Contract Source Code:
pragma solidity ^0.4.23;
/**
* @title BEP20Basic
* @dev Simpler version of BEP20 interface
*/
contract BEP20Basic {
function totalSupply() public view returns (uint256);
function balanceOf(address who) public view returns (uint256);
function transfer(address to, uint256 value) public returns (bool);
event Transfer(address indexed from, address indexed to, uint256 value);
}
/**
* @title SafeMath
* @dev Math operations with safety checks that throw on error
*/
library SafeMath {
/**
* @dev Multiplies two numbers, throws on overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256 c) {
// Gas optimization: this is cheaper than asserting 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522
if (a == 0) {
return 0;
}
c = a * b;
assert(c / a == b);
return c;
}
/**
* @dev Integer division of two numbers, truncating the quotient.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
// assert(b > 0); // Solidity automatically throws when dividing by 0
// uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return a / b;
}
/**
* @dev Subtracts two numbers, throws on overflow (i.e. if subtrahend is greater than minuend).
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
assert(b <= a);
return a - b;
}
/**
* @dev Adds two numbers, throws on overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256 c) {
c = a + b;
assert(c >= a);
return c;
}
}
/**
* @title Basic token
* @dev Basic version of StandardToken, with no allowances.
*/
contract BasicToken is BEP20Basic {
using SafeMath for uint256;
mapping(address => uint256) balances;
uint256 _totalSupply;
/**
* @dev total number of tokens in existence
*/
function totalSupply() public view returns (uint256) {
return _totalSupply;
}
/**
* @dev transfer token for a specified address
* @param _to The address to transfer to.
* @param _value The amount to be transferred.
*/
function transfer(address _to, uint256 _value) public returns (bool) {
require(_to != address(0));
require(_value <= balances[msg.sender]);
balances[msg.sender] = balances[msg.sender].sub(_value);
balances[_to] = balances[_to].add(_value);
emit Transfer(msg.sender, _to, _value);
return true;
}
/**
* @dev Gets the balance of the specified address.
* @param _owner The address to query the the balance of.
* @return An uint256 representing the amount owned by the passed address.
*/
function balanceOf(address _owner) public view returns (uint256) {
return balances[_owner];
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal {
require(account != address(0), "ERC20: mint to the zero address");
_totalSupply += amount;
balances[account] += amount;
emit Transfer(address(0), account, amount);
}
}
/**
* @title BEP20 interface
*/
contract BEP20 is BEP20Basic {
function allowance(address owner, address spender)
public
view
returns (uint256);
function transferFrom(
address from,
address to,
uint256 value
) public returns (bool);
function approve(address spender, uint256 value) public returns (bool);
event Approval(
address indexed owner,
address indexed spender,
uint256 value
);
}
/**
* @title Standard BEP20 token
*
* @dev Implementation of the basic standard token.
* @dev Based on code by FirstBlood: https://github.com/Firstbloodio/token/blob/master/smart_contract/FirstBloodToken.sol
*/
contract StandardToken is BEP20, BasicToken {
mapping(address => mapping(address => uint256)) internal allowed;
/**
* @dev Transfer tokens from one address to another
* @param _from address The address which you want to send tokens from
* @param _to address The address which you want to transfer to
* @param _value uint256 the amount of tokens to be transferred
*/
function transferFrom(
address _from,
address _to,
uint256 _value
) public returns (bool) {
require(_to != address(0));
require(_value <= balances[_from]);
require(_value <= allowed[_from][msg.sender]);
balances[_from] = balances[_from].sub(_value);
balances[_to] = balances[_to].add(_value);
allowed[_from][msg.sender] = allowed[_from][msg.sender].sub(_value);
emit Transfer(_from, _to, _value);
return true;
}
/**
* @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender.
*
* Beware that changing an allowance with this method brings the risk that someone may use both the old
* and the new allowance by unfortunate transaction ordering. One possible solution to mitigate this
* race condition is to first reduce the spender's allowance to 0 and set the desired value afterwards:
* @param _spender The address which will spend the funds.
* @param _value The amount of tokens to be spent.
*/
function approve(address _spender, uint256 _value) public returns (bool) {
allowed[msg.sender][_spender] = _value;
emit Approval(msg.sender, _spender, _value);
return true;
}
/**
* @dev Function to check the amount of tokens that an owner allowed to a spender.
* @param _owner address The address which owns the funds.
* @param _spender address The address which will spend the funds.
* @return A uint256 specifying the amount of tokens still available for the spender.
*/
function allowance(address _owner, address _spender)
public
view
returns (uint256)
{
return allowed[_owner][_spender];
}
/**
* @dev Increase the amount of tokens that an owner allowed to a spender.
*
* approve should be called when allowed[_spender] == 0. To increment
* allowed value is better to use this function to avoid 2 calls (and wait until
* the first transaction is mined)
* From MonolithDAO Token.sol
* @param _spender The address which will spend the funds.
* @param _addedValue The amount of tokens to increase the allowance by.
*/
function increaseApproval(address _spender, uint256 _addedValue)
public
returns (bool)
{
allowed[msg.sender][_spender] = (
allowed[msg.sender][_spender].add(_addedValue)
);
emit Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
return true;
}
/**
* @dev Decrease the amount of tokens that an owner allowed to a spender.
*
* approve should be called when allowed[_spender] == 0. To decrement
* allowed value is better to use this function to avoid 2 calls (and wait until
* the first transaction is mined)
* From MonolithDAO Token.sol
* @param _spender The address which will spend the funds.
* @param _subtractedValue The amount of tokens to decrease the allowance by.
*/
function decreaseApproval(address _spender, uint256 _subtractedValue)
public
returns (bool)
{
uint256 oldValue = allowed[msg.sender][_spender];
if (_subtractedValue > oldValue) {
allowed[msg.sender][_spender] = 0;
} else {
allowed[msg.sender][_spender] = oldValue.sub(_subtractedValue);
}
emit Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
return true;
}
}
/**
* @title Ownable
* @dev The Ownable contract has an owner address, and provides basic authorization control
* functions, this simplifies the implementation of "user permissions".
*/
contract Ownable {
address public owner;
event OwnershipRenounced(address indexed previousOwner);
event OwnershipTransferred(
address indexed previousOwner,
address indexed newOwner
);
/**
* @dev The Ownable constructor sets the original `owner` of the contract to the sender
* account.
*/
constructor() public {
owner = msg.sender;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(msg.sender == owner);
_;
}
/**
* @dev Allows the current owner to relinquish control of the contract.
*/
function renounceOwnership() public onlyOwner {
emit OwnershipRenounced(owner);
owner = address(0);
}
/**
* @dev Allows the current owner to transfer control of the contract to a newOwner.
* @param _newOwner The address to transfer ownership to.
*/
function transferOwnership(address _newOwner) public onlyOwner {
_transferOwnership(_newOwner);
}
/**
* @dev Transfers control of the contract to a newOwner.
* @param _newOwner The address to transfer ownership to.
*/
function _transferOwnership(address _newOwner) internal {
require(_newOwner != address(0));
emit OwnershipTransferred(owner, _newOwner);
owner = _newOwner;
}
}
contract FreezableToken is StandardToken {
// freezing chains
mapping(bytes32 => uint64) internal chains;
// freezing amounts for each chain
mapping(bytes32 => uint256) internal freezings;
// total freezing balance per address
mapping(address => uint256) internal freezingBalance;
event Freezed(address indexed to, uint64 release, uint256 amount);
event Released(address indexed owner, uint256 amount);
/**
* @dev Gets the balance of the specified address include freezing tokens.
* @param _owner The address to query the the balance of.
* @return An uint256 representing the amount owned by the passed address.
*/
function balanceOf(address _owner) public view returns (uint256 balance) {
return super.balanceOf(_owner) + freezingBalance[_owner];
}
/**
* @dev Gets the balance of the specified address without freezing tokens.
* @param _owner The address to query the the balance of.
* @return An uint256 representing the amount owned by the passed address.
*/
function actualBalanceOf(address _owner)
public
view
returns (uint256 balance)
{
return super.balanceOf(_owner);
}
function freezingBalanceOf(address _owner)
public
view
returns (uint256 balance)
{
return freezingBalance[_owner];
}
/**
* @dev gets freezing count
* @param _addr Address of freeze tokens owner.
*/
function freezingCount(address _addr) public view returns (uint256 count) {
uint64 release = chains[toKey(_addr, 0)];
while (release != 0) {
count++;
release = chains[toKey(_addr, release)];
}
}
/**
* @dev gets freezing end date and freezing balance for the freezing portion specified by index.
* @param _addr Address of freeze tokens owner.
* @param _index Freezing portion index. It ordered by release date descending.
*/
function getFreezing(address _addr, uint256 _index)
public
view
returns (uint64 _release, uint256 _balance)
{
for (uint256 i = 0; i < _index + 1; i++) {
_release = chains[toKey(_addr, _release)];
if (_release == 0) {
return;
}
}
_balance = freezings[toKey(_addr, _release)];
}
/**
* @dev freeze your tokens to the specified address.
* Be careful, gas usage is not deterministic,
* and depends on how many freezes _to address already has.
* @param _to Address to which token will be freeze.
* @param _amount Amount of token to freeze.
* @param _until Release date, must be in future.
*/
function freezeTo(
address _to,
uint256 _amount,
uint64 _until
) public {
require(_to != address(0));
require(_amount <= balances[msg.sender]);
balances[msg.sender] = balances[msg.sender].sub(_amount);
bytes32 currentKey = toKey(_to, _until);
freezings[currentKey] = freezings[currentKey].add(_amount);
freezingBalance[_to] = freezingBalance[_to].add(_amount);
freeze(_to, _until);
emit Transfer(msg.sender, _to, _amount);
emit Freezed(_to, _until, _amount);
}
/**
* @dev release first available freezing tokens.
*/
function releaseOnce(address account) public {
bytes32 headKey = toKey(account, 0);
uint64 head = chains[headKey];
require(head != 0);
require(uint64(block.timestamp) > head);
bytes32 currentKey = toKey(account, head);
uint64 next = chains[currentKey];
uint256 amount = freezings[currentKey];
delete freezings[currentKey];
balances[account] = balances[account].add(amount);
freezingBalance[account] = freezingBalance[account].sub(amount);
if (next == 0) {
delete chains[headKey];
} else {
chains[headKey] = next;
delete chains[currentKey];
}
emit Released(account, amount);
}
/**
* @dev release all available for release freezing tokens. Gas usage is not deterministic!
* @return how many tokens was released
*/
function releaseAll(address account) public returns (uint256 tokens) {
uint256 release;
uint256 balance;
(release, balance) = getFreezing(account, 0);
while (release != 0 && block.timestamp > release) {
releaseOnce(account);
tokens += balance;
(release, balance) = getFreezing(account, 0);
}
}
function toKey(address _addr, uint256 _release)
internal
pure
returns (bytes32 result)
{
// WISH masc to increase entropy
result = 0x5749534800000000000000000000000000000000000000000000000000000000;
assembly {
result := or(result, mul(_addr, 0x10000000000000000))
result := or(result, and(_release, 0xffffffffffffffff))
}
}
function freeze(address _to, uint64 _until) internal {
require(_until > block.timestamp);
bytes32 key = toKey(_to, _until);
bytes32 parentKey = toKey(_to, uint64(0));
uint64 next = chains[parentKey];
if (next == 0) {
chains[parentKey] = _until;
return;
}
bytes32 nextKey = toKey(_to, next);
uint256 parent;
while (next != 0 && _until > next) {
parent = next;
parentKey = nextKey;
next = chains[nextKey];
nextKey = toKey(_to, next);
}
if (_until == next) {
return;
}
if (next != 0) {
chains[key] = next;
}
chains[parentKey] = _until;
}
}
/**
* @title Burnable Token
* @dev Token that can be irreversibly burned (destroyed).
*/
contract BurnableToken is BasicToken {
event Burn(address indexed burner, uint256 value);
/**
* @dev Burns a specific amount of tokens.
* @param _value The amount of token to be burned.
*/
function burn(uint256 _value) public {
_burn(msg.sender, _value);
}
function _burn(address _who, uint256 _value) internal {
require(_value <= balances[_who]);
// no need to require value <= totalSupply, since that would imply the
// sender's balance is greater than the totalSupply, which *should* be an assertion failure
balances[_who] = balances[_who].sub(_value);
_totalSupply = _totalSupply.sub(_value);
emit Burn(_who, _value);
emit Transfer(_who, address(0), _value);
}
}
contract FreezableMintableToken is FreezableToken {
/**
* @dev Mint the specified amount of token to the specified address and freeze it until the specified date.
* Be careful, gas usage is not deterministic,
* and depends on how many freezes _to address already has.
* @param _to Address to which token will be freeze.
* @param _amount Amount of token to mint and freeze.
* @param _until Release date, must be in future.
* @return A boolean that indicates if the operation was successful.
*/
function mintAndFreeze(
address _to,
uint256 _amount,
uint64 _until
) internal returns (bool) {
_totalSupply = _totalSupply.add(_amount);
bytes32 currentKey = toKey(_to, _until);
freezings[currentKey] = freezings[currentKey].add(_amount);
freezingBalance[_to] = freezingBalance[_to].add(_amount);
freeze(_to, _until);
emit Freezed(_to, _until, _amount);
emit Transfer(address(0), _to, _amount);
return true;
}
}
contract Consts {
uint256 public constant TOKEN_DECIMALS = 18;
uint8 public constant TOKEN_DECIMALS_UINT8 = 18;
uint256 public constant TOKEN_DECIMAL_MULTIPLIER = 10**TOKEN_DECIMALS;
string public constant TOKEN_NAME = "Algebra";
string public constant TOKEN_SYMBOL = "ALGB";
uint64 public constant months3 = 1643382000; // 1/28/2022
uint64 public constant months6 = 1651158000; // 4/28/2022
uint64 public constant months9 = 1659020400; // 7/28/2022
uint64 public constant months12 = 1666969200; // 10/28/2022
uint64 public constant months18 = 1682694000; // 4/28/2023
uint64 public constant months24 = 1698505200; // 10/28/2023
uint64 public constant months30 = 1714316400; // 4/28/2024
}
contract MainToken is Consts, FreezableMintableToken, BurnableToken, Ownable {
address public sweepAddress;
constructor(
address listingPool,
address WishRbcAirDrop,
address treasuryFund,
address liquidityMining,
address team,
address funds
) public {
_mint(treasuryFund, 140000000 * TOKEN_DECIMAL_MULTIPLIER);
_mint(liquidityMining, 210000000 * TOKEN_DECIMAL_MULTIPLIER);
_mint(listingPool, 20000000 * TOKEN_DECIMAL_MULTIPLIER);
_mint(funds, 280000000 * TOKEN_DECIMAL_MULTIPLIER);
mintAndFreeze(team, 12500000 * TOKEN_DECIMAL_MULTIPLIER, months12);
mintAndFreeze(team, 12500000 * TOKEN_DECIMAL_MULTIPLIER, months18);
mintAndFreeze(team, 12500000 * TOKEN_DECIMAL_MULTIPLIER, months24);
mintAndFreeze(team, 12500000 * TOKEN_DECIMAL_MULTIPLIER, months30);
mintAndFreeze(
WishRbcAirDrop,
12500000 * TOKEN_DECIMAL_MULTIPLIER,
months6
);
mintAndFreeze(
WishRbcAirDrop,
12500000 * TOKEN_DECIMAL_MULTIPLIER,
months9
);
mintAndFreeze(
WishRbcAirDrop,
12500000 * TOKEN_DECIMAL_MULTIPLIER,
months12
);
mintAndFreeze(
WishRbcAirDrop,
12500000 * TOKEN_DECIMAL_MULTIPLIER,
months24
);
}
function name() public pure returns (string _name) {
return TOKEN_NAME;
}
function symbol() public pure returns (string _symbol) {
return TOKEN_SYMBOL;
}
function decimals() public pure returns (uint8 _decimals) {
return TOKEN_DECIMALS_UINT8;
}
function transferFrom(
address _from,
address _to,
uint256 _value
) public returns (bool _success) {
return super.transferFrom(_from, _to, _value);
}
function transfer(address _to, uint256 _value)
public
returns (bool _success)
{
return super.transfer(_to, _value);
}
// sets new treasury fund address for tokens that accidentally transferred here
function setSweepAddress(address _sweepAddress) external onlyOwner {
sweepAddress = _sweepAddress;
}
function sweep(BEP20Basic _token) external onlyOwner {
_token.transfer(sweepAddress, _token.balanceOf(address(this)));
}
}