POL Price: $0.688723 (-1.85%)
Gas: 30 GWei

Contract Diff Checker

Contract Name:
Token

Contract Source Code:

// SPDX-License-Identifier: MIT
pragma solidity 0.8.14;

import '@openzeppelin/contracts/token/ERC20/ERC20.sol';
import '@openzeppelin/contracts/access/Ownable.sol';
import '@openzeppelin/contracts/security/ReentrancyGuard.sol';
import '@openzeppelin/contracts/utils/math/SafeMath.sol';
import './utils/Interest.sol';

contract Token is ERC20, Ownable, Interest, ReentrancyGuard {
    using SafeMath for uint256;

    uint256 public minAmountToStake;
    uint256 public totalStaked;
    uint256 public numberOfPeopleStaking;
    uint256 public startDateSmartContract;
    uint256 public ratePerYearInWei;
    uint256 public stakingStart;
    uint256 public stakingDuration;
    uint256 public stakingEndDate;
    uint256 public maxAmountManuallyMintable;
    uint256 public cap;

    mapping(address => Internal) public internalAddresses;

    mapping(address => Deposit) public deposits;

    struct Internal {
        bool isInternal;
    }

    struct Deposit {
        uint256 amount;
        uint256 startdate;
    }

    constructor(
        string memory name_,
        string memory symbol_,
        uint256 cap_,
        uint256 ratePerYearInWei_,
        uint256 maxAmountManuallyMintable_,
        uint256 stakingDuration_,
        uint256 minAmountToStake_
    ) ERC20(name_, symbol_) {
        require(
            ratePerYearInWei_ >= 100000000000000000 && ratePerYearInWei_ <= 200000000000000000,
            'The ratePerYearInWei_ must be between 0.1 and 0.2 ethers'
        );

        require(
            maxAmountManuallyMintable_ >= 400000000 * 1 ether && maxAmountManuallyMintable_ <= 400000002 * 1 ether,
            'The maxAmountManuallyMintable_ must be between 400M and 500M ethers'
        );

        require(
            stakingDuration_ >= 1 * 365 days && stakingDuration_ <= 10 * 365 days,
            'The stakingDuration_ must be between 1 and 10 years'
        );

        ratePerYearInWei = ratePerYearInWei_;
        cap = cap_;
        maxAmountManuallyMintable = maxAmountManuallyMintable_;
        stakingStart = block.timestamp;
        stakingDuration = stakingDuration_;
        stakingEndDate = block.timestamp + stakingDuration;
        minAmountToStake = minAmountToStake_;
        emit tokenInitialed(address(this), block.timestamp);
    }

    function mint(address _account, uint256 _amount)
        external
        onlyOwner
        maxAmountManuallyMintableNotReached(_amount)
        nonReentrant
    {
        _mint(_account, _amount);
        emit tokenMintedSuccess(_account, _amount, block.timestamp);
    }

    function burn(address _account, uint256 _amount) external onlyOwner isAnInternalAddress(_account) {
        _burn(_account, _amount);
        emit tokenBurnedSuccess(_account, _amount, block.timestamp);
    }

    function stake(uint256 amount_)
        external
        nonReentrant
        isStakingActive
        isNotAnInternalAddress(msg.sender)
        isNotYetStaking(msg.sender)
        hasTheMinAmountToStake(amount_)
    {
        transferUsersFundsToThisContract(amount_);
        createDeposit(amount_);
        increaseTheTotalStakedAmount(amount_);
        emit stakeSuccess(msg.sender, amount_, block.timestamp);
    }

    function unstake() external nonReentrant isAlreadyStaking(msg.sender) {
        Deposit memory _deposit = deposits[msg.sender];
        payUsersProfits(_deposit);
        returnUsersFunds(_deposit);
        decreaseTheTotalStakedAmount(_deposit);
        deleteDeposit();
        emit unstakeSuccess(msg.sender, deposits[msg.sender].amount, block.timestamp);
    }

    function createDeposit(uint256 amount) internal {
        deposits[msg.sender] = Deposit(amount, block.timestamp);
    }

    function deleteDeposit() internal {
        delete deposits[msg.sender];
    }

    function increaseTheTotalStakedAmount(uint256 amount_) internal {
        totalStaked = totalStaked.add(amount_);
        numberOfPeopleStaking++;
    }

    function decreaseTheTotalStakedAmount(Deposit memory _deposit) internal {
        totalStaked = totalStaked.sub(_deposit.amount);
        numberOfPeopleStaking--;
    }

    function payUsersProfits(Deposit memory _deposit) internal {
        uint256 profit = getProfits(_deposit);
        if (profit > 0) _mint(msg.sender, profit);
    }

    function returnUsersFunds(Deposit memory _deposit) internal {
        _transfer(address(this), msg.sender, _deposit.amount);
    }

    function transferUsersFundsToThisContract(uint256 amount_) internal {
        _transfer(msg.sender, address(this), amount_);
    }

    function calculateInterest(Deposit memory deposit) public view returns (uint256) {
        uint256 userStakingStartDate = deposit.startdate;
        uint256 stakingAge = block.timestamp.sub(userStakingStartDate);
        uint256 stakedAmount = deposit.amount;
        return accrueYearlyRateInterest(stakedAmount, ratePerYearInWei, stakingAge);
    }

    function getProfits(Deposit memory deposit) public view returns (uint256) {
        if (!isStaking(deposit)) return 0;
        uint256 interest = calculateInterest(deposit);
        uint256 profit = interest.sub(deposit.amount);
        return profit;
    }

    function setMinAmountToStake(uint256 _minAmountToStake) external onlyOwner {
        minAmountToStake = _minAmountToStake;
        emit setMinAmountToStakeSuccess(_minAmountToStake);
    }

    function setStartDateSmartContract() external onlyOwner {
        startDateSmartContract = block.timestamp;
        emit setStartDateSmartContractSuccess(msg.sender, startDateSmartContract);
    }

    function setInternalAddress(address _address) external onlyOwner {
        require(startDateSmartContract == 0, "You can only add any address to this list before the contract's initialization.");
        internalAddresses[_address] = Internal(true);
        emit setInternalAddressSuccess(_address);
    }

    modifier isAnInternalAddress(address _address) {
        require(internalAddresses[_address].isInternal, 'It must be an internal address.');
        _;
    }

    modifier isNotAnInternalAddress(address _address) {
        require(!internalAddresses[_address].isInternal, 'It must be an external address.');
        _;
    }

    modifier maxAmountManuallyMintableNotReached(uint256 _amountToMint) {
        uint256 currentSupplyPlusAmountToMint = this.totalSupply().add(_amountToMint);
        require(
            currentSupplyPlusAmountToMint <= maxAmountManuallyMintable,
            'Total supply will exceed maxAmountManuallyMintable after mint'
        );
        _;
    }

    modifier isStakingActive() {
        require(
            (stakingEndDate > 0 && (stakingEndDate >= block.timestamp)),
            'The staking was not yet activated or ended already the period.'
        );
        _;
    }

    modifier hasTheMinAmountToStake(uint256 amount_) {
        require(amount_ >= minAmountToStake, 'To stake, you must have the minimum amount of coins required.');
        _;
    }

    modifier isNotYetStaking(address _address) {
        require(!isStaking(deposits[_address]), 'Your address is already staking.');
        _;
    }

    modifier isAlreadyStaking(address _address) {
        require(isStaking(deposits[_address]), 'You must be staking in order to unstake.');
        _;
    }

    function isStaking(Deposit memory deposit) public pure returns (bool) {
        return (deposit.amount > 0 && deposit.startdate > 0);
    }

    event tokenInitialed(address indexed _who, uint256 timestamp);

    event unstakeSuccess(address indexed _who, uint256 _amount, uint256 timestamp);

    event stakeSuccess(address indexed _who, uint256 _amount, uint256 timestamp);

    event tokenMintedSuccess(address indexed _who, uint256 _amount, uint256 timestamp);

    event tokenBurnedSuccess(address indexed _who, uint256 _amount, uint256 timestamp);

    event setInternalAddressSuccess(address indexed _address);

    event setMinAmountToStakeSuccess(uint256 _amount);

    event setStartDateSmartContractSuccess(address indexed _who, uint256 timestamp);
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.14;

import "./DSMath.sol";

// Using DSMath from DappHub https://github.com/dapphub/ds-math
// More info on DSMath and fixed point arithmetic in Solidity:
// https://medium.com/dapphub/introducing-ds-math-an-innovative-safe-math-library-d58bc88313da

/**
* @title Interest
* @author Nick Ward
* @dev Uses DSMath's wad and ray math to implement (approximately)
* continuously compounding interest by calculating discretely compounded
* interest compounded every second.
*/

contract Interest is DSMath {

    //// Fixed point scale factors
    // wei -> the base unit
    // wad -> wei * 10 ** 18. 1 ether = 1 wad, so 0.5 ether can be used
    //      to represent a decimal wad of 0.5
    // ray -> wei * 10 ** 27

    // Go from wad (10**18) to ray (10**27)
    function wadToRay(uint _wad) internal pure returns (uint) {
        return mul(_wad, 10 ** 9);
    }

    // Go from wei to ray (10**27)
    function weiToRay(uint _wei) internal pure returns (uint) {
        return mul(_wei, 10 ** 27);
    } 


    /**
    * @dev Uses an approximation of continuously compounded interest 
    * (discretely compounded every second)
    * @param _principal The principal to calculate the interest on.
    *   Accepted in wei.
    * @param _rate The interest rate. Accepted as a ray representing 
    *   1 + the effective interest rate per second, compounded every 
    *   second. As an example:
    *   I want to accrue interest at a nominal rate (i) of 5.0% per year 
    *   compounded continuously. (Effective Annual Rate of 5.127%).
    *   This is approximately equal to 5.0% per year compounded every 
    *   second (to 8 decimal places, if max precision is essential, 
    *   calculate nominal interest per year compounded every second from 
    *   your desired effective annual rate). Effective Rate Per Second = 
    *   Nominal Rate Per Second compounded every second = Nominal Rate 
    *   Per Year compounded every second * conversion factor from years 
    *   to seconds
    *   Effective Rate Per Second = 0.05 / (365 days/yr * 86400 sec/day) = 1.5854895991882 * 10 ** -9
    *   The value we want to send this function is 
    *   1 * 10 ** 27 + Effective Rate Per Second * 10 ** 27
    *   = 1000000001585489599188229325
    *   This will return 5.1271096334354555 Dai on a 100 Dai principal 
    *   over the course of one year (31536000 seconds)
    * @param _age The time period over which to accrue interest. Accepted
    *   in seconds.
    * @return The new principal as a wad. Equal to original principal + 
    *   interest accrued
    */
    function accrueInterest(uint _principal, uint _rate, uint _age) public pure returns (uint) {
        return rmul(_principal, rpow(_rate, _age));
    }

    //1000000000000000000000000,500000000000000000,10368000
    // Eu somente precisoo enviar o balance do usuario no principal.
    // Por exemplo. Se ele tem 1 moeda, então é o balance que ele iniciou o staking
    // 1 ether = 1 * 10**18 => 1 + 18 ZEROS => 1 000 000 000 000 000 000 => 1
    // o rate é =POW(10,18)*0.5
    // Nunca posso enviar em decimal então eu multiplico 0.5 * 10 elevado 18 potência (10ˆ18) ou (10**10)
    // Isso dá 500000000000000000
    // o _age é o tempo em staking 
    // block.timestamp (AGORA) - a data que ele fez o stacking
    // Tudo em epoch. Segundos.
    function accrueYearlyRateInterest(uint _principal, uint _rate, uint _age) public pure returns (uint) {
        return rmul(_principal, rpow(yearlyRateToRay(_rate), _age));
    }

    /**
    * @dev Takes in the desired nominal interest rate per year, compounded
    *   every second (this is approximately equal to nominal interest rate
    *   per year compounded continuously). Returns the ray value expected
    *   by the accrueInterest function 
    * @param _rateWad A wad of the desired nominal interest rate per year,
    *   compounded continuously. Converting from ether to wei will effectively
    *   convert from a decimal value to a wad. So 5% rate = 0.05
    *   should be input as yearlyRateToRay( 0.05 ether )
    * @return 1 * 10 ** 27 + Effective Interest Rate Per Second * 10 ** 27
    */
    function yearlyRateToRay(uint _rateWad) public pure returns (uint) {
        return add(wadToRay(1 ether), rdiv(wadToRay(_rateWad), weiToRay(365*86400)));
    }
}

// DSMath from DappHub -> https://github.com/dapphub/ds-math/blob/784079b72c4d782b022b3e893a7c5659aa35971a/src/math.sol

/// math.sol -- mixin for inline numerical wizardry

// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;

contract DSMath {
    function add(uint x, uint y) internal pure returns (uint z) {
        require((z = x + y) >= x, "ds-math-add-overflow");
    }
    function sub(uint x, uint y) internal pure returns (uint z) {
        require((z = x - y) <= x, "ds-math-sub-underflow");
    }
    function mul(uint x, uint y) internal pure returns (uint z) {
        require(y == 0 || (z = x * y) / y == x, "ds-math-mul-overflow");
    }

    function min(uint x, uint y) internal pure returns (uint z) {
        return x <= y ? x : y;
    }
    function max(uint x, uint y) internal pure returns (uint z) {
        return x >= y ? x : y;
    }
    function imin(int x, int y) internal pure returns (int z) {
        return x <= y ? x : y;
    }
    function imax(int x, int y) internal pure returns (int z) {
        return x >= y ? x : y;
    }

    uint constant WAD = 10 ** 18;
    uint constant RAY = 10 ** 27;

    function wmul(uint x, uint y) internal pure returns (uint z) {
        z = add(mul(x, y), WAD / 2) / WAD;
    }
    function rmul(uint x, uint y) internal pure returns (uint z) {
        z = add(mul(x, y), RAY / 2) / RAY;
    }
    function wdiv(uint x, uint y) internal pure returns (uint z) {
        z = add(mul(x, WAD), y / 2) / y;
    }
    function rdiv(uint x, uint y) internal pure returns (uint z) {
        z = add(mul(x, RAY), y / 2) / y;
    }

    // This famous algorithm is called "exponentiation by squaring"
    // and calculates x^n with x as fixed-point and n as regular unsigned.
    //
    // It's O(log n), instead of O(n) for naive repeated multiplication.
    //
    // These facts are why it works:
    //
    //  If n is even, then x^n = (x^2)^(n/2).
    //  If n is odd,  then x^n = x * x^(n-1),
    //   and applying the equation for even x gives
    //    x^n = x * (x^2)^((n-1) / 2).
    //
    //  Also, EVM division is flooring and
    //    floor[(n-1) / 2] = floor[n / 2].
    //
    function rpow(uint x, uint n) internal pure returns (uint z) {
        z = n % 2 != 0 ? x : RAY;

        for (n /= 2; n != 0; n /= 2) {
            x = rmul(x, x);

            if (n % 2 != 0) {
                z = rmul(z, x);
            }
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (utils/math/SafeMath.sol)

pragma solidity ^0.8.0;

// CAUTION
// This version of SafeMath should only be used with Solidity 0.8 or later,
// because it relies on the compiler's built in overflow checks.

/**
 * @dev Wrappers over Solidity's arithmetic operations.
 *
 * NOTE: `SafeMath` is generally not needed starting with Solidity 0.8, since the compiler
 * now has built in overflow checking.
 */
library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        return a + b;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return a - b;
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     *
     * - Multiplication cannot overflow.
     */
    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        return a * b;
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator.
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        return a / b;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        return a % b;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {trySub}.
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(
        uint256 a,
        uint256 b,
        string memory errorMessage
    ) internal pure returns (uint256) {
        unchecked {
            require(b <= a, errorMessage);
            return a - b;
        }
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting with custom message on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(
        uint256 a,
        uint256 b,
        string memory errorMessage
    ) internal pure returns (uint256) {
        unchecked {
            require(b > 0, errorMessage);
            return a / b;
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting with custom message when dividing by zero.
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {tryMod}.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(
        uint256 a,
        uint256 b,
        string memory errorMessage
    ) internal pure returns (uint256) {
        unchecked {
            require(b > 0, errorMessage);
            return a % b;
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 *
 * _Available since v4.1._
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.0;

import "./IERC20.sol";
import "./extensions/IERC20Metadata.sol";
import "../../utils/Context.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 * For a generic mechanism see {ERC20PresetMinterPauser}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC20
 * applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 *
 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
 * functions have been added to mitigate the well-known issues around setting
 * allowances. See {IERC20-approve}.
 */
contract ERC20 is Context, IERC20, IERC20Metadata {
    mapping(address => uint256) private _balances;

    mapping(address => mapping(address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * The default value of {decimals} is 18. To select a different value for
     * {decimals} you should overload it.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual override returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual override returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the value {ERC20} uses, unless this function is
     * overridden;
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual override returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual override returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual override returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(address to, uint256 amount) public virtual override returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, amount);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, amount);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `amount`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `amount`.
     */
    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) public virtual override returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, amount);
        _transfer(from, to, amount);
        return true;
    }

    /**
     * @dev Atomically increases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, allowance(owner, spender) + addedValue);
        return true;
    }

    /**
     * @dev Atomically decreases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `spender` must have allowance for the caller of at least
     * `subtractedValue`.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        address owner = _msgSender();
        uint256 currentAllowance = allowance(owner, spender);
        require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
        unchecked {
            _approve(owner, spender, currentAllowance - subtractedValue);
        }

        return true;
    }

    /**
     * @dev Moves `amount` of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `from` must have a balance of at least `amount`.
     */
    function _transfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {
        require(from != address(0), "ERC20: transfer from the zero address");
        require(to != address(0), "ERC20: transfer to the zero address");

        _beforeTokenTransfer(from, to, amount);

        uint256 fromBalance = _balances[from];
        require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
        unchecked {
            _balances[from] = fromBalance - amount;
        }
        _balances[to] += amount;

        emit Transfer(from, to, amount);

        _afterTokenTransfer(from, to, amount);
    }

    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");

        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply += amount;
        _balances[account] += amount;
        emit Transfer(address(0), account, amount);

        _afterTokenTransfer(address(0), account, amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");

        _beforeTokenTransfer(account, address(0), amount);

        uint256 accountBalance = _balances[account];
        require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
        unchecked {
            _balances[account] = accountBalance - amount;
        }
        _totalSupply -= amount;

        emit Transfer(account, address(0), amount);

        _afterTokenTransfer(account, address(0), amount);
    }

    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(
        address owner,
        address spender,
        uint256 amount
    ) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
     *
     * Does not update the allowance amount in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Might emit an {Approval} event.
     */
    function _spendAllowance(
        address owner,
        address spender,
        uint256 amount
    ) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            require(currentAllowance >= amount, "ERC20: insufficient allowance");
            unchecked {
                _approve(owner, spender, currentAllowance - amount);
            }
        }
    }

    /**
     * @dev Hook that is called before any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {}

    /**
     * @dev Hook that is called after any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * has been transferred to `to`.
     * - when `from` is zero, `amount` tokens have been minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _afterTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {}
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (security/ReentrancyGuard.sol)

pragma solidity ^0.8.0;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    constructor() {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        // On the first call to nonReentrant, _notEntered will be true
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;

        _;

        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions anymore. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby removing any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):