POL Price: $0.456981 (+3.10%)

Contract Diff Checker

Contract Name:
PairedWorldRDF

Contract Source Code:

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.17;

import "@semanticSBT/contracts/interfaces/ISemanticSBT.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/utils/Strings.sol";
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";

interface SPOProxyInterface {
        
        function addSPO(uint256 tokenId, uint8 predicateIdx, uint8 objectIdx, string memory object) external;
        function removeRDF(uint256 tokenId, uint8 predicateIdx, uint8 objectIdx) external;
        function getObject(uint256 tokenId, uint8 predicateIdx, uint8 objectIdx) external view returns (string memory);
    
}


contract PairedWorldRDF is Ownable, ISemanticSBT, ReentrancyGuard {

    address public _sbt;
    address public _admin;
    SPOProxyInterface public _spoProxy;

    string public _schemaUri;

    string  constant TURTLE_LINE_SUFFIX = " ;\n    ";
    string  constant TURTLE_END_SUFFIX = " .";

    string  constant public ENTITY_PREFIX = ":";
    string  constant public PROPERTY_PREFIX = "p:";
    string  constant public SOUL_PREFIX = "SOUL_";

    string  constant CONCATENATION_CHARACTER = "_";
    string  constant BLANK_SPACE = " ";

    mapping (uint8 => string) public _predicates;
    mapping (string => uint8) public _predicatesToIdx;
    mapping (uint8 => string) public _objectClasses;
    mapping (string => uint8) public _objectClassesToIdx;

    // Predicates have a 1-to-1 mapping to both subjectClasses and objectClasses
    mapping (uint8 => uint8) public _POPairs;
    // _maxPredicate[tokenID] = highest filled predicate for tokenID
    mapping (uint256 => uint8) public _maxPredicate;

    constructor(address sbt, address spoProxy, string memory schemaUri) {
        _sbt = sbt;
        _schemaUri = schemaUri;
        _spoProxy = SPOProxyInterface(spoProxy);
        _predicates[1] = "ownedBy";
        _predicatesToIdx["ownedBy"] = 1;
        _objectClasses[1] = "address";
        _objectClassesToIdx["address"] = 1;
        _POPairs[1] = 1;
    }

    modifier onlyAdmin() {
        require(msg.sender == _admin || msg.sender == owner(), "Only Admin");
        _;
    }

    modifier onlySbt() {
        require(msg.sender == _sbt, "Only callable by the SBT contract");
        _;
    }

    // MARK: - Only Owner
    function setAdmin(address admin) external onlyOwner {
        _admin = admin;
    }

    function setSbt(address sbt) external onlyOwner {
        _sbt = sbt;
    }

    function setSPOProxy(address spoProxy) external onlyOwner {
        _spoProxy = SPOProxyInterface(spoProxy);
    }

    // MARK: - Only Admin
    function setSchemaUri(string memory schemaUri) external onlyAdmin {
        _schemaUri = schemaUri;
    }

    function setPOPair(
        uint8 predicateIdx, 
        string memory predicate, 
        uint8 objectClassIdx, 
        string memory objectClass
    ) external onlyAdmin {
        require(_isStringEmpty(_predicates[predicateIdx]), "Predicate already exists in the same index");
        require(_isStringEmpty(_objectClasses[objectClassIdx]), "Object class already exists in the same index");
        require(!(objectClassIdx == 0 || predicateIdx == 0), "Cannot set reserved index");
        require(_predicatesToIdx[predicate] == 0, "Predicate already exists");
        require(_objectClassesToIdx[objectClass] == 0, "Object class already exists");
        _predicates[predicateIdx] = predicate;
        _predicatesToIdx[predicate] = predicateIdx;
        _objectClasses[objectClassIdx] = objectClass;
        _objectClassesToIdx[objectClass] = objectClassIdx;
        _POPairs[predicateIdx] = objectClassIdx;
    }

    function updatePOPair(
        uint8 predicateIdx, 
        string memory predicate, 
        uint8 objectClassIdx, 
        string memory objectClass
    ) external onlyAdmin {
        require(!_isStringEmpty(_predicates[predicateIdx]), "Predicate doesn't exist. Use setPOPair instead");
        require(!_isStringEmpty(_objectClasses[objectClassIdx]), "Object class doesn't exist. User setPOPair instead");
        require(_POPairs[predicateIdx] == objectClassIdx, "Attempting to beak 1-to-1 PO relationship");
        require(_predicatesToIdx[predicate] == 0 || _predicatesToIdx[predicate] == predicateIdx, "Predicate already exists");
        require(_objectClassesToIdx[objectClass] == 0 || _objectClassesToIdx[objectClass] == objectClassIdx, "Object class already exists");
        _predicates[predicateIdx] = predicate;
        _predicatesToIdx[predicate] = predicateIdx;
        _objectClasses[objectClassIdx] = objectClass;
        _objectClassesToIdx[objectClass] = objectClassIdx;
    }

    // MARK: - onlySbt
    function addSPO(
        uint256 tokenId, 
        uint8 predicateIdx, 
        uint8 objectIdx, 
        string memory object
    ) external nonReentrant onlySbt {
        require(!_isStringEmpty(_predicates[predicateIdx]), "Predicate doesn't exist");
        require(!_isStringEmpty(_objectClasses[objectIdx]), "Object doesn't exist");
        require(_POPairs[predicateIdx] == objectIdx, "Invalid SPO, predicate and object don't match");

        bool creation = _maxPredicate[tokenId] == 0;
        if (!creation) {
            require(predicateIdx != 1, "cannot change owner SPO");
        }

        _spoProxy.addSPO(tokenId, predicateIdx, objectIdx, object);

        if (_isStringEmpty(object)) {
            _maxPredicate[tokenId] = _maxPredicate[tokenId] == predicateIdx ? predicateIdx - 1 : _maxPredicate[tokenId];
        } else {
            _maxPredicate[tokenId] = _maxPredicate[tokenId] < predicateIdx ? predicateIdx : _maxPredicate[tokenId];
        }

        if (creation) {
            emit CreateRDF(tokenId, _buildRdfString(tokenId));
        } else {
            emit UpdateRDF(tokenId, _buildRdfString(tokenId));
        }
    }

    function removeRDF(uint256 tokenId) external nonReentrant onlySbt {
        require(_maxPredicate[tokenId] > 0, "No RDF to remove");
        string memory oldData = _buildRdfString(tokenId);

        for (uint8 i = 1; i <= _maxPredicate[tokenId]; i++) {
            _spoProxy.removeRDF(tokenId, i, _POPairs[i]);
        }

        _maxPredicate[tokenId] = 0;
        emit RemoveRDF(tokenId, oldData);
    }
    
    function rdfOf(uint256 tokenId) external view override onlySbt() returns (string memory) {
        return _buildRdfString(tokenId);
    }

    // MARK: -  Private
    function _buildRdfString(uint256 tokenId) internal view returns (string memory) {
        string memory rdf = "";
        for (uint8 i = 1; i <= _maxPredicate[tokenId]; i++) {
            string memory subject = string(abi.encodePacked(ENTITY_PREFIX, SOUL_PREFIX, Strings.toString(tokenId)));
            string memory predicate = string(abi.encodePacked(PROPERTY_PREFIX, _predicates[i]));
            string memory object = _spoProxy.getObject(tokenId, i, _POPairs[i]);
            if (_isStringEmpty(object)) {
                continue;
            }
            object = string(abi.encodePacked(ENTITY_PREFIX, _objectClasses[_POPairs[i]], CONCATENATION_CHARACTER, object));
            
            // If it's the same subject as the previous iteration, use a semicolon to separate predicate-object pairs
            if (!_isStringEmpty(rdf)) {
                rdf = string(abi.encodePacked(rdf, TURTLE_LINE_SUFFIX, predicate, BLANK_SPACE, object));
            } else {
                rdf = string(abi.encodePacked(rdf, subject, BLANK_SPACE, predicate, BLANK_SPACE, object));
            }
        }
        
        // Add a period at the end if rdf is not empty
        if (!_isStringEmpty(rdf)) {
            rdf = string(abi.encodePacked(rdf, TURTLE_END_SUFFIX));
        }
        
        return rdf;
    }

    function _isStringEmpty(string memory data) internal pure returns (bool) {
        return bytes(data).length == 0;
    }
    
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.12;

/**
 * @title Semantic Soulbound Token
 * Note: the EIP-165 identifier for this interface is 0xfbafb698
 */
interface ISemanticSBT {
    /**
     * @dev This emits when minting a Semantic Soulbound Token.
     * @param tokenId The identifier for the Semantic Soulbound Token.
     * @param rdfStatements The RDF statements for the Semantic Soulbound Token. An RDF statement is the statement made by an RDF triple.
     */
    event CreateRDF (
        uint256 indexed tokenId,
        string rdfStatements
    );


    /**
     * @dev This emits when updating the RDF data of Semantic Soulbound Token. RDF data is a collection of RDF statements that are used to represent information about resources.
     * @param tokenId The identifier for the Semantic Soulbound Token.
     * @param rdfStatements The RDF statements for the semantic soulbound token. An RDF statement is the statement made by an RDF triple.
     */
    event UpdateRDF (
        uint256 indexed tokenId,
        string rdfStatements
    );


    /**
     * @dev This emits when burning or revoking Semantic Soulbound Token.
     * @param tokenId The identifier for the Semantic Soulbound Token.
     * @param rdfStatements The RDF statements for the Semantic Soulbound Token. An RDF statement is the statement made by an RDF triple.
     */
    event RemoveRDF (
        uint256 indexed tokenId,
        string rdfStatements
    );

    /**
     * @dev Returns the RDF statements of the Semantic Soulbound Token. An RDF statement is the statement made by an RDF triple.
     * @param tokenId The identifier for the Semantic Soulbound Token.
     */
    function rdfOf(uint256 tokenId) external view returns (string memory);

}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions anymore. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby removing any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (security/ReentrancyGuard.sol)

pragma solidity ^0.8.0;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    constructor() {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be _NOT_ENTERED
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1);

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator,
        Rounding rounding
    ) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10**64) {
                value /= 10**64;
                result += 64;
            }
            if (value >= 10**32) {
                value /= 10**32;
                result += 32;
            }
            if (value >= 10**16) {
                value /= 10**16;
                result += 16;
            }
            if (value >= 10**8) {
                value /= 10**8;
                result += 8;
            }
            if (value >= 10**4) {
                value /= 10**4;
                result += 4;
            }
            if (value >= 10**2) {
                value /= 10**2;
                result += 2;
            }
            if (value >= 10**1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
        }
    }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):