MATIC Price: $0.536891 (-1.26%)
Gas: 30.1 GWei
 

Overview

MATIC Balance

Polygon PoS Chain LogoPolygon PoS Chain LogoPolygon PoS Chain Logo0 MATIC

MATIC Value

$0.00

Sponsored

Transaction Hash
Method
Block
From
To
0x60806040559518432024-04-18 3:19:5497 days ago1713410394IN
 Create: PointsQuery
0 MATIC0.09001324140.56948648

Parent Transaction Hash Block From To
View All Internal Transactions
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
PointsQuery

Compiler Version
v0.8.25+commit.b61c2a91

Optimization Enabled:
Yes with 200 runs

Other Settings:
paris EvmVersion
File 1 of 9 : QueryingLogic.sol
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.25;

import { AccessControlEnumerable } from '../../common/DiamondStorage/AccessControlEnumerable.sol';
import { FactoryStorage } from "../AppStorage.sol";

contract PointsQuery is AccessControlEnumerable {
    function getUserPoints(address userAddress) view external returns(uint balance) {
        balance = FactoryStorage.layout().currentUserPoints[userAddress];
    }

    function getTotalUserPoints(address userAddress) view external returns(uint balance) {
        balance = FactoryStorage.layout().totalUserPoints[userAddress];
    }
}

File 2 of 9 : Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

File 3 of 9 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 4 of 9 : SignedMath.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

File 5 of 9 : Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

File 6 of 9 : EnumerableSet.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for managing
 * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
 * types.
 *
 * Sets have the following properties:
 *
 * - Elements are added, removed, and checked for existence in constant time
 * (O(1)).
 * - Elements are enumerated in O(n). No guarantees are made on the ordering.
 *
 * ```solidity
 * contract Example {
 *     // Add the library methods
 *     using EnumerableSet for EnumerableSet.AddressSet;
 *
 *     // Declare a set state variable
 *     EnumerableSet.AddressSet private mySet;
 * }
 * ```
 *
 * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
 * and `uint256` (`UintSet`) are supported.
 *
 * [WARNING]
 * ====
 * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
 * unusable.
 * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
 *
 * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
 * array of EnumerableSet.
 * ====
 */
library EnumerableSet {
    // To implement this library for multiple types with as little code
    // repetition as possible, we write it in terms of a generic Set type with
    // bytes32 values.
    // The Set implementation uses private functions, and user-facing
    // implementations (such as AddressSet) are just wrappers around the
    // underlying Set.
    // This means that we can only create new EnumerableSets for types that fit
    // in bytes32.

    struct Set {
        // Storage of set values
        bytes32[] _values;
        // Position is the index of the value in the `values` array plus 1.
        // Position 0 is used to mean a value is not in the set.
        mapping(bytes32 value => uint256) _positions;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function _add(Set storage set, bytes32 value) private returns (bool) {
        if (!_contains(set, value)) {
            set._values.push(value);
            // The value is stored at length-1, but we add 1 to all indexes
            // and use 0 as a sentinel value
            set._positions[value] = set._values.length;
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function _remove(Set storage set, bytes32 value) private returns (bool) {
        // We cache the value's position to prevent multiple reads from the same storage slot
        uint256 position = set._positions[value];

        if (position != 0) {
            // Equivalent to contains(set, value)
            // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
            // the array, and then remove the last element (sometimes called as 'swap and pop').
            // This modifies the order of the array, as noted in {at}.

            uint256 valueIndex = position - 1;
            uint256 lastIndex = set._values.length - 1;

            if (valueIndex != lastIndex) {
                bytes32 lastValue = set._values[lastIndex];

                // Move the lastValue to the index where the value to delete is
                set._values[valueIndex] = lastValue;
                // Update the tracked position of the lastValue (that was just moved)
                set._positions[lastValue] = position;
            }

            // Delete the slot where the moved value was stored
            set._values.pop();

            // Delete the tracked position for the deleted slot
            delete set._positions[value];

            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function _contains(Set storage set, bytes32 value) private view returns (bool) {
        return set._positions[value] != 0;
    }

    /**
     * @dev Returns the number of values on the set. O(1).
     */
    function _length(Set storage set) private view returns (uint256) {
        return set._values.length;
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function _at(Set storage set, uint256 index) private view returns (bytes32) {
        return set._values[index];
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function _values(Set storage set) private view returns (bytes32[] memory) {
        return set._values;
    }

    // Bytes32Set

    struct Bytes32Set {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _add(set._inner, value);
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _remove(set._inner, value);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
        return _contains(set._inner, value);
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(Bytes32Set storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
        return _at(set._inner, index);
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
        bytes32[] memory store = _values(set._inner);
        bytes32[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }

    // AddressSet

    struct AddressSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(AddressSet storage set, address value) internal returns (bool) {
        return _add(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(AddressSet storage set, address value) internal returns (bool) {
        return _remove(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(AddressSet storage set, address value) internal view returns (bool) {
        return _contains(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(AddressSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(AddressSet storage set, uint256 index) internal view returns (address) {
        return address(uint160(uint256(_at(set._inner, index))));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(AddressSet storage set) internal view returns (address[] memory) {
        bytes32[] memory store = _values(set._inner);
        address[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }

    // UintSet

    struct UintSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(UintSet storage set, uint256 value) internal returns (bool) {
        return _add(set._inner, bytes32(value));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(UintSet storage set, uint256 value) internal returns (bool) {
        return _remove(set._inner, bytes32(value));
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(UintSet storage set, uint256 value) internal view returns (bool) {
        return _contains(set._inner, bytes32(value));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(UintSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(UintSet storage set, uint256 index) internal view returns (uint256) {
        return uint256(_at(set._inner, index));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(UintSet storage set) internal view returns (uint256[] memory) {
        bytes32[] memory store = _values(set._inner);
        uint256[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }
}

File 7 of 9 : AccessControlEnumerable.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.25;

import { Context } from "@openzeppelin/contracts/utils/Context.sol";
import { Strings } from "@openzeppelin/contracts/utils/Strings.sol";
import { EnumerableSet } from "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";
import { AccessControlEnumerableStorage } from "./AccessControlEnumerableStorage.sol";

abstract contract AccessControlEnumerable is Context {
    using EnumerableSet for EnumerableSet.AddressSet;
    
    event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
	event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
    event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);

    modifier onlyRole(bytes32 role) {
        _checkRole(role, _msgSender());
        _;
    }

    function renounceRole(bytes32 role, address account) public {
        require(account == _msgSender(), "AccessControl: can only renounce roles for self");
        _revokeRole(role, account);
    }

    function grantRole(bytes32 role, address account) public onlyRole(getRoleAdmin(role)) {
        _grantRole(role, account);
    }

    function revokeRole(bytes32 role, address account) public onlyRole(getRoleAdmin(role)) {
        _revokeRole(role, account);
    }

    function _checkRole(bytes32 role, address account) internal view {
        if (!hasRole(role, account)) {
            revert(
                string(
                    abi.encodePacked(
                        "AccessControl: account ",
                        Strings.toHexString(uint160(account), 20),
                        " is missing role ",
                        Strings.toHexString(uint256(role), 32)
                    )
                )
            );
        }
    }

	function hasRole(bytes32 role, address account) public view returns (bool) {
		return AccessControlEnumerableStorage.layout()._roles[role].members[account];
	}

	function getRoleAdmin(bytes32 role) public view returns (bytes32) {
		return AccessControlEnumerableStorage.layout()._roles[role].adminRole;
	}

	function getRoleMember(bytes32 role, uint256 index) public view returns (address) {
		return AccessControlEnumerableStorage.layout()._roleMembers[role].at(index);
	}
	
	function getRoleMemberCount(bytes32 role) public view returns (uint256) {
		return AccessControlEnumerableStorage.layout()._roleMembers[role].length();
	}

	function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal {
		bytes32 previousAdminRole = getRoleAdmin(role);
		AccessControlEnumerableStorage.layout()._roles[role].adminRole = adminRole;
		emit RoleAdminChanged(role, previousAdminRole, adminRole);
	}

	function _grantRole(bytes32 role, address account) internal {
		if (!hasRole(role, account)) {
			AccessControlEnumerableStorage.layout()._roles[role].members[account] = true;
			emit RoleGranted(role, account, _msgSender());
			AccessControlEnumerableStorage.layout()._roleMembers[role].add(account);
		}
	}

	function _revokeRole(bytes32 role, address account) internal {
		if (hasRole(role, account)) {
			AccessControlEnumerableStorage.layout()._roles[role].members[account] = false;
			emit RoleRevoked(role, account, _msgSender());
			AccessControlEnumerableStorage.layout()._roleMembers[role].remove(account);
		}
	}
}

File 8 of 9 : AccessControlEnumerableStorage.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.25;

import { EnumerableSet } from "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";

library AccessControlEnumerableStorage {
    bytes32 internal constant STORAGE_SLOT =
        keccak256('rair.contracts.storage.AccessControlEnumerable');

    struct RoleData {
        mapping(address => bool) members;
        bytes32 adminRole;
    }

    struct Layout {
        mapping(bytes32 => RoleData) _roles;
        mapping(bytes32 => EnumerableSet.AddressSet) _roleMembers;
    }

    function layout() internal pure returns (Layout storage l) {
        bytes32 slot = STORAGE_SLOT;
        assembly {
            l.slot := slot
        }
    }
}

File 9 of 9 : AppStorage.sol
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.25; 

import "@openzeppelin/contracts/utils/Context.sol";
import "@openzeppelin/contracts/utils/Strings.sol";
import "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";

library FactoryStorage {
    bytes32 internal constant STORAGE_SLOT =
        keccak256('rair.contracts.storage.DiamondFactory');

    struct Layout {
        address[] creators;
		mapping(address => address[]) creatorToContracts;
		mapping(address => address) contractToCreator;
		mapping(address => uint) deploymentCostForToken;
        address currentERC20;
        mapping(address => uint) currentUserPoints;
        mapping(address => uint) totalUserPoints;
        uint transferTimeLimit;
        address facetSource;
    }

    function layout() internal pure returns (Layout storage l) {
        bytes32 slot = STORAGE_SLOT;
        assembly {
            l.slot := slot
        }
    }
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "evmVersion": "paris",
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "metadata": {
    "useLiteralContent": true
  },
  "libraries": {}
}

Contract Security Audit

Contract ABI

[{"inputs":[{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"length","type":"uint256"}],"name":"StringsInsufficientHexLength","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"previousAdminRole","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"newAdminRole","type":"bytes32"}],"name":"RoleAdminChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleGranted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleRevoked","type":"event"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleAdmin","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"uint256","name":"index","type":"uint256"}],"name":"getRoleMember","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleMemberCount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"userAddress","type":"address"}],"name":"getTotalUserPoints","outputs":[{"internalType":"uint256","name":"balance","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"userAddress","type":"address"}],"name":"getUserPoints","outputs":[{"internalType":"uint256","name":"balance","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"renounceRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"}]

6080604052348015600f57600080fd5b50610aa08061001f6000396000f3fe608060405234801561001057600080fd5b50600436106100935760003560e01c806391d148541161006657806391d1485414610111578063a756550014610134578063aeefe31f1461017c578063ca15c873146101c4578063d547741f146101d757600080fd5b8063248a9ca3146100985780632f2ff15d146100be57806336568abe146100d35780639010d07c146100e6575b600080fd5b6100ab6100a6366004610814565b6101ea565b6040519081526020015b60405180910390f35b6100d16100cc366004610849565b61020c565b005b6100d16100e1366004610849565b61022e565b6100f96100f4366004610875565b6102b1565b6040516001600160a01b0390911681526020016100b5565b61012461011f366004610849565b6102df565b60405190151581526020016100b5565b6100ab610142366004610897565b6001600160a01b031660009081527f3178d75a97455c722bbe6e3619364b9b8f446a5900d6fbcc8d92ea7222768840602052604090205490565b6100ab61018a366004610897565b6001600160a01b031660009081527f3178d75a97455c722bbe6e3619364b9b8f446a5900d6fbcc8d92ea722276883f602052604090205490565b6100ab6101d2366004610814565b610317565b6100d16101e5366004610849565b61033b565b6000908152600080516020610a2b833981519152602052604090206001015490565b610215826101ea565b61021f8133610358565b61022983836103bc565b505050565b6001600160a01b03811633146102a35760405162461bcd60e51b815260206004820152602f60248201527f416363657373436f6e74726f6c3a2063616e206f6e6c792072656e6f756e636560448201526e103937b632b9903337b91039b2b63360891b60648201526084015b60405180910390fd5b6102ad8282610453565b5050565b6000828152600080516020610a4b833981519152602052604081206102d690836104e8565b90505b92915050565b6000918252600080516020610a2b833981519152602090815260408084206001600160a01b0393909316845291905290205460ff1690565b6000818152600080516020610a4b833981519152602052604081206102d9906104f4565b610344826101ea565b61034e8133610358565b6102298383610453565b61036282826102df565b6102ad5761037a816001600160a01b031660146104fe565b6103858360206104fe565b6040516020016103969291906108d6565b60408051601f198184030181529082905262461bcd60e51b825261029a9160040161094b565b6103c682826102df565b6102ad576000828152600080516020610a2b833981519152602090815260408083206001600160a01b0385168085529252808320805460ff1916600117905551339285917f2f8788117e7eff1d82e926ec794901d17c78024a50270940304540a733656f0d9190a46000828152600080516020610a4b83398151915260205260409020610229908261067e565b61045d82826102df565b156102ad576000828152600080516020610a2b833981519152602090815260408083206001600160a01b0385168085529252808320805460ff1916905551339285917ff6391f5c32d9c69d2a47ea670b442974b53935d1edc7fd64eb21e047a839171b9190a46000828152600080516020610a4b833981519152602052604090206102299082610693565b60006102d683836106a8565b60006102d9825490565b606082600061050e846002610994565b6105199060026109ab565b67ffffffffffffffff811115610531576105316109be565b6040519080825280601f01601f19166020018201604052801561055b576020820181803683370190505b509050600360fc1b81600081518110610576576105766109d4565b60200101906001600160f81b031916908160001a905350600f60fb1b816001815181106105a5576105a56109d4565b60200101906001600160f81b031916908160001a90535060006105c9856002610994565b6105d49060016109ab565b90505b600181111561064c576f181899199a1a9b1b9c1cb0b131b232b360811b83600f1660108110610608576106086109d4565b1a60f81b82828151811061061e5761061e6109d4565b60200101906001600160f81b031916908160001a90535060049290921c91610645816109ea565b90506105d7565b5081156106765760405163e22e27eb60e01b8152600481018690526024810185905260440161029a565b949350505050565b60006102d6836001600160a01b0384166106d2565b60006102d6836001600160a01b038416610721565b60008260000182815481106106bf576106bf6109d4565b9060005260206000200154905092915050565b6000818152600183016020526040812054610719575081546001818101845560008481526020808220909301849055845484825282860190935260409020919091556102d9565b5060006102d9565b6000818152600183016020526040812054801561080a576000610745600183610a01565b855490915060009061075990600190610a01565b90508082146107be576000866000018281548110610779576107796109d4565b906000526020600020015490508087600001848154811061079c5761079c6109d4565b6000918252602080832090910192909255918252600188019052604090208390555b85548690806107cf576107cf610a14565b6001900381819060005260206000200160009055905585600101600086815260200190815260200160002060009055600193505050506102d9565b60009150506102d9565b60006020828403121561082657600080fd5b5035919050565b80356001600160a01b038116811461084457600080fd5b919050565b6000806040838503121561085c57600080fd5b8235915061086c6020840161082d565b90509250929050565b6000806040838503121561088857600080fd5b50508035926020909101359150565b6000602082840312156108a957600080fd5b6102d68261082d565b60005b838110156108cd5781810151838201526020016108b5565b50506000910152565b7f416363657373436f6e74726f6c3a206163636f756e742000000000000000000081526000835161090e8160178501602088016108b2565b7001034b99036b4b9b9b4b733903937b6329607d1b601791840191820152835161093f8160288401602088016108b2565b01602801949350505050565b602081526000825180602084015261096a8160408501602087016108b2565b601f01601f19169190910160400192915050565b634e487b7160e01b600052601160045260246000fd5b80820281158282048414176102d9576102d961097e565b808201808211156102d9576102d961097e565b634e487b7160e01b600052604160045260246000fd5b634e487b7160e01b600052603260045260246000fd5b6000816109f9576109f961097e565b506000190190565b818103818111156102d9576102d961097e565b634e487b7160e01b600052603160045260246000fdfe4f4f658137f4e10317e1a22624c2b114af7563a20fb2e3444ae2ac2342d457d04f4f658137f4e10317e1a22624c2b114af7563a20fb2e3444ae2ac2342d457d1a2646970667358221220edf1116e7a94767cc1043e6e1fa42d1ab95d92b277c70109b3154bff47dacc9764736f6c63430008190033

Deployed Bytecode

0x608060405234801561001057600080fd5b50600436106100935760003560e01c806391d148541161006657806391d1485414610111578063a756550014610134578063aeefe31f1461017c578063ca15c873146101c4578063d547741f146101d757600080fd5b8063248a9ca3146100985780632f2ff15d146100be57806336568abe146100d35780639010d07c146100e6575b600080fd5b6100ab6100a6366004610814565b6101ea565b6040519081526020015b60405180910390f35b6100d16100cc366004610849565b61020c565b005b6100d16100e1366004610849565b61022e565b6100f96100f4366004610875565b6102b1565b6040516001600160a01b0390911681526020016100b5565b61012461011f366004610849565b6102df565b60405190151581526020016100b5565b6100ab610142366004610897565b6001600160a01b031660009081527f3178d75a97455c722bbe6e3619364b9b8f446a5900d6fbcc8d92ea7222768840602052604090205490565b6100ab61018a366004610897565b6001600160a01b031660009081527f3178d75a97455c722bbe6e3619364b9b8f446a5900d6fbcc8d92ea722276883f602052604090205490565b6100ab6101d2366004610814565b610317565b6100d16101e5366004610849565b61033b565b6000908152600080516020610a2b833981519152602052604090206001015490565b610215826101ea565b61021f8133610358565b61022983836103bc565b505050565b6001600160a01b03811633146102a35760405162461bcd60e51b815260206004820152602f60248201527f416363657373436f6e74726f6c3a2063616e206f6e6c792072656e6f756e636560448201526e103937b632b9903337b91039b2b63360891b60648201526084015b60405180910390fd5b6102ad8282610453565b5050565b6000828152600080516020610a4b833981519152602052604081206102d690836104e8565b90505b92915050565b6000918252600080516020610a2b833981519152602090815260408084206001600160a01b0393909316845291905290205460ff1690565b6000818152600080516020610a4b833981519152602052604081206102d9906104f4565b610344826101ea565b61034e8133610358565b6102298383610453565b61036282826102df565b6102ad5761037a816001600160a01b031660146104fe565b6103858360206104fe565b6040516020016103969291906108d6565b60408051601f198184030181529082905262461bcd60e51b825261029a9160040161094b565b6103c682826102df565b6102ad576000828152600080516020610a2b833981519152602090815260408083206001600160a01b0385168085529252808320805460ff1916600117905551339285917f2f8788117e7eff1d82e926ec794901d17c78024a50270940304540a733656f0d9190a46000828152600080516020610a4b83398151915260205260409020610229908261067e565b61045d82826102df565b156102ad576000828152600080516020610a2b833981519152602090815260408083206001600160a01b0385168085529252808320805460ff1916905551339285917ff6391f5c32d9c69d2a47ea670b442974b53935d1edc7fd64eb21e047a839171b9190a46000828152600080516020610a4b833981519152602052604090206102299082610693565b60006102d683836106a8565b60006102d9825490565b606082600061050e846002610994565b6105199060026109ab565b67ffffffffffffffff811115610531576105316109be565b6040519080825280601f01601f19166020018201604052801561055b576020820181803683370190505b509050600360fc1b81600081518110610576576105766109d4565b60200101906001600160f81b031916908160001a905350600f60fb1b816001815181106105a5576105a56109d4565b60200101906001600160f81b031916908160001a90535060006105c9856002610994565b6105d49060016109ab565b90505b600181111561064c576f181899199a1a9b1b9c1cb0b131b232b360811b83600f1660108110610608576106086109d4565b1a60f81b82828151811061061e5761061e6109d4565b60200101906001600160f81b031916908160001a90535060049290921c91610645816109ea565b90506105d7565b5081156106765760405163e22e27eb60e01b8152600481018690526024810185905260440161029a565b949350505050565b60006102d6836001600160a01b0384166106d2565b60006102d6836001600160a01b038416610721565b60008260000182815481106106bf576106bf6109d4565b9060005260206000200154905092915050565b6000818152600183016020526040812054610719575081546001818101845560008481526020808220909301849055845484825282860190935260409020919091556102d9565b5060006102d9565b6000818152600183016020526040812054801561080a576000610745600183610a01565b855490915060009061075990600190610a01565b90508082146107be576000866000018281548110610779576107796109d4565b906000526020600020015490508087600001848154811061079c5761079c6109d4565b6000918252602080832090910192909255918252600188019052604090208390555b85548690806107cf576107cf610a14565b6001900381819060005260206000200160009055905585600101600086815260200190815260200160002060009055600193505050506102d9565b60009150506102d9565b60006020828403121561082657600080fd5b5035919050565b80356001600160a01b038116811461084457600080fd5b919050565b6000806040838503121561085c57600080fd5b8235915061086c6020840161082d565b90509250929050565b6000806040838503121561088857600080fd5b50508035926020909101359150565b6000602082840312156108a957600080fd5b6102d68261082d565b60005b838110156108cd5781810151838201526020016108b5565b50506000910152565b7f416363657373436f6e74726f6c3a206163636f756e742000000000000000000081526000835161090e8160178501602088016108b2565b7001034b99036b4b9b9b4b733903937b6329607d1b601791840191820152835161093f8160288401602088016108b2565b01602801949350505050565b602081526000825180602084015261096a8160408501602087016108b2565b601f01601f19169190910160400192915050565b634e487b7160e01b600052601160045260246000fd5b80820281158282048414176102d9576102d961097e565b808201808211156102d9576102d961097e565b634e487b7160e01b600052604160045260246000fd5b634e487b7160e01b600052603260045260246000fd5b6000816109f9576109f961097e565b506000190190565b818103818111156102d9576102d961097e565b634e487b7160e01b600052603160045260246000fdfe4f4f658137f4e10317e1a22624c2b114af7563a20fb2e3444ae2ac2342d457d04f4f658137f4e10317e1a22624c2b114af7563a20fb2e3444ae2ac2342d457d1a2646970667358221220edf1116e7a94767cc1043e6e1fa42d1ab95d92b277c70109b3154bff47dacc9764736f6c63430008190033

Block Transaction Gas Used Reward
view all blocks produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.