016345785d8a000082111560ca611641565b600854611842908260c061139f565b6008556040517fa9ba3ffe0b6c366b81232caab38605a0699ad5398d6cce76f91ee809e322dafc906106a4908390614792565b60008282016118878482101583611641565b9392505050565b60006118986107a1565b905060006118a4610e34565b6001600160a01b031663b05f8e4883866040518363ffffffff1660e01b81526004016118d19291906147b4565b60806040518083038186803b1580156118e957600080fd5b505afa1580156118fd573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611921919061464e565b604051630639cdb560e21b81529094506001600160a01b03851693506318e736d4925061195591508590879060040161479b565b600060405180830381600087803b15801561196f57600080fd5b505af1158015611983573d6000803e3d6000fd5b5050505050505050565b1c6001600160401b031690565b600390565b6109698183146067611641565b60006060807f00000000000000000000000000000000000000000000000000000000000000006119da6114d6565b15611a225760006119eb8a8361245d565b90506119f681612531565b611a008a8761255e565b9095509350611a198186611a126106c3565b60006125ab565b60095550611a38565b611a2c898661255e565b60001960095590945092505b604080516003808252608082019092528591859190602082016060803683370190505093509350935050985098509895505050505050565b60005b611a7b61199a565b811015611ad157611ab2838281518110611a9157fe5b6020026020010151838381518110611aa557fe5b6020026020010151612605565b838281518110611abe57fe5b6020908102919091010152600101611a73565b505050565b333014611b94576000306001600160a01b0316600036604051611afa929190614713565b6000604051808303816000865af19150503d8060008114611b37576040519150601f19603f3d011682016040523d82523d6000602084013e611b3c565b606091505b505090508060008114611b4b57fe5b60046000803e6000516001600160e01b0319166343adbafb60e01b8114611b76573d6000803e3d6000fd5b506020600460003e604060205260243d03602460403e601c3d016000f35b6000611b9e61153b565b9050611baa8782611c76565b600080611bc18c8c8c8c8c8c898d8d63ffffffff16565b5091509150611bd481848663ffffffff16565b8051601f1982018390526343adbafb603f1983015260200260231982016044820181fd5b6000828202611887841580611c15575083858381611c1257fe5b04145b6003611641565b600081611c2f57611c2f60006004611641565b82611c3c575060006105f8565b670de0b6b3a764000083810290848281611c5257fe5b0414611c6457611c6460006005611641565b828181611c6d57fe5b04949350505050565b60005b611c8161199a565b811015611ad157611cb8838281518110611c9757fe5b6020026020010151838381518110611cab57fe5b6020026020010151612656565b838281518110611cc457fe5b6020908102919091010152600101611c79565b610969828261267f565b60006060807f000000000000000000000000000000000000000000000000000000000000000083611d128a8361245d565b9050611d1d81612531565b611d278a87612736565b600a54919650945060ff1615611d5157611d5185611d448d6109ef565b611d4c6106c3565b61277a565b611d658186611d5e6106c3565b60016125ab565b60095560408051600380825260808201909252869186919060208201606080368337019050509450945094505050985098509895505050505050565b60005b611dac61199a565b811015611ad157611de3838281518110611dc257fe5b6020026020010151838381518110611dd657fe5b602002602001015161288c565b838281518110611def57fe5b6020908102919091010152600101611da4565b60007f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b03161415611e6557507f0000000000000000000000000000000000000000000000000000000000000000610a09565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b03161415611ec657507f0000000000000000000000000000000000000000000000000000000000000000610a09565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b03161415611f2757507f0000000000000000000000000000000000000000000000000000000000000000610a09565b610a096101356123f0565b600080611f47611f4061096d565b84906128da565b905061188783826113b4565b60006118878383612656565b610969611f6b83612916565b82610969565b6000611f7b6117f5565b6000611f8885858561291c565b9050611f96858585846129bb565b95945050505050565b60006118878383612605565b6000611fb56117f5565b6000611fc285858561291c565b9050611f96858585846129cd565b6000611887838361288c565b60006105f8611ffb611fec61096d565b670de0b6b3a7640000906113b4565b839061288c565b600061200c610e34565b6001600160a01b031663aaabadc56040518163ffffffff1660e01b815260040160206040518083038186803b15801561204457600080fd5b505afa158015612058573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906106fc91906141dc565b60006106fc6120896129df565b7f000000000000000000000000000000000000000000000000000000000000000061245d565b60006120b9611737565b82604051602001808061190160f01b81525060020183815260200182815260200192505050604051602081830303815290604052805190602001209050919050565b600060606121076117f5565b600061211284612b2d565b905061212d600082600381111561212557fe5b1460ce611641565b600061213885612b4c565b90506121468151600361199f565b6121508187611c76565b600061217c827f000000000000000000000000000000000000000000000000000000000000000061245d565b9050600061218b826003611bf8565b6009929092555093509150505b9550959350505050565b620f424090565b6109698282612c00565b6001600160a01b03918216600090815260016020908152604080832093909416825291909152205490565b60408051600380825260808201909252606091600091906020820184803683370190505090506003670de0b6b3a7640000048160008151811061221d57fe5b60209081029190910101526003670de0b6b3a7640000048160018151811061224157fe5b60209081029190910101526003670de0b6b3a7640000048160028151811061226557fe5b6020908102919091010152905090565b600281511015612284576106c0565b60008160008151811061229357fe5b602002602001015190506000600190505b8251811015611ad15760008382815181106122bb57fe5b602002602001015190506122e4816001600160a01b0316846001600160a01b0316106065611641565b91506001016122a4565b600073ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1b61230d610e10565b6001600160a01b031614158015612328575061232883612c95565b1561235057612335610e10565b6001600160a01b0316336001600160a01b03161490506105f8565b612358612002565b6001600160a01b0316639be2a8848484306040518463ffffffff1660e01b815260040180848152602001836001600160a01b03168152602001826001600160a01b03168152602001935050505060206040518083038186803b1580156123bd57600080fd5b505afa1580156123d1573d6000803e3d6000fd5b505050506040513d60208110156123e757600080fd5b505190506105f8565b62461bcd60e51b6000908152602060045260076024526642414c23000030600a808404818106603090810160081b95839006959095019082900491820690940160101b939093010160c81b604452606490fd5b60006124528484111583611641565b5050900390565b4690565b60006c01431e0fae6d7217caa00000008360008151811061247a57fe5b6020026020010151111561249557612495600061016a612cc7565b6c01431e0fae6d7217caa0000000836001815181106124b057fe5b602002602001015111156124cb576124cb600061016a612cc7565b6c01431e0fae6d7217caa0000000836002815181106124e657fe5b6020026020010151111561250157612501600061016a612cc7565b6000806000806125118787612cd5565b9350935093509350612526848484848a612e24565b979650505050505050565b60008060008061254360095486612e75565b935093509350935061255784848484612ede565b5050505050565b60006060600061256d84612b2d565b9050600181600381111561257d57fe5b14156125975761258d8585612f04565b92509250506125a4565b6125a26101506123f0565b505b9250929050565b600081156125dd5760006125c9846125c38888612f36565b90612f8b565b90506125d58682612fe8565b9150506125fd565b60006125ed846109da8888613000565b90506125f9868261302a565b9150505b949350505050565b60006126148215156004611641565b82612621575060006105f8565b670de0b6b3a7640000838102906126449085838161263b57fe5b04146005611641565b82818161264d57fe5b049150506105f8565b6000828202612670841580611c15575083858381611c1257fe5b670de0b6b3a764000081611c6d565b6126966001600160a01b038316151561019b611641565b6126a282600083611ad1565b6001600160a01b0382166000908152602081905260409020546126c890826101a1612443565b6001600160a01b0383166000908152602081905260409020556002546126ee9082613040565b6002556040805182815290516000916001600160a01b038516917fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef9181900360200190a35050565b60006060600061274584612b2d565b9050600381600381111561275557fe5b141561276f57612765858561304e565b90935091506125a2565b6125a26101366123f0565b60408051606081018252600a5460ff81161515825261010081046001600160781b031660208301819052600160801b9091046001600160801b031692820192909252906127c78585612fe8565b11156040518060400160405280601a81526020017f6f7665722061646472657373206c6971756964697479206361700000000000008152509061281d5760405162461bcd60e51b815260040161064f91906147cb565b5060408101516001600160801b03166128368584612fe8565b11156040518060400160405280601981526020017f6f76657220676c6f62616c206c69717569646974792063617000000000000000815250906125575760405162461bcd60e51b815260040161064f91906147cb565b600061289b8215156004611641565b826128a8575060006105f8565b670de0b6b3a7640000838102906128c29085838161263b57fe5b8260018203816128ce57fe5b046001019150506105f8565b60008282026128f4841580611c15575083858381611c1257fe5b806129035760009150506105f8565b670de0b6b3a764000060001982016128ce565b50600090565b6040805160038082526080820190925260009182919060208201606080368337019050509050838160008151811061295057fe5b602002602001018181525050828160018151811061296a57fe5b60200260200101818152505060008061298b87602001518860400151613073565b9150915061299982826132b0565b836002815181106129a657fe5b60200260200101818152505061252683613357565b6000611f968484876060015185613391565b6000611f9684848760600151856133f2565b60408051600380825260808201909252606091602082018380368337019050509050612a4b7f00000000000000000000000000000000000000000000000000000000000000007f00000000000000000000000000000000000000000000000000000000000000006132b0565b81600081518110612a5857fe5b602002602001018181525050612aae7f00000000000000000000000000000000000000000000000000000000000000007f00000000000000000000000000000000000000000000000000000000000000006132b0565b81600181518110612abb57fe5b602002602001018181525050612b117f00000000000000000000000000000000000000000000000000000000000000007f00000000000000000000000000000000000000000000000000000000000000006132b0565b81600281518110612b1e57fe5b60200260200101818152505090565b6000818060200190516020811015612b4457600080fd5b505192915050565b6060818060200190516040811015612b6357600080fd5b815160208301805160405192949293830192919084640100000000821115612b8a57600080fd5b908301906020820185811115612b9f57600080fd5b8251866020820283011164010000000082111715612bbc57600080fd5b82525081516020918201928201910280838360005b83811015612be9578181015183820152602001612bd1565b505050509190910160405250929695505050505050565b612c0c60008383611ad1565b600254612c199082611875565b6002556001600160a01b038216600090815260208190526040902054612c3f9082611875565b6001600160a01b0383166000818152602081815260408083209490945583518581529351929391927fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef9281900390910190a35050565b6000612ca7631c74c91760e11b610d91565b8214806105f85750612cbf6350dd6ed960e01b610d91565b909114919050565b816109695761096981613450565b6000808080612cee85612ce88180613460565b90613460565b670de0b6b3a7640000039350600086600281518110612d0957fe5b602002602001015187600181518110612d1e57fe5b602002602001015188600081518110612d3357fe5b602002602001015101019050612d5686612ce8888461346090919063ffffffff16565b93506000612d9588600081518110612d6a57fe5b602002602001015189600281518110612d7f57fe5b602002602001015161346090919063ffffffff16565b612dba89600281518110612da557fe5b60200260200101518a600181518110612d7f57fe5b612ddf8a600181518110612dca57fe5b60200260200101518b600081518110612d7f57fe5b01019050612ded8188613460565b9350612e1788600281518110612dff57fe5b6020026020010151612ce88a600181518110612dca57fe5b9250505092959194509250565b600080612e3387878787613477565b92509050612e4586868686858761351c565b91506e01ed09bead87c0378d8e6400000000821115612e6b57612e6b6000610169612cc7565b5095945050505050565b600080600080600080600080612e896135e0565b93509350935093508360001415612eae57600097508796509094509250612ed5915050565b600080612ec58c8c612ebe6106c3565b898961384f565b909a509850929650909450505050505b92959194509250565b8315612eee57612eee82856121a9565b8215612efe57612efe81846121a9565b50505050565b600060606000612f13846138e8565b90506000612f298683612f246106c3565b61390a565b9196919550909350505050565b6000828202831580612f50575082848281612f4d57fe5b04145b612f6057612f6060006003611641565b80612f6f5760009150506105f8565b670de0b6b3a764000060001982015b0460010191505092915050565b600081612f9e57612f9e60006004611641565b82612fab575060006105f8565b670de0b6b3a764000083810290848281612fc157fe5b0414612fdc57612fdc670de0b6b3a764000085838161263b57fe5b826001820381612f7e57fe5b60008282018381101561188757611887600080611641565b600082820283158061301a57508284828161301757fe5b04145b6126705761267060006003611641565b6000828211156113c4576113c460006001611641565b600061188783836001612443565b60006060600061305d846138e8565b90506000612f29868361306e6106c3565b6139a5565b600080826001600160a01b0316846001600160a01b03161115613094579192915b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316846001600160a01b031614156131e2577f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316836001600160a01b0316141561315257507f000000000000000000000000000000000000000000000000000000000000000090507f00000000000000000000000000000000000000000000000000000000000000006125a4565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316836001600160a01b031614613198576131986000610162612cc7565b507f000000000000000000000000000000000000000000000000000000000000000090507f00000000000000000000000000000000000000000000000000000000000000006125a4565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316846001600160a01b031614801561325457507f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316836001600160a01b0316145b613265576132656000610162612cc7565b507f0000000000000000000000000000000000000000000000000000000000000000937f00000000000000000000000000000000000000000000000000000000000000009350915050565b60008060006132bd610e34565b6001600160a01b031663b05f8e486132d36107a1565b876040518363ffffffff1660e01b81526004016132f19291906147b4565b60806040518083038186803b15801561330957600080fd5b505afa15801561331d573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190613341919061464e565b505081810194509092509050611f968385613000565b60007f000000000000000000000000000000000000000000000000000000000000000081613385848361245d565b90506125fd8183613000565b6000806133a683670de0b6b3a7640002613a40565b8601905060006133be84670de0b6b3a763ffff613460565b860190506133d96133cf8387612fe8565b6109da8388613000565b92505050838111156125fd576125fd6000610165612cc7565b600083831115613409576134096000610165612cc7565b600061341d83670de0b6b3a7640002613a40565b86019050600061343584670de0b6b3a763ffff613460565b86019050612526613446828761302a565b6125c38488612f36565b6106c0816223aca960e91b613a54565b6000670de0b6b3a76400008383025b049392505050565b600080806134888760038702613a40565b6134928780613a40565b01905060006134b1600389026134a9846005613ab5565b890190613c43565b9050670de0b6b3a76400008890036134fa6706f05b59d3b200008210156134e057671bc16d674ec800006134ea565b6714d1120d7b1600005b83906001600160401b0316613a40565b935061350e8267120a871cc0020000613a40565b945050505094509492505050565b600080805b60ff8110156135c85760008061353b8b8b8b8b8b8b613c85565b915091506001821161355357859450505050506135d6565b600583108015906135615750805b1561357257859450505050506135d6565b600583108015906135865750600884048210155b1561359757859450505050506135d6565b81935080156135b1576135aa8683612fe8565b95506135be565b6135bb868361302a565b95505b5050600101613521565b506135d4610160613450565b505b9695505050505050565b600d5460405163bd02d0f560e01b81526000918291829182916001600160a01b039091169063bd02d0f590613632907550524f544f434f4c5f535741505f4645455f5045524360501b90600401614792565b60206040518083038186803b15801561364a57600080fd5b505afa15801561365e573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906136829190614636565b600d5460405163bd02d0f560e01b81526001600160a01b039091169063bd02d0f5906136d2907f50524f544f434f4c5f4645455f4759524f5f504f5254494f4e0000000000000090600401614792565b60206040518083038186803b1580156136ea57600080fd5b505afa1580156136fe573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906137229190614636565b600d546040516321f8a72160e01b81526001600160a01b03909116906321f8a72190613762906c4759524f5f545245415355525960981b90600401614792565b60206040518083038186803b15801561377a57600080fd5b505afa15801561378e573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906137b291906141dc565b600d546040516321f8a72160e01b81526001600160a01b03909116906321f8a721906137f1906b42414c5f545245415355525960a01b90600401614792565b60206040518083038186803b15801561380957600080fd5b505afa15801561381d573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061384191906141dc565b935093509350935090919293565b60008086861161386457506000905080612198565b60006138848561387e6138778a8c61302a565b8990613000565b90613000565b9050600061389c613895898b61302a565b8790613000565b905060006138aa898361302a565b905060006138b88483611c1c565b905060006138c68883613000565b905060006138d4838361302a565b919d919c50909a5050505050505050505050565b60008180602001905160408110156138ff57600080fd5b506020015192915050565b606083516001600160401b038111801561392357600080fd5b5060405190808252806020026020018201604052801561394d578160200160208202803683370190505b50905060005b845181101561101557613986836109da8688858151811061397057fe5b602002602001015161300090919063ffffffff16565b82828151811061399257fe5b6020908102919091010152600101613953565b606083516001600160401b03811180156139be57600080fd5b506040519080825280602002602001820160405280156139e8578160200160208202803683370190505b50905060005b845181101561101557613a21836125c386888581518110613a0b57fe5b6020026020010151612f3690919063ffffffff16565b828281518110613a2d57fe5b60209081029190910101526001016139ee565b600082820280612f6f5760009150506105f8565b62461bcd60e51b600090815260206004526007602452600a808404818106603090810160081b958390069590950190829004918206850160101b01602363ffffff0060e086901c160160181b0190930160c81b60445260e882901c90606490fd5b600082613ac4575060006105f8565b6000613acf84613e0e565b9050600281670de0b6b3a7640000860281613ae657fe5b04820181613af057fe5b049050600281670de0b6b3a7640000860281613b0857fe5b04820181613b1257fe5b049050600281670de0b6b3a7640000860281613b2a57fe5b04820181613b3457fe5b049050600281670de0b6b3a7640000860281613b4c57fe5b04820181613b5657fe5b049050600281670de0b6b3a7640000860281613b6e57fe5b04820181613b7857fe5b049050600281670de0b6b3a7640000860281613b9057fe5b04820181613b9a57fe5b049050600281670de0b6b3a7640000860281613bb257fe5b04820181613bbc57fe5b0490506000613bcb8280613000565b9050613be1613bda8386612f36565b8690612fe8565b8111158015613c035750613bff613bf88386612f36565b869061302a565b8110155b611015576040805162461bcd60e51b815260206004820152600c60248201526b17dcdc5c9d0811905253115160a21b604482015290519081900360640190fd5b600081613c5657613c5660006004611641565b82613c63575060006105f8565b816001670de0b6b3a764000085020381613c7957fe5b04600101905092915050565b6000806e01ed09bead87c0378d8e6400000000831115613cac57613cac6000610169612cc7565b83831015613cc157613cc1600061016b612cc7565b6000613ccd8480613460565b90506000613cde6003860286613000565b9050613cf087612ce881818582613460565b900388613cfd868c613460565b600202909103036000806cfc6f7c40458122964d000000008711613d7b57613d258488613460565b9150613d3789612ce881818682613460565b90910390613d458284613fe0565b9150613d51848d613460565b9050613d6983613d61898e613460565b830190613fe0565b9050613d758a84613fe0565b01613de6565b613d858488614006565b9150613d9d89613d9781818682614006565b90614006565b90910390613dab8284614031565b9150613db7848d614006565b9050613dc38b88613460565b01613dd8818464e8d4a51000620f424061403f565b9050613de48a84613fe0565b015b81811015945084613df957808203613dfd565b8181035b955050505050965096945050505050565b6000670de0b6b3a76400008210613e3b57670de0b6b3a7640000613e3381840461407c565b1b9050610a09565b600a8211613e4e575063bc7c871c610a09565b60648211613e6257506402540be400610a09565b6103e88211613e77575064075cdd4719610a09565b6127108211613e8c575064174876e800610a09565b620186a08211613ea257506449a0a4c700610a09565b620f42408211613eb8575064e8d4a51000610a09565b629896808211613ecf57506502e0466fc608610a09565b6305f5e1008211613ee757506509184e72a000610a09565b633b9aca008211613eff5750651cc2c05dbc53610a09565b6402540be4008211613f185750655af3107a4000610a09565b64174876e8008211613f32575066011f9b83a95b45610a09565b64e8d4a510008211613f4c575066038d7ea4c68000610a09565b6509184e72a0008211613f675750660b3c13249d90bb610a09565b655af3107a40008211613f825750662386f26fc10000610a09565b66038d7ea4c680008211613f9e5750667058bf6e27a751610a09565b662386f26fc100008211613fbb575067016345785d8a0000610a09565b67016345785d8a00008211613fd95750670463777a4d8c892d610a09565b5080610a09565b600081613ff357613ff360006004611641565b81670de0b6b3a764000084028161346f57fe5b600061401c670de0b6b3a7640000840683613460565b82670de0b6b3a7640000850402019392505050565b60006118878383633b9aca00805b6000836140525761405260006004611641565b600082600186038161406057fe5b046001019050808487028161407157fe5b049695505050505050565b6000600160801b82106140945760809190911c906040015b6801000000000000000082106140af5760409190911c906020015b64010000000082106140c65760209190911c906010015b6201000082106140db5760109190911c906008015b61010082106140ef5760089190911c906004015b601082106141025760049190911c906002015b60048210610a0957600101919050565b604080516060810182526000808252602082018190529181019190915290565b8035610a0981614888565b80358015158114610a0957600080fd5b600082601f83011261415d578081fd5b81356001600160401b0381111561417057fe5b614183601f8201601f1916602001614865565b818152846020838601011115614197578283fd5b816020850160208301379081016020019190915292915050565b803560028110610a0957600080fd5b6000602082840312156141d1578081fd5b813561188781614888565b6000602082840312156141ed578081fd5b815161188781614888565b6000806040838503121561420a578081fd5b823561421581614888565b9150602083013561422581614888565b809150509250929050565b600080600060608486031215614244578081fd5b833561424f81614888565b9250602084013561425f81614888565b929592945050506040919091013590565b600080600080600080600060e0888a03121561428a578283fd5b873561429581614888565b965060208801356142a581614888565b95506040880135945060608801359350608088013560ff811681146142c8578384fd5b9699959850939692959460a0840135945060c09093013592915050565b600080604083850312156142f7578182fd5b823561430281614888565b946020939093013593505050565b600060208284031215614321578081fd5b6118878261413d565b600080600080600080600060e0888a031215614344578081fd5b87359650602088013561435681614888565b9550604088013561436681614888565b945060608801356001600160401b0380821115614381578283fd5b818a0191508a601f830112614394578283fd5b8135818111156143a057fe5b602081026143b060208201614865565b80838252602082019150602086018f60208589010111156143cf578788fd5b8796505b848710156143f2578035835260019690960195602092830192016143d3565b50985050505060808a0135945060a08a0135935060c08a0135915080821115614419578283fd5b506144268a828b0161414d565b91505092959891949750929550565b600060208284031215614446578081fd5b81356001600160e01b031981168114611887578182fd5b6000806040838503121561446f578182fd5b823561447a81614888565b915060208301356001600160401b03811115614494578182fd5b6144a08582860161414d565b9150509250929050565b6000606082840312156144bb578081fd5b604051606081018181106001600160401b03821117156144d757fe5b6040526144e38361413d565b815260208301356001600160781b03811681146144fe578283fd5b602082015260408301356001600160801b038116811461451c578283fd5b60408201529392505050565b60008060006060848603121561453c578081fd5b83356001600160401b0380821115614552578283fd5b8186019150610120808389031215614568578384fd5b61457181614865565b905061457c836141b1565b815261458a60208401614132565b602082015261459b60408401614132565b6040820152606083013560608201526080830135608082015260a083013560a08201526145ca60c08401614132565b60c08201526145db60e08401614132565b60e082015261010080840135838111156145f3578586fd5b6145ff8a82870161414d565b9183019190915250976020870135975060409096013595945050505050565b60006020828403121561462f578081fd5b5035919050565b600060208284031215614647578081fd5b5051919050565b60008060008060808587031215614663578182fd5b845193506020850151925060408501519150606085015161468381614888565b939692955090935050565b6000815180845260208085019450808401835b838110156146bd578151875295820195908201906001016146a1565b509495945050505050565b60008151808452815b818110156146ed576020818501810151868301820152016146d1565b818111156146fe5782602083870101525b50601f01601f19169290920160200192915050565b6000828483379101908152919050565b6001600160a01b0391909116815260200190565b600060208252611887602083018461468e565b60006040825261475d604083018561468e565b8281036020840152611f96818561468e565b901515815260200190565b92151583526020830191909152604082015260600190565b90815260200190565b6000838252604060208301526125fd60408301846146c8565b9182526001600160a01b0316602082015260400190565b60006020825261188760208301846146c8565b8151151581526020808301516001600160781b0316908201526040918201516001600160801b03169181019190915260600190565b905460ff811615158252600881901c6001600160781b0316602083015260801c604082015260600190565b6000838252604060208301526125fd604083018461468e565b60ff91909116815260200190565b6040518181016001600160401b038111828210171561488057fe5b604052919050565b6001600160a01b03811681146106c057600080fdfea264697066735822122053c29bf23fd3187fa9300c323eb80a728b8d02fb979cca00c7a0340cbcb4f60a64736f6c634300070600330000000000000000000000000000000000000000000000000000000000000020000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c8000000000000000000000000fdc2e9e03f515804744a40d0f8d25c16e93fbe6700000000000000000000000000000000000000000000000000000000000000a0000000000000000000000000000000000000000000000000000000000076a7000000000000000000000000000000000000000000000000000000000000278d00000000000000000000000000000000000000000000000000000000000000016000000000000000000000000000000000000000000000000000000000000001a000000000000000000000000000000000000000000000000000000000000001e0000000000000000000000000000000000000000000000000000110d9316ec0000000000000000000000000000000000000000000000000000ddeeff45500c000000000000000000000000000ef63c5cedec9d53911162bed5ce8956ae570387b000000000000000000000000ef63c5cedec9d53911162bed5ce8956ae570387b0000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000211b083e39661a4b000000000000000000000000000000000000000000000000a5872952e06beac5c80000000000000000000000000000148b36e4f96914550145b72e9dbcd514048cafed000000000000000000000000000000000000000000000000000000000000001d4779726f73636f70652033434c5020425553442f555344432f55534454000000000000000000000000000000000000000000000000000000000000000000001333434c502d425553442d555344432d555344540000000000000000000000000000000000000000000000000000000000000000000000000000000000000000030000000000000000000000002791bca1f2de4661ed88a30c99a7a9449aa841740000000000000000000000009c9e5fd8bbc25984b178fdce6117defa39d2db39000000000000000000000000c2132d05d31c914a87c6611c10748aeb04b58e8f
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
0000000000000000000000000000000000000000000000000000000000000020000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c8000000000000000000000000fdc2e9e03f515804744a40d0f8d25c16e93fbe6700000000000000000000000000000000000000000000000000000000000000a0000000000000000000000000000000000000000000000000000000000076a7000000000000000000000000000000000000000000000000000000000000278d00000000000000000000000000000000000000000000000000000000000000016000000000000000000000000000000000000000000000000000000000000001a000000000000000000000000000000000000000000000000000000000000001e0000000000000000000000000000000000000000000000000000110d9316ec0000000000000000000000000000000000000000000000000000ddeeff45500c000000000000000000000000000ef63c5cedec9d53911162bed5ce8956ae570387b000000000000000000000000ef63c5cedec9d53911162bed5ce8956ae570387b0000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000211b083e39661a4b000000000000000000000000000000000000000000000000a5872952e06beac5c80000000000000000000000000000148b36e4f96914550145b72e9dbcd514048cafed000000000000000000000000000000000000000000000000000000000000001d4779726f73636f70652033434c5020425553442f555344432f55534454000000000000000000000000000000000000000000000000000000000000000000001333434c502d425553442d555344432d555344540000000000000000000000000000000000000000000000000000000000000000000000000000000000000000030000000000000000000000002791bca1f2de4661ed88a30c99a7a9449aa841740000000000000000000000009c9e5fd8bbc25984b178fdce6117defa39d2db39000000000000000000000000c2132d05d31c914a87c6611c10748aeb04b58e8f
-----Decoded View---------------
Arg [0] : params (tuple): System.Collections.Generic.List`1[Nethereum.ABI.FunctionEncoding.ParameterOutput]
-----Encoded View---------------
25 Constructor Arguments found :
Arg [0] : 0000000000000000000000000000000000000000000000000000000000000020
Arg [1] : 000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c8
Arg [2] : 000000000000000000000000fdc2e9e03f515804744a40d0f8d25c16e93fbe67
Arg [3] : 00000000000000000000000000000000000000000000000000000000000000a0
Arg [4] : 000000000000000000000000000000000000000000000000000000000076a700
Arg [5] : 0000000000000000000000000000000000000000000000000000000000278d00
Arg [6] : 0000000000000000000000000000000000000000000000000000000000000160
Arg [7] : 00000000000000000000000000000000000000000000000000000000000001a0
Arg [8] : 00000000000000000000000000000000000000000000000000000000000001e0
Arg [9] : 000000000000000000000000000000000000000000000000000110d9316ec000
Arg [10] : 0000000000000000000000000000000000000000000000000ddeeff45500c000
Arg [11] : 000000000000000000000000ef63c5cedec9d53911162bed5ce8956ae570387b
Arg [12] : 000000000000000000000000ef63c5cedec9d53911162bed5ce8956ae570387b
Arg [13] : 0000000000000000000000000000000000000000000000000000000000000001
Arg [14] : 000000000000000000000000000000000000000000211b083e39661a4b000000
Arg [15] : 000000000000000000000000000000000000000000a5872952e06beac5c80000
Arg [16] : 000000000000000000000000148b36e4f96914550145b72e9dbcd514048cafed
Arg [17] : 000000000000000000000000000000000000000000000000000000000000001d
Arg [18] : 4779726f73636f70652033434c5020425553442f555344432f55534454000000
Arg [19] : 0000000000000000000000000000000000000000000000000000000000000013
Arg [20] : 33434c502d425553442d555344432d5553445400000000000000000000000000
Arg [21] : 0000000000000000000000000000000000000000000000000000000000000003
Arg [22] : 0000000000000000000000002791bca1f2de4661ed88a30c99a7a9449aa84174
Arg [23] : 0000000000000000000000009c9e5fd8bbc25984b178fdce6117defa39d2db39
Arg [24] : 000000000000000000000000c2132d05d31c914a87c6611c10748aeb04b58e8f