More Info
Private Name Tags
ContractCreator
Latest 19 from a total of 19 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Create | 37978143 | 793 days ago | IN | 0 POL | 0.19519733 | ||||
Create | 37977816 | 793 days ago | IN | 0 POL | 0.01833856 | ||||
Create | 37699329 | 800 days ago | IN | 0 POL | 0.26320174 | ||||
Create | 37699313 | 800 days ago | IN | 0 POL | 0.21786339 | ||||
Create | 37695983 | 800 days ago | IN | 0 POL | 0.30784217 | ||||
Create | 37689972 | 801 days ago | IN | 0 POL | 0.20772772 | ||||
0x52bbbe29 | 28698803 | 1027 days ago | IN | 0 POL | 0.00086121 | ||||
Create | 27439148 | 1058 days ago | IN | 0 POL | 0.4020673 | ||||
Create | 27411781 | 1059 days ago | IN | 0 POL | 0.4023003 | ||||
Create | 26828212 | 1074 days ago | IN | 0 POL | 0.20923045 | ||||
Create | 26828002 | 1074 days ago | IN | 0 POL | 0.20923045 | ||||
Create | 26077110 | 1093 days ago | IN | 0 POL | 0.12534043 | ||||
Create | 26077097 | 1093 days ago | IN | 0 POL | 0.00473245 | ||||
Create | 20384985 | 1243 days ago | IN | 0 POL | 0.36783648 | ||||
Create | 19648113 | 1263 days ago | IN | 0 POL | 0.12324318 | ||||
Create | 19538901 | 1266 days ago | IN | 0 POL | 0.08226914 | ||||
Create | 16919059 | 1338 days ago | IN | 0 POL | 0.1114041 | ||||
Create | 16864198 | 1340 days ago | IN | 0 POL | 0.03224721 | ||||
Create | 16409129 | 1352 days ago | IN | 0 POL | 0.12112653 |
Latest 18 internal transactions
Parent Transaction Hash | Block | From | To | |||
---|---|---|---|---|---|---|
37978143 | 793 days ago | Contract Creation | 0 POL | |||
37977816 | 793 days ago | Contract Creation | 0 POL | |||
37699329 | 800 days ago | Contract Creation | 0 POL | |||
37699313 | 800 days ago | Contract Creation | 0 POL | |||
37695983 | 800 days ago | Contract Creation | 0 POL | |||
37689972 | 801 days ago | Contract Creation | 0 POL | |||
27439148 | 1058 days ago | Contract Creation | 0 POL | |||
27411781 | 1059 days ago | Contract Creation | 0 POL | |||
26828212 | 1074 days ago | Contract Creation | 0 POL | |||
26828002 | 1074 days ago | Contract Creation | 0 POL | |||
26077110 | 1093 days ago | Contract Creation | 0 POL | |||
26077097 | 1093 days ago | Contract Creation | 0 POL | |||
20384985 | 1243 days ago | Contract Creation | 0 POL | |||
19648113 | 1263 days ago | Contract Creation | 0 POL | |||
19538901 | 1266 days ago | Contract Creation | 0 POL | |||
16919059 | 1338 days ago | Contract Creation | 0 POL | |||
16864198 | 1340 days ago | Contract Creation | 0 POL | |||
16409129 | 1352 days ago | Contract Creation | 0 POL |
Loading...
Loading
Contract Name:
StablePoolFactory
Compiler Version
v0.7.1+commit.f4a555be
Optimization Enabled:
Yes with 9999 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-vault/contracts/interfaces/IVault.sol"; import "@balancer-labs/v2-pool-utils/contracts/factories/BasePoolFactory.sol"; import "@balancer-labs/v2-pool-utils/contracts/factories/FactoryWidePauseWindow.sol"; import "./StablePool.sol"; contract StablePoolFactory is BasePoolFactory, FactoryWidePauseWindow { constructor(IVault vault) BasePoolFactory(vault) { // solhint-disable-previous-line no-empty-blocks } /** * @dev Deploys a new `StablePool`. */ function create( string memory name, string memory symbol, IERC20[] memory tokens, uint256 amplificationParameter, uint256 swapFeePercentage, address owner ) external returns (address) { (uint256 pauseWindowDuration, uint256 bufferPeriodDuration) = getPauseConfiguration(); address pool = address( new StablePool( getVault(), name, symbol, tokens, amplificationParameter, swapFeePercentage, pauseWindowDuration, bufferPeriodDuration, owner ) ); _register(pool); return pool; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-solidity-utils/contracts/math/Math.sol"; import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol"; // This is a contract to emulate file-level functions. Convert to a library // after the migration to solc v0.7.1. // solhint-disable private-vars-leading-underscore // solhint-disable var-name-mixedcase contract StableMath { using FixedPoint for uint256; uint256 internal constant _MIN_AMP = 1; uint256 internal constant _MAX_AMP = 5000; uint256 internal constant _AMP_PRECISION = 1e3; uint256 internal constant _MAX_STABLE_TOKENS = 5; // Note on unchecked arithmetic: // This contract performs a large number of additions, subtractions, multiplications and divisions, often inside // loops. Since many of these operations are gas-sensitive (as they happen e.g. during a swap), it is important to // not make any unnecessary checks. We rely on a set of invariants to avoid having to use checked arithmetic (the // Math library), including: // - the number of tokens is bounded by _MAX_STABLE_TOKENS // - the amplification parameter is bounded by _MAX_AMP * _AMP_PRECISION, which fits in 23 bits // - the token balances are bounded by 2^112 (guaranteed by the Vault) times 1e18 (the maximum scaling factor), // which fits in 172 bits // // This means e.g. we can safely multiply a balance by the amplification parameter without worrying about overflow. // Computes the invariant given the current balances, using the Newton-Raphson approximation. // The amplification parameter equals: A n^(n-1) function _calculateInvariant( uint256 amplificationParameter, uint256[] memory balances, bool roundUp ) internal pure returns (uint256) { /********************************************************************************************** // invariant // // D = invariant D^(n+1) // // A = amplification coefficient A n^n S + D = A D n^n + ----------- // // S = sum of balances n^n P // // P = product of balances // // n = number of tokens // *********x************************************************************************************/ // We support rounding up or down. uint256 sum = 0; uint256 numTokens = balances.length; for (uint256 i = 0; i < numTokens; i++) { sum = sum.add(balances[i]); } if (sum == 0) { return 0; } uint256 prevInvariant = 0; uint256 invariant = sum; uint256 ampTimesTotal = amplificationParameter * numTokens; for (uint256 i = 0; i < 255; i++) { uint256 P_D = balances[0] * numTokens; for (uint256 j = 1; j < numTokens; j++) { P_D = Math.div(Math.mul(Math.mul(P_D, balances[j]), numTokens), invariant, roundUp); } prevInvariant = invariant; invariant = Math.div( Math.mul(Math.mul(numTokens, invariant), invariant).add( Math.div(Math.mul(Math.mul(ampTimesTotal, sum), P_D), _AMP_PRECISION, roundUp) ), Math.mul(numTokens + 1, invariant).add( // No need to use checked arithmetic for the amp precision, the amp is guaranteed to be at least 1 Math.div(Math.mul(ampTimesTotal - _AMP_PRECISION, P_D), _AMP_PRECISION, !roundUp) ), roundUp ); if (invariant > prevInvariant) { if (invariant - prevInvariant <= 1) { return invariant; } } else if (prevInvariant - invariant <= 1) { return invariant; } } _revert(Errors.STABLE_GET_BALANCE_DIDNT_CONVERGE); } // Computes how many tokens can be taken out of a pool if `tokenAmountIn` are sent, given the current balances. // The amplification parameter equals: A n^(n-1) function _calcOutGivenIn( uint256 amplificationParameter, uint256[] memory balances, uint256 tokenIndexIn, uint256 tokenIndexOut, uint256 tokenAmountIn ) internal pure returns (uint256) { /************************************************************************************************************** // outGivenIn token x for y - polynomial equation to solve // // ay = amount out to calculate // // by = balance token out // // y = by - ay (finalBalanceOut) // // D = invariant D D^(n+1) // // A = amplification coefficient y^2 + ( S - ---------- - D) * y - ------------- = 0 // // n = number of tokens (A * n^n) A * n^2n * P // // S = sum of final balances but y // // P = product of final balances but y // **************************************************************************************************************/ // Amount out, so we round down overall. // Given that we need to have a greater final balance out, the invariant needs to be rounded up uint256 invariant = _calculateInvariant(amplificationParameter, balances, true); balances[tokenIndexIn] = balances[tokenIndexIn].add(tokenAmountIn); uint256 finalBalanceOut = _getTokenBalanceGivenInvariantAndAllOtherBalances( amplificationParameter, balances, invariant, tokenIndexOut ); // No need to use checked arithmetic since `tokenAmountIn` was actually added to the same balance right before // calling `_getTokenBalanceGivenInvariantAndAllOtherBalances` which doesn't alter the balances array. balances[tokenIndexIn] = balances[tokenIndexIn] - tokenAmountIn; return balances[tokenIndexOut].sub(finalBalanceOut).sub(1); } // Computes how many tokens must be sent to a pool if `tokenAmountOut` are sent given the // current balances, using the Newton-Raphson approximation. // The amplification parameter equals: A n^(n-1) function _calcInGivenOut( uint256 amplificationParameter, uint256[] memory balances, uint256 tokenIndexIn, uint256 tokenIndexOut, uint256 tokenAmountOut ) internal pure returns (uint256) { /************************************************************************************************************** // inGivenOut token x for y - polynomial equation to solve // // ax = amount in to calculate // // bx = balance token in // // x = bx + ax (finalBalanceIn) // // D = invariant D D^(n+1) // // A = amplification coefficient x^2 + ( S - ---------- - D) * x - ------------- = 0 // // n = number of tokens (A * n^n) A * n^2n * P // // S = sum of final balances but x // // P = product of final balances but x // **************************************************************************************************************/ // Amount in, so we round up overall. // Given that we need to have a greater final balance in, the invariant needs to be rounded up uint256 invariant = _calculateInvariant(amplificationParameter, balances, true); balances[tokenIndexOut] = balances[tokenIndexOut].sub(tokenAmountOut); uint256 finalBalanceIn = _getTokenBalanceGivenInvariantAndAllOtherBalances( amplificationParameter, balances, invariant, tokenIndexIn ); // No need to use checked arithmetic since `tokenAmountOut` was actually subtracted from the same balance right // before calling `_getTokenBalanceGivenInvariantAndAllOtherBalances` which doesn't alter the balances array. balances[tokenIndexOut] = balances[tokenIndexOut] + tokenAmountOut; return finalBalanceIn.sub(balances[tokenIndexIn]).add(1); } function _calcBptOutGivenExactTokensIn( uint256 amp, uint256[] memory balances, uint256[] memory amountsIn, uint256 bptTotalSupply, uint256 swapFeePercentage ) internal pure returns (uint256) { // BPT out, so we round down overall. // First loop calculates the sum of all token balances, which will be used to calculate // the current weights of each token, relative to this sum uint256 sumBalances = 0; for (uint256 i = 0; i < balances.length; i++) { sumBalances = sumBalances.add(balances[i]); } // Calculate the weighted balance ratio without considering fees uint256[] memory balanceRatiosWithFee = new uint256[](amountsIn.length); // The weighted sum of token balance ratios without fee uint256 invariantRatioWithFees = 0; for (uint256 i = 0; i < balances.length; i++) { uint256 currentWeight = balances[i].divDown(sumBalances); balanceRatiosWithFee[i] = balances[i].add(amountsIn[i]).divDown(balances[i]); invariantRatioWithFees = invariantRatioWithFees.add(balanceRatiosWithFee[i].mulDown(currentWeight)); } // Second loop calculates new amounts in, taking into account the fee on the percentage excess uint256[] memory newBalances = new uint256[](balances.length); for (uint256 i = 0; i < balances.length; i++) { uint256 amountInWithoutFee; // Check if the balance ratio is greater than the ideal ratio to charge fees or not if (balanceRatiosWithFee[i] > invariantRatioWithFees) { uint256 nonTaxableAmount = balances[i].mulDown(invariantRatioWithFees.sub(FixedPoint.ONE)); uint256 taxableAmount = amountsIn[i].sub(nonTaxableAmount); // No need to use checked arithmetic for the swap fee, it is guaranteed to be lower than 50% amountInWithoutFee = nonTaxableAmount.add(taxableAmount.mulDown(FixedPoint.ONE - swapFeePercentage)); } else { amountInWithoutFee = amountsIn[i]; } newBalances[i] = balances[i].add(amountInWithoutFee); } // Get current and new invariants, taking swap fees into account uint256 currentInvariant = _calculateInvariant(amp, balances, true); uint256 newInvariant = _calculateInvariant(amp, newBalances, false); uint256 invariantRatio = newInvariant.divDown(currentInvariant); // If the invariant didn't increase for any reason, we simply don't mint BPT if (invariantRatio > FixedPoint.ONE) { return bptTotalSupply.mulDown(invariantRatio - FixedPoint.ONE); } else { return 0; } } function _calcTokenInGivenExactBptOut( uint256 amp, uint256[] memory balances, uint256 tokenIndex, uint256 bptAmountOut, uint256 bptTotalSupply, uint256 swapFeePercentage ) internal pure returns (uint256) { // Token in, so we round up overall. // Get the current invariant uint256 currentInvariant = _calculateInvariant(amp, balances, true); // Calculate new invariant uint256 newInvariant = bptTotalSupply.add(bptAmountOut).divUp(bptTotalSupply).mulUp(currentInvariant); // Calculate amount in without fee. uint256 newBalanceTokenIndex = _getTokenBalanceGivenInvariantAndAllOtherBalances( amp, balances, newInvariant, tokenIndex ); uint256 amountInWithoutFee = newBalanceTokenIndex.sub(balances[tokenIndex]); // First calculate the sum of all token balances, which will be used to calculate // the current weight of each token uint256 sumBalances = 0; for (uint256 i = 0; i < balances.length; i++) { sumBalances = sumBalances.add(balances[i]); } // We can now compute how much extra balance is being deposited and used in virtual swaps, and charge swap fees // accordingly. uint256 currentWeight = balances[tokenIndex].divDown(sumBalances); uint256 taxablePercentage = currentWeight.complement(); uint256 taxableAmount = amountInWithoutFee.mulUp(taxablePercentage); uint256 nonTaxableAmount = amountInWithoutFee.sub(taxableAmount); // No need to use checked arithmetic for the swap fee, it is guaranteed to be lower than 50% return nonTaxableAmount.add(taxableAmount.divUp(FixedPoint.ONE - swapFeePercentage)); } /* Flow of calculations: amountsTokenOut -> amountsOutProportional -> amountOutPercentageExcess -> amountOutBeforeFee -> newInvariant -> amountBPTIn */ function _calcBptInGivenExactTokensOut( uint256 amp, uint256[] memory balances, uint256[] memory amountsOut, uint256 bptTotalSupply, uint256 swapFeePercentage ) internal pure returns (uint256) { // BPT in, so we round up overall. // First loop calculates the sum of all token balances, which will be used to calculate // the current weights of each token relative to this sum uint256 sumBalances = 0; for (uint256 i = 0; i < balances.length; i++) { sumBalances = sumBalances.add(balances[i]); } // Calculate the weighted balance ratio without considering fees uint256[] memory balanceRatiosWithoutFee = new uint256[](amountsOut.length); uint256 invariantRatioWithoutFees = 0; for (uint256 i = 0; i < balances.length; i++) { uint256 currentWeight = balances[i].divUp(sumBalances); balanceRatiosWithoutFee[i] = balances[i].sub(amountsOut[i]).divUp(balances[i]); invariantRatioWithoutFees = invariantRatioWithoutFees.add(balanceRatiosWithoutFee[i].mulUp(currentWeight)); } // Second loop calculates new amounts in, taking into account the fee on the percentage excess uint256[] memory newBalances = new uint256[](balances.length); for (uint256 i = 0; i < balances.length; i++) { // Swap fees are typically charged on 'token in', but there is no 'token in' here, so we apply it to // 'token out'. This results in slightly larger price impact. uint256 amountOutWithFee; if (invariantRatioWithoutFees > balanceRatiosWithoutFee[i]) { uint256 nonTaxableAmount = balances[i].mulDown(invariantRatioWithoutFees.complement()); uint256 taxableAmount = amountsOut[i].sub(nonTaxableAmount); // No need to use checked arithmetic for the swap fee, it is guaranteed to be lower than 50% amountOutWithFee = nonTaxableAmount.add(taxableAmount.divUp(FixedPoint.ONE - swapFeePercentage)); } else { amountOutWithFee = amountsOut[i]; } newBalances[i] = balances[i].sub(amountOutWithFee); } // Get current and new invariants, taking into account swap fees uint256 currentInvariant = _calculateInvariant(amp, balances, true); uint256 newInvariant = _calculateInvariant(amp, newBalances, false); uint256 invariantRatio = newInvariant.divDown(currentInvariant); // return amountBPTIn return bptTotalSupply.mulUp(invariantRatio.complement()); } function _calcTokenOutGivenExactBptIn( uint256 amp, uint256[] memory balances, uint256 tokenIndex, uint256 bptAmountIn, uint256 bptTotalSupply, uint256 swapFeePercentage ) internal pure returns (uint256) { // Token out, so we round down overall. // Get the current and new invariants. Since we need a bigger new invariant, we round the current one up. uint256 currentInvariant = _calculateInvariant(amp, balances, true); uint256 newInvariant = bptTotalSupply.sub(bptAmountIn).divUp(bptTotalSupply).mulUp(currentInvariant); // Calculate amount out without fee uint256 newBalanceTokenIndex = _getTokenBalanceGivenInvariantAndAllOtherBalances( amp, balances, newInvariant, tokenIndex ); uint256 amountOutWithoutFee = balances[tokenIndex].sub(newBalanceTokenIndex); // First calculate the sum of all token balances, which will be used to calculate // the current weight of each token uint256 sumBalances = 0; for (uint256 i = 0; i < balances.length; i++) { sumBalances = sumBalances.add(balances[i]); } // We can now compute how much excess balance is being withdrawn as a result of the virtual swaps, which result // in swap fees. uint256 currentWeight = balances[tokenIndex].divDown(sumBalances); uint256 taxablePercentage = currentWeight.complement(); // Swap fees are typically charged on 'token in', but there is no 'token in' here, so we apply it // to 'token out'. This results in slightly larger price impact. Fees are rounded up. uint256 taxableAmount = amountOutWithoutFee.mulUp(taxablePercentage); uint256 nonTaxableAmount = amountOutWithoutFee.sub(taxableAmount); // No need to use checked arithmetic for the swap fee, it is guaranteed to be lower than 50% return nonTaxableAmount.add(taxableAmount.mulDown(FixedPoint.ONE - swapFeePercentage)); } function _calcTokensOutGivenExactBptIn( uint256[] memory balances, uint256 bptAmountIn, uint256 bptTotalSupply ) internal pure returns (uint256[] memory) { /********************************************************************************************** // exactBPTInForTokensOut // // (per token) // // aO = tokenAmountOut / bptIn \ // // b = tokenBalance a0 = b * | --------------------- | // // bptIn = bptAmountIn \ bptTotalSupply / // // bpt = bptTotalSupply // **********************************************************************************************/ // Since we're computing an amount out, we round down overall. This means rounding down on both the // multiplication and division. uint256 bptRatio = bptAmountIn.divDown(bptTotalSupply); uint256[] memory amountsOut = new uint256[](balances.length); for (uint256 i = 0; i < balances.length; i++) { amountsOut[i] = balances[i].mulDown(bptRatio); } return amountsOut; } // The amplification parameter equals: A n^(n-1) function _calcDueTokenProtocolSwapFeeAmount( uint256 amplificationParameter, uint256[] memory balances, uint256 lastInvariant, uint256 tokenIndex, uint256 protocolSwapFeePercentage ) internal pure returns (uint256) { /************************************************************************************************************** // oneTokenSwapFee - polynomial equation to solve // // af = fee amount to calculate in one token // // bf = balance of fee token // // f = bf - af (finalBalanceFeeToken) // // D = old invariant D D^(n+1) // // A = amplification coefficient f^2 + ( S - ---------- - D) * f - ------------- = 0 // // n = number of tokens (A * n^n) A * n^2n * P // // S = sum of final balances but f // // P = product of final balances but f // **************************************************************************************************************/ // Protocol swap fee amount, so we round down overall. uint256 finalBalanceFeeToken = _getTokenBalanceGivenInvariantAndAllOtherBalances( amplificationParameter, balances, lastInvariant, tokenIndex ); if (balances[tokenIndex] <= finalBalanceFeeToken) { // This shouldn't happen outside of rounding errors, but have this safeguard nonetheless to prevent the Pool // from entering a locked state in which joins and exits revert while computing accumulated swap fees. return 0; } // Result is rounded down uint256 accumulatedTokenSwapFees = balances[tokenIndex] - finalBalanceFeeToken; return accumulatedTokenSwapFees.mulDown(protocolSwapFeePercentage).divDown(FixedPoint.ONE); } // Private functions // This function calculates the balance of a given token (tokenIndex) // given all the other balances and the invariant function _getTokenBalanceGivenInvariantAndAllOtherBalances( uint256 amplificationParameter, uint256[] memory balances, uint256 invariant, uint256 tokenIndex ) internal pure returns (uint256) { // Rounds result up overall uint256 ampTimesTotal = amplificationParameter * balances.length; uint256 sum = balances[0]; uint256 P_D = balances[0] * balances.length; for (uint256 j = 1; j < balances.length; j++) { P_D = Math.divDown(Math.mul(Math.mul(P_D, balances[j]), balances.length), invariant); sum = sum.add(balances[j]); } // No need to use safe math, based on the loop above `sum` is greater than or equal to `balances[tokenIndex]` sum = sum - balances[tokenIndex]; uint256 inv2 = Math.mul(invariant, invariant); // We remove the balance fromm c by multiplying it uint256 c = Math.mul( Math.mul(Math.divUp(inv2, Math.mul(ampTimesTotal, P_D)), _AMP_PRECISION), balances[tokenIndex] ); uint256 b = sum.add(Math.mul(Math.divDown(invariant, ampTimesTotal), _AMP_PRECISION)); // We iterate to find the balance uint256 prevTokenBalance = 0; // We multiply the first iteration outside the loop with the invariant to set the value of the // initial approximation. uint256 tokenBalance = Math.divUp(inv2.add(c), invariant.add(b)); for (uint256 i = 0; i < 255; i++) { prevTokenBalance = tokenBalance; tokenBalance = Math.divUp( Math.mul(tokenBalance, tokenBalance).add(c), Math.mul(tokenBalance, 2).add(b).sub(invariant) ); if (tokenBalance > prevTokenBalance) { if (tokenBalance - prevTokenBalance <= 1) { return tokenBalance; } } else if (prevTokenBalance - tokenBalance <= 1) { return tokenBalance; } } _revert(Errors.STABLE_GET_BALANCE_DIDNT_CONVERGE); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "../helpers/BalancerErrors.sol"; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow checks. * Adapted from OpenZeppelin's SafeMath library */ library Math { /** * @dev Returns the addition of two unsigned integers of 256 bits, reverting on overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; _require(c >= a, Errors.ADD_OVERFLOW); return c; } /** * @dev Returns the addition of two signed integers, reverting on overflow. */ function add(int256 a, int256 b) internal pure returns (int256) { int256 c = a + b; _require((b >= 0 && c >= a) || (b < 0 && c < a), Errors.ADD_OVERFLOW); return c; } /** * @dev Returns the subtraction of two unsigned integers of 256 bits, reverting on overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { _require(b <= a, Errors.SUB_OVERFLOW); uint256 c = a - b; return c; } /** * @dev Returns the subtraction of two signed integers, reverting on overflow. */ function sub(int256 a, int256 b) internal pure returns (int256) { int256 c = a - b; _require((b >= 0 && c <= a) || (b < 0 && c > a), Errors.SUB_OVERFLOW); return c; } /** * @dev Returns the largest of two numbers of 256 bits. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a >= b ? a : b; } /** * @dev Returns the smallest of two numbers of 256 bits. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } function mul(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a * b; _require(a == 0 || c / a == b, Errors.MUL_OVERFLOW); return c; } function div( uint256 a, uint256 b, bool roundUp ) internal pure returns (uint256) { return roundUp ? divUp(a, b) : divDown(a, b); } function divDown(uint256 a, uint256 b) internal pure returns (uint256) { _require(b != 0, Errors.ZERO_DIVISION); return a / b; } function divUp(uint256 a, uint256 b) internal pure returns (uint256) { _require(b != 0, Errors.ZERO_DIVISION); if (a == 0) { return 0; } else { return 1 + (a - 1) / b; } } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "./LogExpMath.sol"; import "../helpers/BalancerErrors.sol"; /* solhint-disable private-vars-leading-underscore */ library FixedPoint { uint256 internal constant ONE = 1e18; // 18 decimal places uint256 internal constant MAX_POW_RELATIVE_ERROR = 10000; // 10^(-14) // Minimum base for the power function when the exponent is 'free' (larger than ONE). uint256 internal constant MIN_POW_BASE_FREE_EXPONENT = 0.7e18; function add(uint256 a, uint256 b) internal pure returns (uint256) { // Fixed Point addition is the same as regular checked addition uint256 c = a + b; _require(c >= a, Errors.ADD_OVERFLOW); return c; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { // Fixed Point addition is the same as regular checked addition _require(b <= a, Errors.SUB_OVERFLOW); uint256 c = a - b; return c; } function mulDown(uint256 a, uint256 b) internal pure returns (uint256) { uint256 product = a * b; _require(a == 0 || product / a == b, Errors.MUL_OVERFLOW); return product / ONE; } function mulUp(uint256 a, uint256 b) internal pure returns (uint256) { uint256 product = a * b; _require(a == 0 || product / a == b, Errors.MUL_OVERFLOW); if (product == 0) { return 0; } else { // The traditional divUp formula is: // divUp(x, y) := (x + y - 1) / y // To avoid intermediate overflow in the addition, we distribute the division and get: // divUp(x, y) := (x - 1) / y + 1 // Note that this requires x != 0, which we already tested for. return ((product - 1) / ONE) + 1; } } function divDown(uint256 a, uint256 b) internal pure returns (uint256) { _require(b != 0, Errors.ZERO_DIVISION); if (a == 0) { return 0; } else { uint256 aInflated = a * ONE; _require(aInflated / a == ONE, Errors.DIV_INTERNAL); // mul overflow return aInflated / b; } } function divUp(uint256 a, uint256 b) internal pure returns (uint256) { _require(b != 0, Errors.ZERO_DIVISION); if (a == 0) { return 0; } else { uint256 aInflated = a * ONE; _require(aInflated / a == ONE, Errors.DIV_INTERNAL); // mul overflow // The traditional divUp formula is: // divUp(x, y) := (x + y - 1) / y // To avoid intermediate overflow in the addition, we distribute the division and get: // divUp(x, y) := (x - 1) / y + 1 // Note that this requires x != 0, which we already tested for. return ((aInflated - 1) / b) + 1; } } /** * @dev Returns x^y, assuming both are fixed point numbers, rounding down. The result is guaranteed to not be above * the true value (that is, the error function expected - actual is always positive). */ function powDown(uint256 x, uint256 y) internal pure returns (uint256) { uint256 raw = LogExpMath.pow(x, y); uint256 maxError = add(mulUp(raw, MAX_POW_RELATIVE_ERROR), 1); if (raw < maxError) { return 0; } else { return sub(raw, maxError); } } /** * @dev Returns x^y, assuming both are fixed point numbers, rounding up. The result is guaranteed to not be below * the true value (that is, the error function expected - actual is always negative). */ function powUp(uint256 x, uint256 y) internal pure returns (uint256) { uint256 raw = LogExpMath.pow(x, y); uint256 maxError = add(mulUp(raw, MAX_POW_RELATIVE_ERROR), 1); return add(raw, maxError); } /** * @dev Returns the complement of a value (1 - x), capped to 0 if x is larger than 1. * * Useful when computing the complement for values with some level of relative error, as it strips this error and * prevents intermediate negative values. */ function complement(uint256 x) internal pure returns (uint256) { return (x < ONE) ? (ONE - x) : 0; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; // solhint-disable /** * @dev Reverts if `condition` is false, with a revert reason containing `errorCode`. Only codes up to 999 are * supported. */ function _require(bool condition, uint256 errorCode) pure { if (!condition) _revert(errorCode); } /** * @dev Reverts with a revert reason containing `errorCode`. Only codes up to 999 are supported. */ function _revert(uint256 errorCode) pure { // We're going to dynamically create a revert string based on the error code, with the following format: // 'BAL#{errorCode}' // where the code is left-padded with zeroes to three digits (so they range from 000 to 999). // // We don't have revert strings embedded in the contract to save bytecode size: it takes much less space to store a // number (8 to 16 bits) than the individual string characters. // // The dynamic string creation algorithm that follows could be implemented in Solidity, but assembly allows for a // much denser implementation, again saving bytecode size. Given this function unconditionally reverts, this is a // safe place to rely on it without worrying about how its usage might affect e.g. memory contents. assembly { // First, we need to compute the ASCII representation of the error code. We assume that it is in the 0-999 // range, so we only need to convert three digits. To convert the digits to ASCII, we add 0x30, the value for // the '0' character. let units := add(mod(errorCode, 10), 0x30) errorCode := div(errorCode, 10) let tenths := add(mod(errorCode, 10), 0x30) errorCode := div(errorCode, 10) let hundreds := add(mod(errorCode, 10), 0x30) // With the individual characters, we can now construct the full string. The "BAL#" part is a known constant // (0x42414c23): we simply shift this by 24 (to provide space for the 3 bytes of the error code), and add the // characters to it, each shifted by a multiple of 8. // The revert reason is then shifted left by 200 bits (256 minus the length of the string, 7 characters * 8 bits // per character = 56) to locate it in the most significant part of the 256 slot (the beginning of a byte // array). let revertReason := shl(200, add(0x42414c23000000, add(add(units, shl(8, tenths)), shl(16, hundreds)))) // We can now encode the reason in memory, which can be safely overwritten as we're about to revert. The encoded // message will have the following layout: // [ revert reason identifier ] [ string location offset ] [ string length ] [ string contents ] // The Solidity revert reason identifier is 0x08c739a0, the function selector of the Error(string) function. We // also write zeroes to the next 28 bytes of memory, but those are about to be overwritten. mstore(0x0, 0x08c379a000000000000000000000000000000000000000000000000000000000) // Next is the offset to the location of the string, which will be placed immediately after (20 bytes away). mstore(0x04, 0x0000000000000000000000000000000000000000000000000000000000000020) // The string length is fixed: 7 characters. mstore(0x24, 7) // Finally, the string itself is stored. mstore(0x44, revertReason) // Even if the string is only 7 bytes long, we need to return a full 32 byte slot containing it. The length of // the encoded message is therefore 4 + 32 + 32 + 32 = 100. revert(0, 100) } } library Errors { // Math uint256 internal constant ADD_OVERFLOW = 0; uint256 internal constant SUB_OVERFLOW = 1; uint256 internal constant SUB_UNDERFLOW = 2; uint256 internal constant MUL_OVERFLOW = 3; uint256 internal constant ZERO_DIVISION = 4; uint256 internal constant DIV_INTERNAL = 5; uint256 internal constant X_OUT_OF_BOUNDS = 6; uint256 internal constant Y_OUT_OF_BOUNDS = 7; uint256 internal constant PRODUCT_OUT_OF_BOUNDS = 8; uint256 internal constant INVALID_EXPONENT = 9; // Input uint256 internal constant OUT_OF_BOUNDS = 100; uint256 internal constant UNSORTED_ARRAY = 101; uint256 internal constant UNSORTED_TOKENS = 102; uint256 internal constant INPUT_LENGTH_MISMATCH = 103; uint256 internal constant ZERO_TOKEN = 104; // Shared pools uint256 internal constant MIN_TOKENS = 200; uint256 internal constant MAX_TOKENS = 201; uint256 internal constant MAX_SWAP_FEE_PERCENTAGE = 202; uint256 internal constant MIN_SWAP_FEE_PERCENTAGE = 203; uint256 internal constant MINIMUM_BPT = 204; uint256 internal constant CALLER_NOT_VAULT = 205; uint256 internal constant UNINITIALIZED = 206; uint256 internal constant BPT_IN_MAX_AMOUNT = 207; uint256 internal constant BPT_OUT_MIN_AMOUNT = 208; uint256 internal constant EXPIRED_PERMIT = 209; uint256 internal constant NOT_TWO_TOKENS = 210; // Pools uint256 internal constant MIN_AMP = 300; uint256 internal constant MAX_AMP = 301; uint256 internal constant MIN_WEIGHT = 302; uint256 internal constant MAX_STABLE_TOKENS = 303; uint256 internal constant MAX_IN_RATIO = 304; uint256 internal constant MAX_OUT_RATIO = 305; uint256 internal constant MIN_BPT_IN_FOR_TOKEN_OUT = 306; uint256 internal constant MAX_OUT_BPT_FOR_TOKEN_IN = 307; uint256 internal constant NORMALIZED_WEIGHT_INVARIANT = 308; uint256 internal constant INVALID_TOKEN = 309; uint256 internal constant UNHANDLED_JOIN_KIND = 310; uint256 internal constant ZERO_INVARIANT = 311; uint256 internal constant ORACLE_INVALID_SECONDS_QUERY = 312; uint256 internal constant ORACLE_NOT_INITIALIZED = 313; uint256 internal constant ORACLE_QUERY_TOO_OLD = 314; uint256 internal constant ORACLE_INVALID_INDEX = 315; uint256 internal constant ORACLE_BAD_SECS = 316; uint256 internal constant AMP_END_TIME_TOO_CLOSE = 317; uint256 internal constant AMP_ONGOING_UPDATE = 318; uint256 internal constant AMP_RATE_TOO_HIGH = 319; uint256 internal constant AMP_NO_ONGOING_UPDATE = 320; uint256 internal constant STABLE_INVARIANT_DIDNT_CONVERGE = 321; uint256 internal constant STABLE_GET_BALANCE_DIDNT_CONVERGE = 322; uint256 internal constant RELAYER_NOT_CONTRACT = 323; uint256 internal constant BASE_POOL_RELAYER_NOT_CALLED = 324; uint256 internal constant REBALANCING_RELAYER_REENTERED = 325; // Lib uint256 internal constant REENTRANCY = 400; uint256 internal constant SENDER_NOT_ALLOWED = 401; uint256 internal constant PAUSED = 402; uint256 internal constant PAUSE_WINDOW_EXPIRED = 403; uint256 internal constant MAX_PAUSE_WINDOW_DURATION = 404; uint256 internal constant MAX_BUFFER_PERIOD_DURATION = 405; uint256 internal constant INSUFFICIENT_BALANCE = 406; uint256 internal constant INSUFFICIENT_ALLOWANCE = 407; uint256 internal constant ERC20_TRANSFER_FROM_ZERO_ADDRESS = 408; uint256 internal constant ERC20_TRANSFER_TO_ZERO_ADDRESS = 409; uint256 internal constant ERC20_MINT_TO_ZERO_ADDRESS = 410; uint256 internal constant ERC20_BURN_FROM_ZERO_ADDRESS = 411; uint256 internal constant ERC20_APPROVE_FROM_ZERO_ADDRESS = 412; uint256 internal constant ERC20_APPROVE_TO_ZERO_ADDRESS = 413; uint256 internal constant ERC20_TRANSFER_EXCEEDS_ALLOWANCE = 414; uint256 internal constant ERC20_DECREASED_ALLOWANCE_BELOW_ZERO = 415; uint256 internal constant ERC20_TRANSFER_EXCEEDS_BALANCE = 416; uint256 internal constant ERC20_BURN_EXCEEDS_ALLOWANCE = 417; uint256 internal constant SAFE_ERC20_CALL_FAILED = 418; uint256 internal constant ADDRESS_INSUFFICIENT_BALANCE = 419; uint256 internal constant ADDRESS_CANNOT_SEND_VALUE = 420; uint256 internal constant SAFE_CAST_VALUE_CANT_FIT_INT256 = 421; uint256 internal constant GRANT_SENDER_NOT_ADMIN = 422; uint256 internal constant REVOKE_SENDER_NOT_ADMIN = 423; uint256 internal constant RENOUNCE_SENDER_NOT_ALLOWED = 424; uint256 internal constant BUFFER_PERIOD_EXPIRED = 425; uint256 internal constant CALLER_IS_NOT_OWNER = 426; uint256 internal constant NEW_OWNER_IS_ZERO = 427; uint256 internal constant CODE_DEPLOYMENT_FAILED = 428; // Vault uint256 internal constant INVALID_POOL_ID = 500; uint256 internal constant CALLER_NOT_POOL = 501; uint256 internal constant SENDER_NOT_ASSET_MANAGER = 502; uint256 internal constant USER_DOESNT_ALLOW_RELAYER = 503; uint256 internal constant INVALID_SIGNATURE = 504; uint256 internal constant EXIT_BELOW_MIN = 505; uint256 internal constant JOIN_ABOVE_MAX = 506; uint256 internal constant SWAP_LIMIT = 507; uint256 internal constant SWAP_DEADLINE = 508; uint256 internal constant CANNOT_SWAP_SAME_TOKEN = 509; uint256 internal constant UNKNOWN_AMOUNT_IN_FIRST_SWAP = 510; uint256 internal constant MALCONSTRUCTED_MULTIHOP_SWAP = 511; uint256 internal constant INTERNAL_BALANCE_OVERFLOW = 512; uint256 internal constant INSUFFICIENT_INTERNAL_BALANCE = 513; uint256 internal constant INVALID_ETH_INTERNAL_BALANCE = 514; uint256 internal constant INVALID_POST_LOAN_BALANCE = 515; uint256 internal constant INSUFFICIENT_ETH = 516; uint256 internal constant UNALLOCATED_ETH = 517; uint256 internal constant ETH_TRANSFER = 518; uint256 internal constant CANNOT_USE_ETH_SENTINEL = 519; uint256 internal constant TOKENS_MISMATCH = 520; uint256 internal constant TOKEN_NOT_REGISTERED = 521; uint256 internal constant TOKEN_ALREADY_REGISTERED = 522; uint256 internal constant TOKENS_ALREADY_SET = 523; uint256 internal constant TOKENS_LENGTH_MUST_BE_2 = 524; uint256 internal constant NONZERO_TOKEN_BALANCE = 525; uint256 internal constant BALANCE_TOTAL_OVERFLOW = 526; uint256 internal constant POOL_NO_TOKENS = 527; uint256 internal constant INSUFFICIENT_FLASH_LOAN_BALANCE = 528; // Fees uint256 internal constant SWAP_FEE_PERCENTAGE_TOO_HIGH = 600; uint256 internal constant FLASH_LOAN_FEE_PERCENTAGE_TOO_HIGH = 601; uint256 internal constant INSUFFICIENT_FLASH_LOAN_FEE_AMOUNT = 602; }
// SPDX-License-Identifier: MIT // Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated // documentation files (the “Software”), to deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to // permit persons to whom the Software is furnished to do so, subject to the following conditions: // The above copyright notice and this permission notice shall be included in all copies or substantial portions of the // Software. // THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE // WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. pragma solidity ^0.7.0; import "../helpers/BalancerErrors.sol"; /* solhint-disable */ /** * @dev Exponentiation and logarithm functions for 18 decimal fixed point numbers (both base and exponent/argument). * * Exponentiation and logarithm with arbitrary bases (x^y and log_x(y)) are implemented by conversion to natural * exponentiation and logarithm (where the base is Euler's number). * * @author Fernando Martinelli - @fernandomartinelli * @author Sergio Yuhjtman - @sergioyuhjtman * @author Daniel Fernandez - @dmf7z */ library LogExpMath { // All fixed point multiplications and divisions are inlined. This means we need to divide by ONE when multiplying // two numbers, and multiply by ONE when dividing them. // All arguments and return values are 18 decimal fixed point numbers. int256 constant ONE_18 = 1e18; // Internally, intermediate values are computed with higher precision as 20 decimal fixed point numbers, and in the // case of ln36, 36 decimals. int256 constant ONE_20 = 1e20; int256 constant ONE_36 = 1e36; // The domain of natural exponentiation is bound by the word size and number of decimals used. // // Because internally the result will be stored using 20 decimals, the largest possible result is // (2^255 - 1) / 10^20, which makes the largest exponent ln((2^255 - 1) / 10^20) = 130.700829182905140221. // The smallest possible result is 10^(-18), which makes largest negative argument // ln(10^(-18)) = -41.446531673892822312. // We use 130.0 and -41.0 to have some safety margin. int256 constant MAX_NATURAL_EXPONENT = 130e18; int256 constant MIN_NATURAL_EXPONENT = -41e18; // Bounds for ln_36's argument. Both ln(0.9) and ln(1.1) can be represented with 36 decimal places in a fixed point // 256 bit integer. int256 constant LN_36_LOWER_BOUND = ONE_18 - 1e17; int256 constant LN_36_UPPER_BOUND = ONE_18 + 1e17; uint256 constant MILD_EXPONENT_BOUND = 2**254 / uint256(ONE_20); // 18 decimal constants int256 constant x0 = 128000000000000000000; // 2ˆ7 int256 constant a0 = 38877084059945950922200000000000000000000000000000000000; // eˆ(x0) (no decimals) int256 constant x1 = 64000000000000000000; // 2ˆ6 int256 constant a1 = 6235149080811616882910000000; // eˆ(x1) (no decimals) // 20 decimal constants int256 constant x2 = 3200000000000000000000; // 2ˆ5 int256 constant a2 = 7896296018268069516100000000000000; // eˆ(x2) int256 constant x3 = 1600000000000000000000; // 2ˆ4 int256 constant a3 = 888611052050787263676000000; // eˆ(x3) int256 constant x4 = 800000000000000000000; // 2ˆ3 int256 constant a4 = 298095798704172827474000; // eˆ(x4) int256 constant x5 = 400000000000000000000; // 2ˆ2 int256 constant a5 = 5459815003314423907810; // eˆ(x5) int256 constant x6 = 200000000000000000000; // 2ˆ1 int256 constant a6 = 738905609893065022723; // eˆ(x6) int256 constant x7 = 100000000000000000000; // 2ˆ0 int256 constant a7 = 271828182845904523536; // eˆ(x7) int256 constant x8 = 50000000000000000000; // 2ˆ-1 int256 constant a8 = 164872127070012814685; // eˆ(x8) int256 constant x9 = 25000000000000000000; // 2ˆ-2 int256 constant a9 = 128402541668774148407; // eˆ(x9) int256 constant x10 = 12500000000000000000; // 2ˆ-3 int256 constant a10 = 113314845306682631683; // eˆ(x10) int256 constant x11 = 6250000000000000000; // 2ˆ-4 int256 constant a11 = 106449445891785942956; // eˆ(x11) /** * @dev Exponentiation (x^y) with unsigned 18 decimal fixed point base and exponent. * * Reverts if ln(x) * y is smaller than `MIN_NATURAL_EXPONENT`, or larger than `MAX_NATURAL_EXPONENT`. */ function pow(uint256 x, uint256 y) internal pure returns (uint256) { if (y == 0) { // We solve the 0^0 indetermination by making it equal one. return uint256(ONE_18); } if (x == 0) { return 0; } // Instead of computing x^y directly, we instead rely on the properties of logarithms and exponentiation to // arrive at that result. In particular, exp(ln(x)) = x, and ln(x^y) = y * ln(x). This means // x^y = exp(y * ln(x)). // The ln function takes a signed value, so we need to make sure x fits in the signed 256 bit range. _require(x < 2**255, Errors.X_OUT_OF_BOUNDS); int256 x_int256 = int256(x); // We will compute y * ln(x) in a single step. Depending on the value of x, we can either use ln or ln_36. In // both cases, we leave the division by ONE_18 (due to fixed point multiplication) to the end. // This prevents y * ln(x) from overflowing, and at the same time guarantees y fits in the signed 256 bit range. _require(y < MILD_EXPONENT_BOUND, Errors.Y_OUT_OF_BOUNDS); int256 y_int256 = int256(y); int256 logx_times_y; if (LN_36_LOWER_BOUND < x_int256 && x_int256 < LN_36_UPPER_BOUND) { int256 ln_36_x = _ln_36(x_int256); // ln_36_x has 36 decimal places, so multiplying by y_int256 isn't as straightforward, since we can't just // bring y_int256 to 36 decimal places, as it might overflow. Instead, we perform two 18 decimal // multiplications and add the results: one with the first 18 decimals of ln_36_x, and one with the // (downscaled) last 18 decimals. logx_times_y = ((ln_36_x / ONE_18) * y_int256 + ((ln_36_x % ONE_18) * y_int256) / ONE_18); } else { logx_times_y = _ln(x_int256) * y_int256; } logx_times_y /= ONE_18; // Finally, we compute exp(y * ln(x)) to arrive at x^y _require( MIN_NATURAL_EXPONENT <= logx_times_y && logx_times_y <= MAX_NATURAL_EXPONENT, Errors.PRODUCT_OUT_OF_BOUNDS ); return uint256(exp(logx_times_y)); } /** * @dev Natural exponentiation (e^x) with signed 18 decimal fixed point exponent. * * Reverts if `x` is smaller than MIN_NATURAL_EXPONENT, or larger than `MAX_NATURAL_EXPONENT`. */ function exp(int256 x) internal pure returns (int256) { _require(x >= MIN_NATURAL_EXPONENT && x <= MAX_NATURAL_EXPONENT, Errors.INVALID_EXPONENT); if (x < 0) { // We only handle positive exponents: e^(-x) is computed as 1 / e^x. We can safely make x positive since it // fits in the signed 256 bit range (as it is larger than MIN_NATURAL_EXPONENT). // Fixed point division requires multiplying by ONE_18. return ((ONE_18 * ONE_18) / exp(-x)); } // First, we use the fact that e^(x+y) = e^x * e^y to decompose x into a sum of powers of two, which we call x_n, // where x_n == 2^(7 - n), and e^x_n = a_n has been precomputed. We choose the first x_n, x0, to equal 2^7 // because all larger powers are larger than MAX_NATURAL_EXPONENT, and therefore not present in the // decomposition. // At the end of this process we will have the product of all e^x_n = a_n that apply, and the remainder of this // decomposition, which will be lower than the smallest x_n. // exp(x) = k_0 * a_0 * k_1 * a_1 * ... + k_n * a_n * exp(remainder), where each k_n equals either 0 or 1. // We mutate x by subtracting x_n, making it the remainder of the decomposition. // The first two a_n (e^(2^7) and e^(2^6)) are too large if stored as 18 decimal numbers, and could cause // intermediate overflows. Instead we store them as plain integers, with 0 decimals. // Additionally, x0 + x1 is larger than MAX_NATURAL_EXPONENT, which means they will not both be present in the // decomposition. // For each x_n, we test if that term is present in the decomposition (if x is larger than it), and if so deduct // it and compute the accumulated product. int256 firstAN; if (x >= x0) { x -= x0; firstAN = a0; } else if (x >= x1) { x -= x1; firstAN = a1; } else { firstAN = 1; // One with no decimal places } // We now transform x into a 20 decimal fixed point number, to have enhanced precision when computing the // smaller terms. x *= 100; // `product` is the accumulated product of all a_n (except a0 and a1), which starts at 20 decimal fixed point // one. Recall that fixed point multiplication requires dividing by ONE_20. int256 product = ONE_20; if (x >= x2) { x -= x2; product = (product * a2) / ONE_20; } if (x >= x3) { x -= x3; product = (product * a3) / ONE_20; } if (x >= x4) { x -= x4; product = (product * a4) / ONE_20; } if (x >= x5) { x -= x5; product = (product * a5) / ONE_20; } if (x >= x6) { x -= x6; product = (product * a6) / ONE_20; } if (x >= x7) { x -= x7; product = (product * a7) / ONE_20; } if (x >= x8) { x -= x8; product = (product * a8) / ONE_20; } if (x >= x9) { x -= x9; product = (product * a9) / ONE_20; } // x10 and x11 are unnecessary here since we have high enough precision already. // Now we need to compute e^x, where x is small (in particular, it is smaller than x9). We use the Taylor series // expansion for e^x: 1 + x + (x^2 / 2!) + (x^3 / 3!) + ... + (x^n / n!). int256 seriesSum = ONE_20; // The initial one in the sum, with 20 decimal places. int256 term; // Each term in the sum, where the nth term is (x^n / n!). // The first term is simply x. term = x; seriesSum += term; // Each term (x^n / n!) equals the previous one times x, divided by n. Since x is a fixed point number, // multiplying by it requires dividing by ONE_20, but dividing by the non-fixed point n values does not. term = ((term * x) / ONE_20) / 2; seriesSum += term; term = ((term * x) / ONE_20) / 3; seriesSum += term; term = ((term * x) / ONE_20) / 4; seriesSum += term; term = ((term * x) / ONE_20) / 5; seriesSum += term; term = ((term * x) / ONE_20) / 6; seriesSum += term; term = ((term * x) / ONE_20) / 7; seriesSum += term; term = ((term * x) / ONE_20) / 8; seriesSum += term; term = ((term * x) / ONE_20) / 9; seriesSum += term; term = ((term * x) / ONE_20) / 10; seriesSum += term; term = ((term * x) / ONE_20) / 11; seriesSum += term; term = ((term * x) / ONE_20) / 12; seriesSum += term; // 12 Taylor terms are sufficient for 18 decimal precision. // We now have the first a_n (with no decimals), and the product of all other a_n present, and the Taylor // approximation of the exponentiation of the remainder (both with 20 decimals). All that remains is to multiply // all three (one 20 decimal fixed point multiplication, dividing by ONE_20, and one integer multiplication), // and then drop two digits to return an 18 decimal value. return (((product * seriesSum) / ONE_20) * firstAN) / 100; } /** * @dev Logarithm (log(arg, base), with signed 18 decimal fixed point base and argument. */ function log(int256 arg, int256 base) internal pure returns (int256) { // This performs a simple base change: log(arg, base) = ln(arg) / ln(base). // Both logBase and logArg are computed as 36 decimal fixed point numbers, either by using ln_36, or by // upscaling. int256 logBase; if (LN_36_LOWER_BOUND < base && base < LN_36_UPPER_BOUND) { logBase = _ln_36(base); } else { logBase = _ln(base) * ONE_18; } int256 logArg; if (LN_36_LOWER_BOUND < arg && arg < LN_36_UPPER_BOUND) { logArg = _ln_36(arg); } else { logArg = _ln(arg) * ONE_18; } // When dividing, we multiply by ONE_18 to arrive at a result with 18 decimal places return (logArg * ONE_18) / logBase; } /** * @dev Natural logarithm (ln(a)) with signed 18 decimal fixed point argument. */ function ln(int256 a) internal pure returns (int256) { // The real natural logarithm is not defined for negative numbers or zero. _require(a > 0, Errors.OUT_OF_BOUNDS); if (LN_36_LOWER_BOUND < a && a < LN_36_UPPER_BOUND) { return _ln_36(a) / ONE_18; } else { return _ln(a); } } /** * @dev Internal natural logarithm (ln(a)) with signed 18 decimal fixed point argument. */ function _ln(int256 a) private pure returns (int256) { if (a < ONE_18) { // Since ln(a^k) = k * ln(a), we can compute ln(a) as ln(a) = ln((1/a)^(-1)) = - ln((1/a)). If a is less // than one, 1/a will be greater than one, and this if statement will not be entered in the recursive call. // Fixed point division requires multiplying by ONE_18. return (-_ln((ONE_18 * ONE_18) / a)); } // First, we use the fact that ln^(a * b) = ln(a) + ln(b) to decompose ln(a) into a sum of powers of two, which // we call x_n, where x_n == 2^(7 - n), which are the natural logarithm of precomputed quantities a_n (that is, // ln(a_n) = x_n). We choose the first x_n, x0, to equal 2^7 because the exponential of all larger powers cannot // be represented as 18 fixed point decimal numbers in 256 bits, and are therefore larger than a. // At the end of this process we will have the sum of all x_n = ln(a_n) that apply, and the remainder of this // decomposition, which will be lower than the smallest a_n. // ln(a) = k_0 * x_0 + k_1 * x_1 + ... + k_n * x_n + ln(remainder), where each k_n equals either 0 or 1. // We mutate a by subtracting a_n, making it the remainder of the decomposition. // For reasons related to how `exp` works, the first two a_n (e^(2^7) and e^(2^6)) are not stored as fixed point // numbers with 18 decimals, but instead as plain integers with 0 decimals, so we need to multiply them by // ONE_18 to convert them to fixed point. // For each a_n, we test if that term is present in the decomposition (if a is larger than it), and if so divide // by it and compute the accumulated sum. int256 sum = 0; if (a >= a0 * ONE_18) { a /= a0; // Integer, not fixed point division sum += x0; } if (a >= a1 * ONE_18) { a /= a1; // Integer, not fixed point division sum += x1; } // All other a_n and x_n are stored as 20 digit fixed point numbers, so we convert the sum and a to this format. sum *= 100; a *= 100; // Because further a_n are 20 digit fixed point numbers, we multiply by ONE_20 when dividing by them. if (a >= a2) { a = (a * ONE_20) / a2; sum += x2; } if (a >= a3) { a = (a * ONE_20) / a3; sum += x3; } if (a >= a4) { a = (a * ONE_20) / a4; sum += x4; } if (a >= a5) { a = (a * ONE_20) / a5; sum += x5; } if (a >= a6) { a = (a * ONE_20) / a6; sum += x6; } if (a >= a7) { a = (a * ONE_20) / a7; sum += x7; } if (a >= a8) { a = (a * ONE_20) / a8; sum += x8; } if (a >= a9) { a = (a * ONE_20) / a9; sum += x9; } if (a >= a10) { a = (a * ONE_20) / a10; sum += x10; } if (a >= a11) { a = (a * ONE_20) / a11; sum += x11; } // a is now a small number (smaller than a_11, which roughly equals 1.06). This means we can use a Taylor series // that converges rapidly for values of `a` close to one - the same one used in ln_36. // Let z = (a - 1) / (a + 1). // ln(a) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1)) // Recall that 20 digit fixed point division requires multiplying by ONE_20, and multiplication requires // division by ONE_20. int256 z = ((a - ONE_20) * ONE_20) / (a + ONE_20); int256 z_squared = (z * z) / ONE_20; // num is the numerator of the series: the z^(2 * n + 1) term int256 num = z; // seriesSum holds the accumulated sum of each term in the series, starting with the initial z int256 seriesSum = num; // In each step, the numerator is multiplied by z^2 num = (num * z_squared) / ONE_20; seriesSum += num / 3; num = (num * z_squared) / ONE_20; seriesSum += num / 5; num = (num * z_squared) / ONE_20; seriesSum += num / 7; num = (num * z_squared) / ONE_20; seriesSum += num / 9; num = (num * z_squared) / ONE_20; seriesSum += num / 11; // 6 Taylor terms are sufficient for 36 decimal precision. // Finally, we multiply by 2 (non fixed point) to compute ln(remainder) seriesSum *= 2; // We now have the sum of all x_n present, and the Taylor approximation of the logarithm of the remainder (both // with 20 decimals). All that remains is to sum these two, and then drop two digits to return a 18 decimal // value. return (sum + seriesSum) / 100; } /** * @dev Intrnal high precision (36 decimal places) natural logarithm (ln(x)) with signed 18 decimal fixed point argument, * for x close to one. * * Should only be used if x is between LN_36_LOWER_BOUND and LN_36_UPPER_BOUND. */ function _ln_36(int256 x) private pure returns (int256) { // Since ln(1) = 0, a value of x close to one will yield a very small result, which makes using 36 digits // worthwhile. // First, we transform x to a 36 digit fixed point value. x *= ONE_18; // We will use the following Taylor expansion, which converges very rapidly. Let z = (x - 1) / (x + 1). // ln(x) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1)) // Recall that 36 digit fixed point division requires multiplying by ONE_36, and multiplication requires // division by ONE_36. int256 z = ((x - ONE_36) * ONE_36) / (x + ONE_36); int256 z_squared = (z * z) / ONE_36; // num is the numerator of the series: the z^(2 * n + 1) term int256 num = z; // seriesSum holds the accumulated sum of each term in the series, starting with the initial z int256 seriesSum = num; // In each step, the numerator is multiplied by z^2 num = (num * z_squared) / ONE_36; seriesSum += num / 3; num = (num * z_squared) / ONE_36; seriesSum += num / 5; num = (num * z_squared) / ONE_36; seriesSum += num / 7; num = (num * z_squared) / ONE_36; seriesSum += num / 9; num = (num * z_squared) / ONE_36; seriesSum += num / 11; num = (num * z_squared) / ONE_36; seriesSum += num / 13; num = (num * z_squared) / ONE_36; seriesSum += num / 15; // 8 Taylor terms are sufficient for 36 decimal precision. // All that remains is multiplying by 2 (non fixed point). return seriesSum * 2; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "../StableMath.sol"; contract MockStableMath is StableMath { function invariant(uint256 amp, uint256[] memory balances, bool roundUp) external pure returns (uint256) { return _calculateInvariant(amp, balances, roundUp); } function outGivenIn( uint256 amp, uint256[] memory balances, uint256 tokenIndexIn, uint256 tokenIndexOut, uint256 tokenAmountIn ) external pure returns (uint256) { return _calcOutGivenIn(amp, balances, tokenIndexIn, tokenIndexOut, tokenAmountIn); } function inGivenOut( uint256 amp, uint256[] memory balances, uint256 tokenIndexIn, uint256 tokenIndexOut, uint256 tokenAmountOut ) external pure returns (uint256) { return _calcInGivenOut(amp, balances, tokenIndexIn, tokenIndexOut, tokenAmountOut); } function exactTokensInForBPTOut( uint256 amp, uint256[] memory balances, uint256[] memory amountsIn, uint256 bptTotalSupply, uint256 swapFee ) external pure returns (uint256) { return _calcBptOutGivenExactTokensIn(amp, balances, amountsIn, bptTotalSupply, swapFee); } function tokenInForExactBPTOut( uint256 amp, uint256[] memory balances, uint256 tokenIndex, uint256 bptAmountOut, uint256 bptTotalSupply, uint256 swapFee ) external pure returns (uint256) { return _calcTokenInGivenExactBptOut(amp, balances, tokenIndex, bptAmountOut, bptTotalSupply, swapFee); } function exactBPTInForTokenOut( uint256 amp, uint256[] memory balances, uint256 tokenIndex, uint256 bptAmountIn, uint256 bptTotalSupply, uint256 swapFee ) external pure returns (uint256) { return _calcTokenOutGivenExactBptIn(amp, balances, tokenIndex, bptAmountIn, bptTotalSupply, swapFee); } function exactBPTInForTokensOut( uint256[] memory balances, uint256 bptAmountIn, uint256 bptTotalSupply ) external pure returns (uint256[] memory) { return _calcTokensOutGivenExactBptIn(balances, bptAmountIn, bptTotalSupply); } function bptInForExactTokensOut( uint256 amp, uint256[] memory balances, uint256[] memory amountsOut, uint256 bptTotalSupply, uint256 swapFee ) external pure returns (uint256) { return _calcBptInGivenExactTokensOut(amp, balances, amountsOut, bptTotalSupply, swapFee); } function calculateDueTokenProtocolSwapFeeAmount( uint256 amp, uint256[] memory balances, uint256 lastInvariant, uint256 tokenIndex, uint256 protocolSwapFeePercentage ) external pure returns (uint256) { return _calcDueTokenProtocolSwapFeeAmount(amp, balances, lastInvariant, tokenIndex, protocolSwapFeePercentage); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/InputHelpers.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/WordCodec.sol"; import "@balancer-labs/v2-pool-utils/contracts/BaseGeneralPool.sol"; import "@balancer-labs/v2-pool-utils/contracts/BaseMinimalSwapInfoPool.sol"; import "./StableMath.sol"; import "./StablePoolUserDataHelpers.sol"; contract StablePool is BaseGeneralPool, BaseMinimalSwapInfoPool, StableMath { using FixedPoint for uint256; using StablePoolUserDataHelpers for bytes; using WordCodec for bytes32; // This contract uses timestamps to slowly update its Amplification parameter over time. These changes must occur // over a minimum time period much larger than the blocktime, making timestamp manipulation a non-issue. // solhint-disable not-rely-on-time // Amplification factor changes must happen over a minimum period of one day, and can at most divide or multiple the // current value by 2 every day. // WARNING: this only limits *a single* amplification change to have a maximum rate of change of twice the original // value daily. It is possible to perform multiple amplification changes in sequence to increase this value more // rapidly: for example, by doubling the value every day it can increase by a factor of 8 over three days (2^3). uint256 private constant _MIN_UPDATE_TIME = 1 days; uint256 private constant _MAX_AMP_UPDATE_DAILY_RATE = 2; bytes32 private _packedAmplificationData; event AmpUpdateStarted(uint256 startValue, uint256 endValue, uint256 startTime, uint256 endTime); event AmpUpdateStopped(uint256 currentValue); // To track how many tokens are owed to the Vault as protocol fees, we measure and store the value of the invariant // after every join and exit. All invariant growth that happens between join and exit events is due to swap fees. uint256 private _lastInvariant; // Because the invariant depends on the amplification parameter, and this value may change over time, we should only // compare invariants that were computed using the same value. We therefore store it whenever we store // _lastInvariant. uint256 private _lastInvariantAmp; enum JoinKind { INIT, EXACT_TOKENS_IN_FOR_BPT_OUT, TOKEN_IN_FOR_EXACT_BPT_OUT } enum ExitKind { EXACT_BPT_IN_FOR_ONE_TOKEN_OUT, EXACT_BPT_IN_FOR_TOKENS_OUT, BPT_IN_FOR_EXACT_TOKENS_OUT } constructor( IVault vault, string memory name, string memory symbol, IERC20[] memory tokens, uint256 amplificationParameter, uint256 swapFeePercentage, uint256 pauseWindowDuration, uint256 bufferPeriodDuration, address owner ) BasePool( vault, // Because we're inheriting from both BaseGeneralPool and BaseMinimalSwapInfoPool we can choose any // specialization setting. Since this Pool never registers or deregisters any tokens after construction, // picking Two Token when the Pool only has two tokens is free gas savings. tokens.length == 2 ? IVault.PoolSpecialization.TWO_TOKEN : IVault.PoolSpecialization.GENERAL, name, symbol, tokens, new address[](tokens.length), swapFeePercentage, pauseWindowDuration, bufferPeriodDuration, owner ) { _require(tokens.length <= _MAX_STABLE_TOKENS, Errors.MAX_STABLE_TOKENS); _require(amplificationParameter >= _MIN_AMP, Errors.MIN_AMP); _require(amplificationParameter <= _MAX_AMP, Errors.MAX_AMP); uint256 initialAmp = Math.mul(amplificationParameter, _AMP_PRECISION); _setAmplificationData(initialAmp); } // Base Pool handlers // Swap - General Pool specialization (from BaseGeneralPool) function _onSwapGivenIn( SwapRequest memory swapRequest, uint256[] memory balances, uint256 indexIn, uint256 indexOut ) internal view virtual override whenNotPaused returns (uint256) { (uint256 currentAmp, ) = _getAmplificationParameter(); uint256 amountOut = StableMath._calcOutGivenIn(currentAmp, balances, indexIn, indexOut, swapRequest.amount); return amountOut; } function _onSwapGivenOut( SwapRequest memory swapRequest, uint256[] memory balances, uint256 indexIn, uint256 indexOut ) internal view virtual override whenNotPaused returns (uint256) { (uint256 currentAmp, ) = _getAmplificationParameter(); uint256 amountIn = StableMath._calcInGivenOut(currentAmp, balances, indexIn, indexOut, swapRequest.amount); return amountIn; } // Swap - Two Token Pool specialization (from BaseMinimalSwapInfoPool) function _onSwapGivenIn( SwapRequest memory swapRequest, uint256 balanceTokenIn, uint256 balanceTokenOut ) internal view virtual override returns (uint256) { _require(_getTotalTokens() == 2, Errors.NOT_TWO_TOKENS); (uint256[] memory balances, uint256 indexIn, uint256 indexOut) = _getSwapBalanceArrays( swapRequest, balanceTokenIn, balanceTokenOut ); return _onSwapGivenIn(swapRequest, balances, indexIn, indexOut); } function _onSwapGivenOut( SwapRequest memory swapRequest, uint256 balanceTokenIn, uint256 balanceTokenOut ) internal view virtual override returns (uint256) { _require(_getTotalTokens() == 2, Errors.NOT_TWO_TOKENS); (uint256[] memory balances, uint256 indexIn, uint256 indexOut) = _getSwapBalanceArrays( swapRequest, balanceTokenIn, balanceTokenOut ); return _onSwapGivenOut(swapRequest, balances, indexIn, indexOut); } function _getSwapBalanceArrays( SwapRequest memory swapRequest, uint256 balanceTokenIn, uint256 balanceTokenOut ) private view returns ( uint256[] memory balances, uint256 indexIn, uint256 indexOut ) { balances = new uint256[](2); if (_token0 == swapRequest.tokenIn) { indexIn = 0; indexOut = 1; balances[0] = balanceTokenIn; balances[1] = balanceTokenOut; } else { // _token0 == swapRequest.tokenOut indexOut = 0; indexIn = 1; balances[0] = balanceTokenOut; balances[1] = balanceTokenIn; } } // Initialize function _onInitializePool( bytes32, address, address, uint256[] memory scalingFactors, bytes memory userData ) internal virtual override whenNotPaused returns (uint256, uint256[] memory) { // It would be strange for the Pool to be paused before it is initialized, but for consistency we prevent // initialization in this case. StablePool.JoinKind kind = userData.joinKind(); _require(kind == StablePool.JoinKind.INIT, Errors.UNINITIALIZED); uint256[] memory amountsIn = userData.initialAmountsIn(); InputHelpers.ensureInputLengthMatch(amountsIn.length, _getTotalTokens()); _upscaleArray(amountsIn, scalingFactors); (uint256 currentAmp, ) = _getAmplificationParameter(); uint256 invariantAfterJoin = StableMath._calculateInvariant(currentAmp, amountsIn, true); // Set the initial BPT to the value of the invariant. uint256 bptAmountOut = invariantAfterJoin; _updateLastInvariant(invariantAfterJoin, currentAmp); return (bptAmountOut, amountsIn); } // Join function _onJoinPool( bytes32, address, address, uint256[] memory balances, uint256, uint256 protocolSwapFeePercentage, uint256[] memory scalingFactors, bytes memory userData ) internal virtual override whenNotPaused returns ( uint256, uint256[] memory, uint256[] memory ) { // Due protocol swap fee amounts are computed by measuring the growth of the invariant between the previous join // or exit event and now - the invariant's growth is due exclusively to swap fees. This avoids spending gas to // calculate the fee amounts during each individual swap. uint256[] memory dueProtocolFeeAmounts = _getDueProtocolFeeAmounts(balances, protocolSwapFeePercentage); // Update current balances by subtracting the protocol fee amounts _mutateAmounts(balances, dueProtocolFeeAmounts, FixedPoint.sub); (uint256 bptAmountOut, uint256[] memory amountsIn) = _doJoin(balances, scalingFactors, userData); // Update the invariant with the balances the Pool will have after the join, in order to compute the // protocol swap fee amounts due in future joins and exits. _updateInvariantAfterJoin(balances, amountsIn); return (bptAmountOut, amountsIn, dueProtocolFeeAmounts); } function _doJoin( uint256[] memory balances, uint256[] memory scalingFactors, bytes memory userData ) private view returns (uint256, uint256[] memory) { JoinKind kind = userData.joinKind(); if (kind == JoinKind.EXACT_TOKENS_IN_FOR_BPT_OUT) { return _joinExactTokensInForBPTOut(balances, scalingFactors, userData); } else if (kind == JoinKind.TOKEN_IN_FOR_EXACT_BPT_OUT) { return _joinTokenInForExactBPTOut(balances, userData); } else { _revert(Errors.UNHANDLED_JOIN_KIND); } } function _joinExactTokensInForBPTOut( uint256[] memory balances, uint256[] memory scalingFactors, bytes memory userData ) private view returns (uint256, uint256[] memory) { (uint256[] memory amountsIn, uint256 minBPTAmountOut) = userData.exactTokensInForBptOut(); InputHelpers.ensureInputLengthMatch(_getTotalTokens(), amountsIn.length); _upscaleArray(amountsIn, scalingFactors); (uint256 currentAmp, ) = _getAmplificationParameter(); uint256 bptAmountOut = StableMath._calcBptOutGivenExactTokensIn( currentAmp, balances, amountsIn, totalSupply(), _swapFeePercentage ); _require(bptAmountOut >= minBPTAmountOut, Errors.BPT_OUT_MIN_AMOUNT); return (bptAmountOut, amountsIn); } function _joinTokenInForExactBPTOut(uint256[] memory balances, bytes memory userData) private view returns (uint256, uint256[] memory) { (uint256 bptAmountOut, uint256 tokenIndex) = userData.tokenInForExactBptOut(); // Note that there is no maximum amountIn parameter: this is handled by `IVault.joinPool`. _require(tokenIndex < _getTotalTokens(), Errors.OUT_OF_BOUNDS); uint256[] memory amountsIn = new uint256[](_getTotalTokens()); (uint256 currentAmp, ) = _getAmplificationParameter(); amountsIn[tokenIndex] = StableMath._calcTokenInGivenExactBptOut( currentAmp, balances, tokenIndex, bptAmountOut, totalSupply(), _swapFeePercentage ); return (bptAmountOut, amountsIn); } // Exit function _onExitPool( bytes32, address, address, uint256[] memory balances, uint256, uint256 protocolSwapFeePercentage, uint256[] memory scalingFactors, bytes memory userData ) internal virtual override returns ( uint256 bptAmountIn, uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts ) { // Exits are not completely disabled while the contract is paused: proportional exits (exact BPT in for tokens // out) remain functional. if (_isNotPaused()) { // Due protocol swap fee amounts are computed by measuring the growth of the invariant between the previous // join or exit event and now - the invariant's growth is due exclusively to swap fees. This avoids // spending gas calculating fee amounts during each individual swap dueProtocolFeeAmounts = _getDueProtocolFeeAmounts(balances, protocolSwapFeePercentage); // Update current balances by subtracting the protocol fee amounts _mutateAmounts(balances, dueProtocolFeeAmounts, FixedPoint.sub); } else { // If the contract is paused, swap protocol fee amounts are not charged to avoid extra calculations and // reduce the potential for errors. dueProtocolFeeAmounts = new uint256[](_getTotalTokens()); } (bptAmountIn, amountsOut) = _doExit(balances, scalingFactors, userData); // Update the invariant with the balances the Pool will have after the exit, in order to compute the // protocol swap fee amounts due in future joins and exits. _updateInvariantAfterExit(balances, amountsOut); return (bptAmountIn, amountsOut, dueProtocolFeeAmounts); } function _doExit( uint256[] memory balances, uint256[] memory scalingFactors, bytes memory userData ) private view returns (uint256, uint256[] memory) { ExitKind kind = userData.exitKind(); if (kind == ExitKind.EXACT_BPT_IN_FOR_ONE_TOKEN_OUT) { return _exitExactBPTInForTokenOut(balances, userData); } else if (kind == ExitKind.EXACT_BPT_IN_FOR_TOKENS_OUT) { return _exitExactBPTInForTokensOut(balances, userData); } else { // ExitKind.BPT_IN_FOR_EXACT_TOKENS_OUT return _exitBPTInForExactTokensOut(balances, scalingFactors, userData); } } function _exitExactBPTInForTokenOut(uint256[] memory balances, bytes memory userData) private view whenNotPaused returns (uint256, uint256[] memory) { // This exit function is disabled if the contract is paused. (uint256 bptAmountIn, uint256 tokenIndex) = userData.exactBptInForTokenOut(); // Note that there is no minimum amountOut parameter: this is handled by `IVault.exitPool`. _require(tokenIndex < _getTotalTokens(), Errors.OUT_OF_BOUNDS); // We exit in a single token, so initialize amountsOut with zeros uint256[] memory amountsOut = new uint256[](_getTotalTokens()); // And then assign the result to the selected token (uint256 currentAmp, ) = _getAmplificationParameter(); amountsOut[tokenIndex] = StableMath._calcTokenOutGivenExactBptIn( currentAmp, balances, tokenIndex, bptAmountIn, totalSupply(), _swapFeePercentage ); return (bptAmountIn, amountsOut); } function _exitExactBPTInForTokensOut(uint256[] memory balances, bytes memory userData) private view returns (uint256, uint256[] memory) { // This exit function is the only one that is not disabled if the contract is paused: it remains unrestricted // in an attempt to provide users with a mechanism to retrieve their tokens in case of an emergency. // This particular exit function is the only one that remains available because it is the simplest one, and // therefore the one with the lowest likelihood of errors. uint256 bptAmountIn = userData.exactBptInForTokensOut(); // Note that there is no minimum amountOut parameter: this is handled by `IVault.exitPool`. uint256[] memory amountsOut = StableMath._calcTokensOutGivenExactBptIn(balances, bptAmountIn, totalSupply()); return (bptAmountIn, amountsOut); } function _exitBPTInForExactTokensOut( uint256[] memory balances, uint256[] memory scalingFactors, bytes memory userData ) private view whenNotPaused returns (uint256, uint256[] memory) { // This exit function is disabled if the contract is paused. (uint256[] memory amountsOut, uint256 maxBPTAmountIn) = userData.bptInForExactTokensOut(); InputHelpers.ensureInputLengthMatch(amountsOut.length, _getTotalTokens()); _upscaleArray(amountsOut, scalingFactors); (uint256 currentAmp, ) = _getAmplificationParameter(); uint256 bptAmountIn = StableMath._calcBptInGivenExactTokensOut( currentAmp, balances, amountsOut, totalSupply(), _swapFeePercentage ); _require(bptAmountIn <= maxBPTAmountIn, Errors.BPT_IN_MAX_AMOUNT); return (bptAmountIn, amountsOut); } // Helpers /** * @dev Stores the last measured invariant, and the amplification parameter used to compute it. */ function _updateLastInvariant(uint256 invariant, uint256 amplificationParameter) private { _lastInvariant = invariant; _lastInvariantAmp = amplificationParameter; } /** * @dev Returns the amount of protocol fees to pay, given the value of the last stored invariant and the current * balances. */ function _getDueProtocolFeeAmounts(uint256[] memory balances, uint256 protocolSwapFeePercentage) private view returns (uint256[] memory) { // Initialize with zeros uint256[] memory dueProtocolFeeAmounts = new uint256[](_getTotalTokens()); // Early return if the protocol swap fee percentage is zero, saving gas. if (protocolSwapFeePercentage == 0) { return dueProtocolFeeAmounts; } // Instead of paying the protocol swap fee in all tokens proportionally, we will pay it in a single one. This // will reduce gas costs for single asset joins and exits, as at most only two Pool balances will change (the // token joined/exited, and the token in which fees will be paid). // The protocol fee is charged using the token with the highest balance in the pool. uint256 chosenTokenIndex = 0; uint256 maxBalance = balances[0]; for (uint256 i = 1; i < _getTotalTokens(); ++i) { uint256 currentBalance = balances[i]; if (currentBalance > maxBalance) { chosenTokenIndex = i; maxBalance = currentBalance; } } // Set the fee amount to pay in the selected token dueProtocolFeeAmounts[chosenTokenIndex] = StableMath._calcDueTokenProtocolSwapFeeAmount( _lastInvariantAmp, balances, _lastInvariant, chosenTokenIndex, protocolSwapFeePercentage ); return dueProtocolFeeAmounts; } /** * @dev Computes and stores the value of the invariant after a join, which is required to compute due protocol fees * in the future. */ function _updateInvariantAfterJoin(uint256[] memory balances, uint256[] memory amountsIn) private { _mutateAmounts(balances, amountsIn, FixedPoint.add); (uint256 currentAmp, ) = _getAmplificationParameter(); // This invariant is used only to compute the final balance when calculating the protocol fees. These are // rounded down, so we round the invariant up. _updateLastInvariant(StableMath._calculateInvariant(currentAmp, balances, true), currentAmp); } /** * @dev Computes and stores the value of the invariant after an exit, which is required to compute due protocol fees * in the future. */ function _updateInvariantAfterExit(uint256[] memory balances, uint256[] memory amountsOut) private { _mutateAmounts(balances, amountsOut, FixedPoint.sub); (uint256 currentAmp, ) = _getAmplificationParameter(); // This invariant is used only to compute the final balance when calculating the protocol fees. These are // rounded down, so we round the invariant up. _updateLastInvariant(StableMath._calculateInvariant(currentAmp, balances, true), currentAmp); } /** * @dev Mutates `amounts` by applying `mutation` with each entry in `arguments`. * * Equivalent to `amounts = amounts.map(mutation)`. */ function _mutateAmounts( uint256[] memory toMutate, uint256[] memory arguments, function(uint256, uint256) pure returns (uint256) mutation ) private view { for (uint256 i = 0; i < _getTotalTokens(); ++i) { toMutate[i] = mutation(toMutate[i], arguments[i]); } } /** * @dev This function returns the appreciation of one BPT relative to the * underlying tokens. This starts at 1 when the pool is created and grows over time */ function getRate() public view returns (uint256) { (, uint256[] memory balances, ) = getVault().getPoolTokens(getPoolId()); // When calculating the current BPT rate, we may not have paid the protocol fees, therefore // the invariant should be smaller than its current value. Then, we round down overall. (uint256 currentAmp, ) = _getAmplificationParameter(); _upscaleArray(balances, _scalingFactors()); uint256 invariant = StableMath._calculateInvariant(currentAmp, balances, false); return invariant.divDown(totalSupply()); } // Amplification /** * @dev Begins changing the amplification parameter to `rawEndValue` over time. The value will change linearly until * `endTime` is reached, when it will be `rawEndValue`. * * NOTE: Internally, the amplification parameter is represented using higher precision. The values returned by * `getAmplificationParameter` have to be corrected to account for this when comparing to `rawEndValue`. */ function startAmplificationParameterUpdate(uint256 rawEndValue, uint256 endTime) external authenticate { _require(rawEndValue >= _MIN_AMP, Errors.MIN_AMP); _require(rawEndValue <= _MAX_AMP, Errors.MAX_AMP); uint256 duration = Math.sub(endTime, block.timestamp); _require(duration >= _MIN_UPDATE_TIME, Errors.AMP_END_TIME_TOO_CLOSE); (uint256 currentValue, bool isUpdating) = _getAmplificationParameter(); _require(!isUpdating, Errors.AMP_ONGOING_UPDATE); uint256 endValue = Math.mul(rawEndValue, _AMP_PRECISION); // daily rate = (endValue / currentValue) / duration * 1 day // We perform all multiplications first to not reduce precision, and round the division up as we want to avoid // large rates. Note that these are regular integer multiplications and divisions, not fixed point. uint256 dailyRate = endValue > currentValue ? Math.divUp(Math.mul(1 days, endValue), Math.mul(currentValue, duration)) : Math.divUp(Math.mul(1 days, currentValue), Math.mul(endValue, duration)); _require(dailyRate <= _MAX_AMP_UPDATE_DAILY_RATE, Errors.AMP_RATE_TOO_HIGH); _setAmplificationData(currentValue, endValue, block.timestamp, endTime); } /** * @dev Stops the amplification parameter change process, keeping the current value. */ function stopAmplificationParameterUpdate() external authenticate { (uint256 currentValue, bool isUpdating) = _getAmplificationParameter(); _require(isUpdating, Errors.AMP_NO_ONGOING_UPDATE); _setAmplificationData(currentValue); } function _isOwnerOnlyAction(bytes32 actionId) internal view virtual override returns (bool) { return (actionId == getActionId(StablePool.startAmplificationParameterUpdate.selector)) || (actionId == getActionId(StablePool.stopAmplificationParameterUpdate.selector)) || super._isOwnerOnlyAction(actionId); } function getAmplificationParameter() external view returns ( uint256 value, bool isUpdating, uint256 precision ) { (value, isUpdating) = _getAmplificationParameter(); precision = _AMP_PRECISION; } function _getAmplificationParameter() internal view returns (uint256 value, bool isUpdating) { (uint256 startValue, uint256 endValue, uint256 startTime, uint256 endTime) = _getAmplificationData(); // Note that block.timestamp >= startTime, since startTime is set to the current time when an update starts if (block.timestamp < endTime) { isUpdating = true; // We can skip checked arithmetic as: // - block.timestamp is always larger or equal to startTime // - endTime is alawys larger than startTime // - the value delta is bounded by the largest amplification paramater, which never causes the // multiplication to overflow. // This also means that the following computation will never revert nor yield invalid results. if (endValue > startValue) { value = startValue + ((endValue - startValue) * (block.timestamp - startTime)) / (endTime - startTime); } else { value = startValue - ((startValue - endValue) * (block.timestamp - startTime)) / (endTime - startTime); } } else { isUpdating = false; value = endValue; } } function _setAmplificationData(uint256 value) private { _setAmplificationData(value, value, block.timestamp, block.timestamp); emit AmpUpdateStopped(value); } function _setAmplificationData( uint256 startValue, uint256 endValue, uint256 startTime, uint256 endTime ) private { _packedAmplificationData = WordCodec.encodeUint(uint64(startValue), 0) | WordCodec.encodeUint(uint64(endValue), 64) | WordCodec.encodeUint(uint64(startTime), 64 * 2) | WordCodec.encodeUint(uint64(endTime), 64 * 3); emit AmpUpdateStarted(startValue, endValue, startTime, endTime); } function _getAmplificationData() private view returns ( uint256 startValue, uint256 endValue, uint256 startTime, uint256 endTime ) { startValue = _packedAmplificationData.decodeUint64(0); endValue = _packedAmplificationData.decodeUint64(64); startTime = _packedAmplificationData.decodeUint64(64 * 2); endTime = _packedAmplificationData.decodeUint64(64 * 3); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "../openzeppelin/IERC20.sol"; import "./BalancerErrors.sol"; library InputHelpers { function ensureInputLengthMatch(uint256 a, uint256 b) internal pure { _require(a == b, Errors.INPUT_LENGTH_MISMATCH); } function ensureInputLengthMatch( uint256 a, uint256 b, uint256 c ) internal pure { _require(a == b && b == c, Errors.INPUT_LENGTH_MISMATCH); } function ensureArrayIsSorted(IERC20[] memory array) internal pure { address[] memory addressArray; // solhint-disable-next-line no-inline-assembly assembly { addressArray := array } ensureArrayIsSorted(addressArray); } function ensureArrayIsSorted(address[] memory array) internal pure { if (array.length < 2) { return; } address previous = array[0]; for (uint256 i = 1; i < array.length; ++i) { address current = array[i]; _require(previous < current, Errors.UNSORTED_ARRAY); previous = current; } } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; /** * @dev Library for encoding and decoding values stored inside a 256 bit word. Typically used to pack multiple values in * a single storage slot, saving gas by performing less storage accesses. * * Each value is defined by its size and the least significant bit in the word, also known as offset. For example, two * 128 bit values may be encoded in a word by assigning one an offset of 0, and the other an offset of 128. */ library WordCodec { // Masks are values with the least significant N bits set. They can be used to extract an encoded value from a word, // or to insert a new one replacing the old. uint256 private constant _MASK_1 = 2**(1) - 1; uint256 private constant _MASK_10 = 2**(10) - 1; uint256 private constant _MASK_22 = 2**(22) - 1; uint256 private constant _MASK_31 = 2**(31) - 1; uint256 private constant _MASK_53 = 2**(53) - 1; uint256 private constant _MASK_64 = 2**(64) - 1; // Largest positive values that can be represented as N bits signed integers. int256 private constant _MAX_INT_22 = 2**(21) - 1; int256 private constant _MAX_INT_53 = 2**(52) - 1; // In-place insertion /** * @dev Inserts a boolean value shifted by an offset into a 256 bit word, replacing the old value. Returns the new * word. */ function insertBoolean( bytes32 word, bool value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_1 << offset)); return clearedWord | bytes32(uint256(value ? 1 : 0) << offset); } // Unsigned /** * @dev Inserts a 10 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` can be represented using 10 bits. */ function insertUint10( bytes32 word, uint256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_10 << offset)); return clearedWord | bytes32(value << offset); } /** * @dev Inserts a 31 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` can be represented using 31 bits. */ function insertUint31( bytes32 word, uint256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_31 << offset)); return clearedWord | bytes32(value << offset); } /** * @dev Inserts a 64 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` can be represented using 64 bits. */ function insertUint64( bytes32 word, uint256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_64 << offset)); return clearedWord | bytes32(value << offset); } // Signed /** * @dev Inserts a 22 bits signed integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` can be represented using 22 bits. */ function insertInt22( bytes32 word, int256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_22 << offset)); // Integer values need masking to remove the upper bits of negative values. return clearedWord | bytes32((uint256(value) & _MASK_22) << offset); } // Encoding // Unsigned /** * @dev Encodes an unsigned integer shifted by an offset. This performs no size checks: it is up to the caller to * ensure that the values are bounded. * * The return value can be logically ORed with other encoded values to form a 256 bit word. */ function encodeUint(uint256 value, uint256 offset) internal pure returns (bytes32) { return bytes32(value << offset); } // Signed /** * @dev Encodes a 22 bits signed integer shifted by an offset. * * The return value can be logically ORed with other encoded values to form a 256 bit word. */ function encodeInt22(int256 value, uint256 offset) internal pure returns (bytes32) { // Integer values need masking to remove the upper bits of negative values. return bytes32((uint256(value) & _MASK_22) << offset); } /** * @dev Encodes a 53 bits signed integer shifted by an offset. * * The return value can be logically ORed with other encoded values to form a 256 bit word. */ function encodeInt53(int256 value, uint256 offset) internal pure returns (bytes32) { // Integer values need masking to remove the upper bits of negative values. return bytes32((uint256(value) & _MASK_53) << offset); } // Decoding /** * @dev Decodes and returns a boolean shifted by an offset from a 256 bit word. */ function decodeBool(bytes32 word, uint256 offset) internal pure returns (bool) { return (uint256(word >> offset) & _MASK_1) == 1; } // Unsigned /** * @dev Decodes and returns a 10 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint10(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_10; } /** * @dev Decodes and returns a 31 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint31(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_31; } /** * @dev Decodes and returns a 64 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint64(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_64; } // Signed /** * @dev Decodes and returns a 22 bits signed integer shifted by an offset from a 256 bit word. */ function decodeInt22(bytes32 word, uint256 offset) internal pure returns (int256) { int256 value = int256(uint256(word >> offset) & _MASK_22); // In case the decoded value is greater than the max positive integer that can be represented with 22 bits, // we know it was originally a negative integer. Therefore, we mask it to restore the sign in the 256 bit // representation. return value > _MAX_INT_22 ? (value | int256(~_MASK_22)) : value; } /** * @dev Decodes and returns a 53 bits signed integer shifted by an offset from a 256 bit word. */ function decodeInt53(bytes32 word, uint256 offset) internal pure returns (int256) { int256 value = int256(uint256(word >> offset) & _MASK_53); // In case the decoded value is greater than the max positive integer that can be represented with 53 bits, // we know it was originally a negative integer. Therefore, we mask it to restore the sign in the 256 bit // representation. return value > _MAX_INT_53 ? (value | int256(~_MASK_53)) : value; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "./BasePool.sol"; import "@balancer-labs/v2-vault/contracts/interfaces/IGeneralPool.sol"; /** * @dev Extension of `BasePool`, adding a handler for `IGeneralPool.onSwap`. * * Derived contracts must call `BasePool`'s constructor, and implement `_onSwapGivenIn` and `_onSwapGivenOut` along with * `BasePool`'s virtual functions. Inheriting from this contract lets derived contracts choose the General * specialization setting. */ abstract contract BaseGeneralPool is IGeneralPool, BasePool { // Swap Hooks function onSwap( SwapRequest memory swapRequest, uint256[] memory balances, uint256 indexIn, uint256 indexOut ) external view virtual override returns (uint256) { _validateIndexes(indexIn, indexOut, _getTotalTokens()); uint256[] memory scalingFactors = _scalingFactors(); return swapRequest.kind == IVault.SwapKind.GIVEN_IN ? _swapGivenIn(swapRequest, balances, indexIn, indexOut, scalingFactors) : _swapGivenOut(swapRequest, balances, indexIn, indexOut, scalingFactors); } function _swapGivenIn( SwapRequest memory swapRequest, uint256[] memory balances, uint256 indexIn, uint256 indexOut, uint256[] memory scalingFactors ) internal view returns (uint256) { // Fees are subtracted before scaling, to reduce the complexity of the rounding direction analysis. swapRequest.amount = _subtractSwapFeeAmount(swapRequest.amount); _upscaleArray(balances, scalingFactors); swapRequest.amount = _upscale(swapRequest.amount, scalingFactors[indexIn]); uint256 amountOut = _onSwapGivenIn(swapRequest, balances, indexIn, indexOut); // amountOut tokens are exiting the Pool, so we round down. return _downscaleDown(amountOut, scalingFactors[indexOut]); } function _swapGivenOut( SwapRequest memory swapRequest, uint256[] memory balances, uint256 indexIn, uint256 indexOut, uint256[] memory scalingFactors ) internal view returns (uint256) { _upscaleArray(balances, scalingFactors); swapRequest.amount = _upscale(swapRequest.amount, scalingFactors[indexOut]); uint256 amountIn = _onSwapGivenOut(swapRequest, balances, indexIn, indexOut); // amountIn tokens are entering the Pool, so we round up. amountIn = _downscaleUp(amountIn, scalingFactors[indexIn]); // Fees are added after scaling happens, to reduce the complexity of the rounding direction analysis. return _addSwapFeeAmount(amountIn); } /* * @dev Called when a swap with the Pool occurs, where the amount of tokens entering the Pool is known. * * Returns the amount of tokens that will be taken from the Pool in return. * * All amounts inside `swapRequest` and `balances` are upscaled. The swap fee has already been deducted from * `swapRequest.amount`. * * The return value is also considered upscaled, and will be downscaled (rounding down) before returning it to the * Vault. */ function _onSwapGivenIn( SwapRequest memory swapRequest, uint256[] memory balances, uint256 indexIn, uint256 indexOut ) internal view virtual returns (uint256); /* * @dev Called when a swap with the Pool occurs, where the amount of tokens exiting the Pool is known. * * Returns the amount of tokens that will be granted to the Pool in return. * * All amounts inside `swapRequest` and `balances` are upscaled. * * The return value is also considered upscaled, and will be downscaled (rounding up) before applying the swap fee * and returning it to the Vault. */ function _onSwapGivenOut( SwapRequest memory swapRequest, uint256[] memory balances, uint256 indexIn, uint256 indexOut ) internal view virtual returns (uint256); function _validateIndexes( uint256 indexIn, uint256 indexOut, uint256 limit ) private pure { _require(indexIn < limit && indexOut < limit, Errors.OUT_OF_BOUNDS); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "./BasePool.sol"; import "@balancer-labs/v2-vault/contracts/interfaces/IMinimalSwapInfoPool.sol"; /** * @dev Extension of `BasePool`, adding a handler for `IMinimalSwapInfoPool.onSwap`. * * Derived contracts must call `BasePool`'s constructor, and implement `_onSwapGivenIn` and `_onSwapGivenOut` along with * `BasePool`'s virtual functions. Inheriting from this contract lets derived contracts choose the Two Token or Minimal * Swap Info specialization settings. */ abstract contract BaseMinimalSwapInfoPool is IMinimalSwapInfoPool, BasePool { // Swap Hooks function onSwap( SwapRequest memory request, uint256 balanceTokenIn, uint256 balanceTokenOut ) external view virtual override returns (uint256) { uint256 scalingFactorTokenIn = _scalingFactor(request.tokenIn); uint256 scalingFactorTokenOut = _scalingFactor(request.tokenOut); if (request.kind == IVault.SwapKind.GIVEN_IN) { // Fees are subtracted before scaling, to reduce the complexity of the rounding direction analysis. request.amount = _subtractSwapFeeAmount(request.amount); // All token amounts are upscaled. balanceTokenIn = _upscale(balanceTokenIn, scalingFactorTokenIn); balanceTokenOut = _upscale(balanceTokenOut, scalingFactorTokenOut); request.amount = _upscale(request.amount, scalingFactorTokenIn); uint256 amountOut = _onSwapGivenIn(request, balanceTokenIn, balanceTokenOut); // amountOut tokens are exiting the Pool, so we round down. return _downscaleDown(amountOut, scalingFactorTokenOut); } else { // All token amounts are upscaled. balanceTokenIn = _upscale(balanceTokenIn, scalingFactorTokenIn); balanceTokenOut = _upscale(balanceTokenOut, scalingFactorTokenOut); request.amount = _upscale(request.amount, scalingFactorTokenOut); uint256 amountIn = _onSwapGivenOut(request, balanceTokenIn, balanceTokenOut); // amountIn tokens are entering the Pool, so we round up. amountIn = _downscaleUp(amountIn, scalingFactorTokenIn); // Fees are added after scaling happens, to reduce the complexity of the rounding direction analysis. return _addSwapFeeAmount(amountIn); } } /* * @dev Called when a swap with the Pool occurs, where the amount of tokens entering the Pool is known. * * Returns the amount of tokens that will be taken from the Pool in return. * * All amounts inside `swapRequest`, `balanceTokenIn` and `balanceTokenOut` are upscaled. The swap fee has already * been deducted from `swapRequest.amount`. * * The return value is also considered upscaled, and will be downscaled (rounding down) before returning it to the * Vault. */ function _onSwapGivenIn( SwapRequest memory swapRequest, uint256 balanceTokenIn, uint256 balanceTokenOut ) internal view virtual returns (uint256); /* * @dev Called when a swap with the Pool occurs, where the amount of tokens exiting the Pool is known. * * Returns the amount of tokens that will be granted to the Pool in return. * * All amounts inside `swapRequest`, `balanceTokenIn` and `balanceTokenOut` are upscaled. * * The return value is also considered upscaled, and will be downscaled (rounding up) before applying the swap fee * and returning it to the Vault. */ function _onSwapGivenOut( SwapRequest memory swapRequest, uint256 balanceTokenIn, uint256 balanceTokenOut ) internal view virtual returns (uint256); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol"; import "./StablePool.sol"; library StablePoolUserDataHelpers { function joinKind(bytes memory self) internal pure returns (StablePool.JoinKind) { return abi.decode(self, (StablePool.JoinKind)); } function exitKind(bytes memory self) internal pure returns (StablePool.ExitKind) { return abi.decode(self, (StablePool.ExitKind)); } // Joins function initialAmountsIn(bytes memory self) internal pure returns (uint256[] memory amountsIn) { (, amountsIn) = abi.decode(self, (StablePool.JoinKind, uint256[])); } function exactTokensInForBptOut(bytes memory self) internal pure returns (uint256[] memory amountsIn, uint256 minBPTAmountOut) { (, amountsIn, minBPTAmountOut) = abi.decode(self, (StablePool.JoinKind, uint256[], uint256)); } function tokenInForExactBptOut(bytes memory self) internal pure returns (uint256 bptAmountOut, uint256 tokenIndex) { (, bptAmountOut, tokenIndex) = abi.decode(self, (StablePool.JoinKind, uint256, uint256)); } // Exits function exactBptInForTokenOut(bytes memory self) internal pure returns (uint256 bptAmountIn, uint256 tokenIndex) { (, bptAmountIn, tokenIndex) = abi.decode(self, (StablePool.ExitKind, uint256, uint256)); } function exactBptInForTokensOut(bytes memory self) internal pure returns (uint256 bptAmountIn) { (, bptAmountIn) = abi.decode(self, (StablePool.ExitKind, uint256)); } function bptInForExactTokensOut(bytes memory self) internal pure returns (uint256[] memory amountsOut, uint256 maxBPTAmountIn) { (, amountsOut, maxBPTAmountIn) = abi.decode(self, (StablePool.ExitKind, uint256[], uint256)); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address sender, address recipient, uint256 amount ) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/math/Math.sol"; import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/InputHelpers.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/TemporarilyPausable.sol"; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ERC20.sol"; import "@balancer-labs/v2-vault/contracts/interfaces/IVault.sol"; import "@balancer-labs/v2-vault/contracts/interfaces/IBasePool.sol"; import "./BalancerPoolToken.sol"; import "./BasePoolAuthorization.sol"; import "@balancer-labs/v2-asset-manager-utils/contracts/IAssetManager.sol"; // This contract relies on tons of immutable state variables to perform efficient lookup, without resorting to storage // reads. Because immutable arrays are not supported, we instead declare a fixed set of state variables plus a total // count, resulting in a large number of state variables. // solhint-disable max-states-count /** * @dev Reference implementation for the base layer of a Pool contract that manages a single Pool with an immutable set * of registered tokens, no Asset Managers, an admin-controlled swap fee percentage, and an emergency pause mechanism. * * Note that neither swap fees nor the pause mechanism are used by this contract. They are passed through so that * derived contracts can use them via the `_addSwapFeeAmount` and `_subtractSwapFeeAmount` functions, and the * `whenNotPaused` modifier. * * No admin permissions are checked here: instead, this contract delegates that to the Vault's own Authorizer. * * Because this contract doesn't implement the swap hooks, derived contracts should generally inherit from * BaseGeneralPool or BaseMinimalSwapInfoPool. Otherwise, subclasses must inherit from the corresponding interfaces * and implement the swap callbacks themselves. */ abstract contract BasePool is IBasePool, BasePoolAuthorization, BalancerPoolToken, TemporarilyPausable { using FixedPoint for uint256; uint256 private constant _MIN_TOKENS = 2; uint256 private constant _MAX_TOKENS = 8; // 1e18 corresponds to 1.0, or a 100% fee uint256 private constant _MIN_SWAP_FEE_PERCENTAGE = 1e12; // 0.0001% uint256 private constant _MAX_SWAP_FEE_PERCENTAGE = 1e17; // 10% uint256 private constant _MINIMUM_BPT = 1e6; uint256 internal _swapFeePercentage; IVault private immutable _vault; bytes32 private immutable _poolId; uint256 private immutable _totalTokens; IERC20 internal immutable _token0; IERC20 internal immutable _token1; IERC20 internal immutable _token2; IERC20 internal immutable _token3; IERC20 internal immutable _token4; IERC20 internal immutable _token5; IERC20 internal immutable _token6; IERC20 internal immutable _token7; // All token balances are normalized to behave as if the token had 18 decimals. We assume a token's decimals will // not change throughout its lifetime, and store the corresponding scaling factor for each at construction time. // These factors are always greater than or equal to one: tokens with more than 18 decimals are not supported. uint256 private immutable _scalingFactor0; uint256 private immutable _scalingFactor1; uint256 private immutable _scalingFactor2; uint256 private immutable _scalingFactor3; uint256 private immutable _scalingFactor4; uint256 private immutable _scalingFactor5; uint256 private immutable _scalingFactor6; uint256 private immutable _scalingFactor7; event SwapFeePercentageChanged(uint256 swapFeePercentage); constructor( IVault vault, IVault.PoolSpecialization specialization, string memory name, string memory symbol, IERC20[] memory tokens, address[] memory assetManagers, uint256 swapFeePercentage, uint256 pauseWindowDuration, uint256 bufferPeriodDuration, address owner ) // Base Pools are expected to be deployed using factories. By using the factory address as the action // disambiguator, we make all Pools deployed by the same factory share action identifiers. This allows for // simpler management of permissions (such as being able to manage granting the 'set fee percentage' action in // any Pool created by the same factory), while still making action identifiers unique among different factories // if the selectors match, preventing accidental errors. Authentication(bytes32(uint256(msg.sender))) BalancerPoolToken(name, symbol) BasePoolAuthorization(owner) TemporarilyPausable(pauseWindowDuration, bufferPeriodDuration) { _require(tokens.length >= _MIN_TOKENS, Errors.MIN_TOKENS); _require(tokens.length <= _MAX_TOKENS, Errors.MAX_TOKENS); // The Vault only requires the token list to be ordered for the Two Token Pools specialization. However, // to make the developer experience consistent, we are requiring this condition for all the native pools. // Also, since these Pools will register tokens only once, we can ensure the Pool tokens will follow the same // order. We rely on this property to make Pools simpler to write, as it lets us assume that the // order of token-specific parameters (such as token weights) will not change. InputHelpers.ensureArrayIsSorted(tokens); _setSwapFeePercentage(swapFeePercentage); bytes32 poolId = vault.registerPool(specialization); vault.registerTokens(poolId, tokens, assetManagers); // Set immutable state variables - these cannot be read from during construction uint256 totalTokens = tokens.length; _vault = vault; _poolId = poolId; _totalTokens = totalTokens; // Immutable variables cannot be initialized inside an if statement, so we must do conditional assignments _token0 = totalTokens > 0 ? tokens[0] : IERC20(0); _token1 = totalTokens > 1 ? tokens[1] : IERC20(0); _token2 = totalTokens > 2 ? tokens[2] : IERC20(0); _token3 = totalTokens > 3 ? tokens[3] : IERC20(0); _token4 = totalTokens > 4 ? tokens[4] : IERC20(0); _token5 = totalTokens > 5 ? tokens[5] : IERC20(0); _token6 = totalTokens > 6 ? tokens[6] : IERC20(0); _token7 = totalTokens > 7 ? tokens[7] : IERC20(0); _scalingFactor0 = totalTokens > 0 ? _computeScalingFactor(tokens[0]) : 0; _scalingFactor1 = totalTokens > 1 ? _computeScalingFactor(tokens[1]) : 0; _scalingFactor2 = totalTokens > 2 ? _computeScalingFactor(tokens[2]) : 0; _scalingFactor3 = totalTokens > 3 ? _computeScalingFactor(tokens[3]) : 0; _scalingFactor4 = totalTokens > 4 ? _computeScalingFactor(tokens[4]) : 0; _scalingFactor5 = totalTokens > 5 ? _computeScalingFactor(tokens[5]) : 0; _scalingFactor6 = totalTokens > 6 ? _computeScalingFactor(tokens[6]) : 0; _scalingFactor7 = totalTokens > 7 ? _computeScalingFactor(tokens[7]) : 0; } // Getters / Setters function getVault() public view returns (IVault) { return _vault; } function getPoolId() public view override returns (bytes32) { return _poolId; } function _getTotalTokens() internal view returns (uint256) { return _totalTokens; } function getSwapFeePercentage() external view returns (uint256) { return _swapFeePercentage; } function setSwapFeePercentage(uint256 swapFeePercentage) public virtual authenticate whenNotPaused { _setSwapFeePercentage(swapFeePercentage); } function _setSwapFeePercentage(uint256 swapFeePercentage) private { _require(swapFeePercentage >= _MIN_SWAP_FEE_PERCENTAGE, Errors.MIN_SWAP_FEE_PERCENTAGE); _require(swapFeePercentage <= _MAX_SWAP_FEE_PERCENTAGE, Errors.MAX_SWAP_FEE_PERCENTAGE); _swapFeePercentage = swapFeePercentage; emit SwapFeePercentageChanged(swapFeePercentage); } function setAssetManagerPoolConfig(IERC20 token, bytes memory poolConfig) public virtual authenticate whenNotPaused { _setAssetManagerPoolConfig(token, poolConfig); } function _setAssetManagerPoolConfig(IERC20 token, bytes memory poolConfig) private { bytes32 poolId = getPoolId(); (, , , address assetManager) = getVault().getPoolTokenInfo(poolId, token); IAssetManager(assetManager).setConfig(poolId, poolConfig); } function setPaused(bool paused) external authenticate { _setPaused(paused); } function _isOwnerOnlyAction(bytes32 actionId) internal view virtual override returns (bool) { return (actionId == getActionId(this.setSwapFeePercentage.selector)) || (actionId == getActionId(this.setAssetManagerPoolConfig.selector)); } // Join / Exit Hooks modifier onlyVault(bytes32 poolId) { _require(msg.sender == address(getVault()), Errors.CALLER_NOT_VAULT); _require(poolId == getPoolId(), Errors.INVALID_POOL_ID); _; } function onJoinPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) public virtual override onlyVault(poolId) returns (uint256[] memory, uint256[] memory) { uint256[] memory scalingFactors = _scalingFactors(); if (totalSupply() == 0) { (uint256 bptAmountOut, uint256[] memory amountsIn) = _onInitializePool( poolId, sender, recipient, scalingFactors, userData ); // On initialization, we lock _MINIMUM_BPT by minting it for the zero address. This BPT acts as a minimum // as it will never be burned, which reduces potential issues with rounding, and also prevents the Pool from // ever being fully drained. _require(bptAmountOut >= _MINIMUM_BPT, Errors.MINIMUM_BPT); _mintPoolTokens(address(0), _MINIMUM_BPT); _mintPoolTokens(recipient, bptAmountOut - _MINIMUM_BPT); // amountsIn are amounts entering the Pool, so we round up. _downscaleUpArray(amountsIn, scalingFactors); return (amountsIn, new uint256[](_getTotalTokens())); } else { _upscaleArray(balances, scalingFactors); (uint256 bptAmountOut, uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts) = _onJoinPool( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, scalingFactors, userData ); // Note we no longer use `balances` after calling `_onJoinPool`, which may mutate it. _mintPoolTokens(recipient, bptAmountOut); // amountsIn are amounts entering the Pool, so we round up. _downscaleUpArray(amountsIn, scalingFactors); // dueProtocolFeeAmounts are amounts exiting the Pool, so we round down. _downscaleDownArray(dueProtocolFeeAmounts, scalingFactors); return (amountsIn, dueProtocolFeeAmounts); } } function onExitPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) public virtual override onlyVault(poolId) returns (uint256[] memory, uint256[] memory) { uint256[] memory scalingFactors = _scalingFactors(); _upscaleArray(balances, scalingFactors); (uint256 bptAmountIn, uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts) = _onExitPool( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, scalingFactors, userData ); // Note we no longer use `balances` after calling `_onExitPool`, which may mutate it. _burnPoolTokens(sender, bptAmountIn); // Both amountsOut and dueProtocolFeeAmounts are amounts exiting the Pool, so we round down. _downscaleDownArray(amountsOut, scalingFactors); _downscaleDownArray(dueProtocolFeeAmounts, scalingFactors); return (amountsOut, dueProtocolFeeAmounts); } // Query functions /** * @dev Returns the amount of BPT that would be granted to `recipient` if the `onJoinPool` hook were called by the * Vault with the same arguments, along with the number of tokens `sender` would have to supply. * * This function is not meant to be called directly, but rather from a helper contract that fetches current Vault * data, such as the protocol swap fee percentage and Pool balances. * * Like `IVault.queryBatchSwap`, this function is not view due to internal implementation details: the caller must * explicitly use eth_call instead of eth_sendTransaction. */ function queryJoin( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) external returns (uint256 bptOut, uint256[] memory amountsIn) { InputHelpers.ensureInputLengthMatch(balances.length, _getTotalTokens()); _queryAction( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, userData, _onJoinPool, _downscaleUpArray ); // The `return` opcode is executed directly inside `_queryAction`, so execution never reaches this statement, // and we don't need to return anything here - it just silences compiler warnings. return (bptOut, amountsIn); } /** * @dev Returns the amount of BPT that would be burned from `sender` if the `onExitPool` hook were called by the * Vault with the same arguments, along with the number of tokens `recipient` would receive. * * This function is not meant to be called directly, but rather from a helper contract that fetches current Vault * data, such as the protocol swap fee percentage and Pool balances. * * Like `IVault.queryBatchSwap`, this function is not view due to internal implementation details: the caller must * explicitly use eth_call instead of eth_sendTransaction. */ function queryExit( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) external returns (uint256 bptIn, uint256[] memory amountsOut) { InputHelpers.ensureInputLengthMatch(balances.length, _getTotalTokens()); _queryAction( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, userData, _onExitPool, _downscaleDownArray ); // The `return` opcode is executed directly inside `_queryAction`, so execution never reaches this statement, // and we don't need to return anything here - it just silences compiler warnings. return (bptIn, amountsOut); } // Internal hooks to be overridden by derived contracts - all token amounts (except BPT) in these interfaces are // upscaled. /** * @dev Called when the Pool is joined for the first time; that is, when the BPT total supply is zero. * * Returns the amount of BPT to mint, and the token amounts the Pool will receive in return. * * Minted BPT will be sent to `recipient`, except for _MINIMUM_BPT, which will be deducted from this amount and sent * to the zero address instead. This will cause that BPT to remain forever locked there, preventing total BTP from * ever dropping below that value, and ensuring `_onInitializePool` can only be called once in the entire Pool's * lifetime. * * The tokens granted to the Pool will be transferred from `sender`. These amounts are considered upscaled and will * be downscaled (rounding up) before being returned to the Vault. */ function _onInitializePool( bytes32 poolId, address sender, address recipient, uint256[] memory scalingFactors, bytes memory userData ) internal virtual returns (uint256 bptAmountOut, uint256[] memory amountsIn); /** * @dev Called whenever the Pool is joined after the first initialization join (see `_onInitializePool`). * * Returns the amount of BPT to mint, the token amounts that the Pool will receive in return, and the number of * tokens to pay in protocol swap fees. * * Implementations of this function might choose to mutate the `balances` array to save gas (e.g. when * performing intermediate calculations, such as subtraction of due protocol fees). This can be done safely. * * Minted BPT will be sent to `recipient`. * * The tokens granted to the Pool will be transferred from `sender`. These amounts are considered upscaled and will * be downscaled (rounding up) before being returned to the Vault. * * Due protocol swap fees will be taken from the Pool's balance in the Vault (see `IBasePool.onJoinPool`). These * amounts are considered upscaled and will be downscaled (rounding down) before being returned to the Vault. */ function _onJoinPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, uint256[] memory scalingFactors, bytes memory userData ) internal virtual returns ( uint256 bptAmountOut, uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts ); /** * @dev Called whenever the Pool is exited. * * Returns the amount of BPT to burn, the token amounts for each Pool token that the Pool will grant in return, and * the number of tokens to pay in protocol swap fees. * * Implementations of this function might choose to mutate the `balances` array to save gas (e.g. when * performing intermediate calculations, such as subtraction of due protocol fees). This can be done safely. * * BPT will be burnt from `sender`. * * The Pool will grant tokens to `recipient`. These amounts are considered upscaled and will be downscaled * (rounding down) before being returned to the Vault. * * Due protocol swap fees will be taken from the Pool's balance in the Vault (see `IBasePool.onExitPool`). These * amounts are considered upscaled and will be downscaled (rounding down) before being returned to the Vault. */ function _onExitPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, uint256[] memory scalingFactors, bytes memory userData ) internal virtual returns ( uint256 bptAmountIn, uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts ); // Internal functions /** * @dev Adds swap fee amount to `amount`, returning a higher value. */ function _addSwapFeeAmount(uint256 amount) internal view returns (uint256) { // This returns amount + fee amount, so we round up (favoring a higher fee amount). return amount.divUp(FixedPoint.ONE.sub(_swapFeePercentage)); } /** * @dev Subtracts swap fee amount from `amount`, returning a lower value. */ function _subtractSwapFeeAmount(uint256 amount) internal view returns (uint256) { // This returns amount - fee amount, so we round up (favoring a higher fee amount). uint256 feeAmount = amount.mulUp(_swapFeePercentage); return amount.sub(feeAmount); } // Scaling /** * @dev Returns a scaling factor that, when multiplied to a token amount for `token`, normalizes its balance as if * it had 18 decimals. */ function _computeScalingFactor(IERC20 token) private view returns (uint256) { // Tokens that don't implement the `decimals` method are not supported. uint256 tokenDecimals = ERC20(address(token)).decimals(); // Tokens with more than 18 decimals are not supported. uint256 decimalsDifference = Math.sub(18, tokenDecimals); return FixedPoint.ONE * 10**decimalsDifference; } /** * @dev Returns the scaling factor for one of the Pool's tokens. Reverts if `token` is not a token registered by the * Pool. * * All scaling factors are fixed-point values with 18 decimals, to allow for this function to be overridden by * derived contracts that need to apply further scaling, making these factors potentially non-integer. * * The largest 'base' scaling factor (i.e. in tokens with less than 18 decimals) is 10**18, which in fixed-point is * 10**36. This value can be multiplied with a 112 bit Vault balance with no overflow by a factor of ~1e7, making * even relatively 'large' factors safe to use. * * The 1e7 figure is the result of 2**256 / (1e18 * 1e18 * 2**112). */ function _scalingFactor(IERC20 token) internal view virtual returns (uint256) { // prettier-ignore if (token == _token0) { return _scalingFactor0; } else if (token == _token1) { return _scalingFactor1; } else if (token == _token2) { return _scalingFactor2; } else if (token == _token3) { return _scalingFactor3; } else if (token == _token4) { return _scalingFactor4; } else if (token == _token5) { return _scalingFactor5; } else if (token == _token6) { return _scalingFactor6; } else if (token == _token7) { return _scalingFactor7; } else { _revert(Errors.INVALID_TOKEN); } } /** * @dev Same as `_scalingFactor()`, except for all registered tokens (in the same order as registered). The Vault * will always pass balances in this order when calling any of the Pool hooks. */ function _scalingFactors() internal view virtual returns (uint256[] memory) { uint256 totalTokens = _getTotalTokens(); uint256[] memory scalingFactors = new uint256[](totalTokens); // prettier-ignore { if (totalTokens > 0) { scalingFactors[0] = _scalingFactor0; } else { return scalingFactors; } if (totalTokens > 1) { scalingFactors[1] = _scalingFactor1; } else { return scalingFactors; } if (totalTokens > 2) { scalingFactors[2] = _scalingFactor2; } else { return scalingFactors; } if (totalTokens > 3) { scalingFactors[3] = _scalingFactor3; } else { return scalingFactors; } if (totalTokens > 4) { scalingFactors[4] = _scalingFactor4; } else { return scalingFactors; } if (totalTokens > 5) { scalingFactors[5] = _scalingFactor5; } else { return scalingFactors; } if (totalTokens > 6) { scalingFactors[6] = _scalingFactor6; } else { return scalingFactors; } if (totalTokens > 7) { scalingFactors[7] = _scalingFactor7; } else { return scalingFactors; } } return scalingFactors; } /** * @dev Applies `scalingFactor` to `amount`, resulting in a larger or equal value depending on whether it needed * scaling or not. */ function _upscale(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) { // Upscale rounding wouldn't necessarily always go in the same direction: in a swap for example the balance of // token in should be rounded up, and that of token out rounded down. This is the only place where we round in // the same direction for all amounts, as the impact of this rounding is expected to be minimal (and there's no // rounding error unless `_scalingFactor()` is overriden). return FixedPoint.mulDown(amount, scalingFactor); } /** * @dev Same as `_upscale`, but for an entire array. This function does not return anything, but instead *mutates* * the `amounts` array. */ function _upscaleArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal view { for (uint256 i = 0; i < _getTotalTokens(); ++i) { amounts[i] = FixedPoint.mulDown(amounts[i], scalingFactors[i]); } } /** * @dev Reverses the `scalingFactor` applied to `amount`, resulting in a smaller or equal value depending on * whether it needed scaling or not. The result is rounded down. */ function _downscaleDown(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) { return FixedPoint.divDown(amount, scalingFactor); } /** * @dev Same as `_downscaleDown`, but for an entire array. This function does not return anything, but instead * *mutates* the `amounts` array. */ function _downscaleDownArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal view { for (uint256 i = 0; i < _getTotalTokens(); ++i) { amounts[i] = FixedPoint.divDown(amounts[i], scalingFactors[i]); } } /** * @dev Reverses the `scalingFactor` applied to `amount`, resulting in a smaller or equal value depending on * whether it needed scaling or not. The result is rounded up. */ function _downscaleUp(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) { return FixedPoint.divUp(amount, scalingFactor); } /** * @dev Same as `_downscaleUp`, but for an entire array. This function does not return anything, but instead * *mutates* the `amounts` array. */ function _downscaleUpArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal view { for (uint256 i = 0; i < _getTotalTokens(); ++i) { amounts[i] = FixedPoint.divUp(amounts[i], scalingFactors[i]); } } function _getAuthorizer() internal view override returns (IAuthorizer) { // Access control management is delegated to the Vault's Authorizer. This lets Balancer Governance manage which // accounts can call permissioned functions: for example, to perform emergency pauses. // If the owner is delegated, then *all* permissioned functions, including `setSwapFeePercentage`, will be under // Governance control. return getVault().getAuthorizer(); } function _queryAction( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData, function(bytes32, address, address, uint256[] memory, uint256, uint256, uint256[] memory, bytes memory) internal returns (uint256, uint256[] memory, uint256[] memory) _action, function(uint256[] memory, uint256[] memory) internal view _downscaleArray ) private { // This uses the same technique used by the Vault in queryBatchSwap. Refer to that function for a detailed // explanation. if (msg.sender != address(this)) { // We perform an external call to ourselves, forwarding the same calldata. In this call, the else clause of // the preceding if statement will be executed instead. // solhint-disable-next-line avoid-low-level-calls (bool success, ) = address(this).call(msg.data); // solhint-disable-next-line no-inline-assembly assembly { // This call should always revert to decode the bpt and token amounts from the revert reason switch success case 0 { // Note we are manually writing the memory slot 0. We can safely overwrite whatever is // stored there as we take full control of the execution and then immediately return. // We copy the first 4 bytes to check if it matches with the expected signature, otherwise // there was another revert reason and we should forward it. returndatacopy(0, 0, 0x04) let error := and(mload(0), 0xffffffff00000000000000000000000000000000000000000000000000000000) // If the first 4 bytes don't match with the expected signature, we forward the revert reason. if eq(eq(error, 0x43adbafb00000000000000000000000000000000000000000000000000000000), 0) { returndatacopy(0, 0, returndatasize()) revert(0, returndatasize()) } // The returndata contains the signature, followed by the raw memory representation of the // `bptAmount` and `tokenAmounts` (array: length + data). We need to return an ABI-encoded // representation of these. // An ABI-encoded response will include one additional field to indicate the starting offset of // the `tokenAmounts` array. The `bptAmount` will be laid out in the first word of the // returndata. // // In returndata: // [ signature ][ bptAmount ][ tokenAmounts length ][ tokenAmounts values ] // [ 4 bytes ][ 32 bytes ][ 32 bytes ][ (32 * length) bytes ] // // We now need to return (ABI-encoded values): // [ bptAmount ][ tokeAmounts offset ][ tokenAmounts length ][ tokenAmounts values ] // [ 32 bytes ][ 32 bytes ][ 32 bytes ][ (32 * length) bytes ] // We copy 32 bytes for the `bptAmount` from returndata into memory. // Note that we skip the first 4 bytes for the error signature returndatacopy(0, 0x04, 32) // The offsets are 32-bytes long, so the array of `tokenAmounts` will start after // the initial 64 bytes. mstore(0x20, 64) // We now copy the raw memory array for the `tokenAmounts` from returndata into memory. // Since bpt amount and offset take up 64 bytes, we start copying at address 0x40. We also // skip the first 36 bytes from returndata, which correspond to the signature plus bpt amount. returndatacopy(0x40, 0x24, sub(returndatasize(), 36)) // We finally return the ABI-encoded uint256 and the array, which has a total length equal to // the size of returndata, plus the 32 bytes of the offset but without the 4 bytes of the // error signature. return(0, add(returndatasize(), 28)) } default { // This call should always revert, but we fail nonetheless if that didn't happen invalid() } } } else { uint256[] memory scalingFactors = _scalingFactors(); _upscaleArray(balances, scalingFactors); (uint256 bptAmount, uint256[] memory tokenAmounts, ) = _action( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, scalingFactors, userData ); _downscaleArray(tokenAmounts, scalingFactors); // solhint-disable-next-line no-inline-assembly assembly { // We will return a raw representation of `bptAmount` and `tokenAmounts` in memory, which is composed of // a 32-byte uint256, followed by a 32-byte for the array length, and finally the 32-byte uint256 values // Because revert expects a size in bytes, we multiply the array length (stored at `tokenAmounts`) by 32 let size := mul(mload(tokenAmounts), 32) // We store the `bptAmount` in the previous slot to the `tokenAmounts` array. We can make sure there // will be at least one available slot due to how the memory scratch space works. // We can safely overwrite whatever is stored in this slot as we will revert immediately after that. let start := sub(tokenAmounts, 0x20) mstore(start, bptAmount) // We send one extra value for the error signature "QueryError(uint256,uint256[])" which is 0x43adbafb // We use the previous slot to `bptAmount`. mstore(sub(start, 0x20), 0x0000000000000000000000000000000000000000000000000000000043adbafb) start := sub(start, 0x04) // When copying from `tokenAmounts` into returndata, we copy the additional 68 bytes to also return // the `bptAmount`, the array 's length, and the error signature. revert(start, add(size, 68)) } } } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "./IBasePool.sol"; /** * @dev IPools with the General specialization setting should implement this interface. * * This is called by the Vault when a user calls `IVault.swap` or `IVault.batchSwap` to swap with this Pool. * Returns the number of tokens the Pool will grant to the user in a 'given in' swap, or that the user will * grant to the pool in a 'given out' swap. * * This can often be implemented by a `view` function, since many pricing algorithms don't need to track state * changes in swaps. However, contracts implementing this in non-view functions should check that the caller is * indeed the Vault. */ interface IGeneralPool is IBasePool { function onSwap( SwapRequest memory swapRequest, uint256[] memory balances, uint256 indexIn, uint256 indexOut ) external returns (uint256 amount); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "./BalancerErrors.sol"; import "./ITemporarilyPausable.sol"; /** * @dev Allows for a contract to be paused during an initial period after deployment, disabling functionality. Can be * used as an emergency switch in case a security vulnerability or threat is identified. * * The contract can only be paused during the Pause Window, a period that starts at deployment. It can also be * unpaused and repaused any number of times during this period. This is intended to serve as a safety measure: it lets * system managers react quickly to potentially dangerous situations, knowing that this action is reversible if careful * analysis later determines there was a false alarm. * * If the contract is paused when the Pause Window finishes, it will remain in the paused state through an additional * Buffer Period, after which it will be automatically unpaused forever. This is to ensure there is always enough time * to react to an emergency, even if the threat is discovered shortly before the Pause Window expires. * * Note that since the contract can only be paused within the Pause Window, unpausing during the Buffer Period is * irreversible. */ abstract contract TemporarilyPausable is ITemporarilyPausable { // The Pause Window and Buffer Period are timestamp-based: they should not be relied upon for sub-minute accuracy. // solhint-disable not-rely-on-time uint256 private constant _MAX_PAUSE_WINDOW_DURATION = 90 days; uint256 private constant _MAX_BUFFER_PERIOD_DURATION = 30 days; uint256 private immutable _pauseWindowEndTime; uint256 private immutable _bufferPeriodEndTime; bool private _paused; constructor(uint256 pauseWindowDuration, uint256 bufferPeriodDuration) { _require(pauseWindowDuration <= _MAX_PAUSE_WINDOW_DURATION, Errors.MAX_PAUSE_WINDOW_DURATION); _require(bufferPeriodDuration <= _MAX_BUFFER_PERIOD_DURATION, Errors.MAX_BUFFER_PERIOD_DURATION); uint256 pauseWindowEndTime = block.timestamp + pauseWindowDuration; _pauseWindowEndTime = pauseWindowEndTime; _bufferPeriodEndTime = pauseWindowEndTime + bufferPeriodDuration; } /** * @dev Reverts if the contract is paused. */ modifier whenNotPaused() { _ensureNotPaused(); _; } /** * @dev Returns the current contract pause status, as well as the end times of the Pause Window and Buffer * Period. */ function getPausedState() external view override returns ( bool paused, uint256 pauseWindowEndTime, uint256 bufferPeriodEndTime ) { paused = !_isNotPaused(); pauseWindowEndTime = _getPauseWindowEndTime(); bufferPeriodEndTime = _getBufferPeriodEndTime(); } /** * @dev Sets the pause state to `paused`. The contract can only be paused until the end of the Pause Window, and * unpaused until the end of the Buffer Period. * * Once the Buffer Period expires, this function reverts unconditionally. */ function _setPaused(bool paused) internal { if (paused) { _require(block.timestamp < _getPauseWindowEndTime(), Errors.PAUSE_WINDOW_EXPIRED); } else { _require(block.timestamp < _getBufferPeriodEndTime(), Errors.BUFFER_PERIOD_EXPIRED); } _paused = paused; emit PausedStateChanged(paused); } /** * @dev Reverts if the contract is paused. */ function _ensureNotPaused() internal view { _require(_isNotPaused(), Errors.PAUSED); } /** * @dev Returns true if the contract is unpaused. * * Once the Buffer Period expires, the gas cost of calling this function is reduced dramatically, as storage is no * longer accessed. */ function _isNotPaused() internal view returns (bool) { // After the Buffer Period, the (inexpensive) timestamp check short-circuits the storage access. return block.timestamp > _getBufferPeriodEndTime() || !_paused; } // These getters lead to reduced bytecode size by inlining the immutable variables in a single place. function _getPauseWindowEndTime() private view returns (uint256) { return _pauseWindowEndTime; } function _getBufferPeriodEndTime() private view returns (uint256) { return _bufferPeriodEndTime; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "../helpers/BalancerErrors.sol"; import "./IERC20.sol"; import "./SafeMath.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is IERC20 { using SafeMath for uint256; mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; uint8 private _decimals; /** * @dev Sets the values for {name} and {symbol}, initializes {decimals} with * a default value of 18. * * To select a different value for {decimals}, use {_setupDecimals}. * * All three of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; _decimals = 18; } /** * @dev Returns the name of the token. */ function name() public view returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is * called. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view returns (uint8) { return _decimals; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(msg.sender, recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(msg.sender, spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * Requirements: * * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom( address sender, address recipient, uint256 amount ) public virtual override returns (bool) { _transfer(sender, recipient, amount); _approve( sender, msg.sender, _allowances[sender][msg.sender].sub(amount, Errors.ERC20_TRANSFER_EXCEEDS_ALLOWANCE) ); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve(msg.sender, spender, _allowances[msg.sender][spender].add(addedValue)); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { _approve( msg.sender, spender, _allowances[msg.sender][spender].sub(subtractedValue, Errors.ERC20_DECREASED_ALLOWANCE_BELOW_ZERO) ); return true; } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer( address sender, address recipient, uint256 amount ) internal virtual { _require(sender != address(0), Errors.ERC20_TRANSFER_FROM_ZERO_ADDRESS); _require(recipient != address(0), Errors.ERC20_TRANSFER_TO_ZERO_ADDRESS); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, Errors.ERC20_TRANSFER_EXCEEDS_BALANCE); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { _beforeTokenTransfer(address(0), account, amount); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { _require(account != address(0), Errors.ERC20_BURN_FROM_ZERO_ADDRESS); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub(amount, Errors.ERC20_BURN_EXCEEDS_ALLOWANCE); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve( address owner, address spender, uint256 amount ) internal virtual { _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {} }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/ISignaturesValidator.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/ITemporarilyPausable.sol"; import "@balancer-labs/v2-solidity-utils/contracts/misc/IWETH.sol"; import "./IAsset.sol"; import "./IAuthorizer.sol"; import "./IFlashLoanRecipient.sol"; import "./IProtocolFeesCollector.sol"; pragma solidity ^0.7.0; /** * @dev Full external interface for the Vault core contract - no external or public methods exist in the contract that * don't override one of these declarations. */ interface IVault is ISignaturesValidator, ITemporarilyPausable { // Generalities about the Vault: // // - Whenever documentation refers to 'tokens', it strictly refers to ERC20-compliant token contracts. Tokens are // transferred out of the Vault by calling the `IERC20.transfer` function, and transferred in by calling // `IERC20.transferFrom`. In these cases, the sender must have previously allowed the Vault to use their tokens by // calling `IERC20.approve`. The only deviation from the ERC20 standard that is supported is functions not returning // a boolean value: in these scenarios, a non-reverting call is assumed to be successful. // // - All non-view functions in the Vault are non-reentrant: calling them while another one is mid-execution (e.g. // while execution control is transferred to a token contract during a swap) will result in a revert. View // functions can be called in a re-reentrant way, but doing so might cause them to return inconsistent results. // Contracts calling view functions in the Vault must make sure the Vault has not already been entered. // // - View functions revert if referring to either unregistered Pools, or unregistered tokens for registered Pools. // Authorizer // // Some system actions are permissioned, like setting and collecting protocol fees. This permissioning system exists // outside of the Vault in the Authorizer contract: the Vault simply calls the Authorizer to check if the caller // can perform a given action. /** * @dev Returns the Vault's Authorizer. */ function getAuthorizer() external view returns (IAuthorizer); /** * @dev Sets a new Authorizer for the Vault. The caller must be allowed by the current Authorizer to do this. * * Emits an `AuthorizerChanged` event. */ function setAuthorizer(IAuthorizer newAuthorizer) external; /** * @dev Emitted when a new authorizer is set by `setAuthorizer`. */ event AuthorizerChanged(IAuthorizer indexed newAuthorizer); // Relayers // // Additionally, it is possible for an account to perform certain actions on behalf of another one, using their // Vault ERC20 allowance and Internal Balance. These accounts are said to be 'relayers' for these Vault functions, // and are expected to be smart contracts with sound authentication mechanisms. For an account to be able to wield // this power, two things must occur: // - The Authorizer must grant the account the permission to be a relayer for the relevant Vault function. This // means that Balancer governance must approve each individual contract to act as a relayer for the intended // functions. // - Each user must approve the relayer to act on their behalf. // This double protection means users cannot be tricked into approving malicious relayers (because they will not // have been allowed by the Authorizer via governance), nor can malicious relayers approved by a compromised // Authorizer or governance drain user funds, since they would also need to be approved by each individual user. /** * @dev Returns true if `user` has approved `relayer` to act as a relayer for them. */ function hasApprovedRelayer(address user, address relayer) external view returns (bool); /** * @dev Allows `relayer` to act as a relayer for `sender` if `approved` is true, and disallows it otherwise. * * Emits a `RelayerApprovalChanged` event. */ function setRelayerApproval( address sender, address relayer, bool approved ) external; /** * @dev Emitted every time a relayer is approved or disapproved by `setRelayerApproval`. */ event RelayerApprovalChanged(address indexed relayer, address indexed sender, bool approved); // Internal Balance // // Users can deposit tokens into the Vault, where they are allocated to their Internal Balance, and later // transferred or withdrawn. It can also be used as a source of tokens when joining Pools, as a destination // when exiting them, and as either when performing swaps. This usage of Internal Balance results in greatly reduced // gas costs when compared to relying on plain ERC20 transfers, leading to large savings for frequent users. // // Internal Balance management features batching, which means a single contract call can be used to perform multiple // operations of different kinds, with different senders and recipients, at once. /** * @dev Returns `user`'s Internal Balance for a set of tokens. */ function getInternalBalance(address user, IERC20[] memory tokens) external view returns (uint256[] memory); /** * @dev Performs a set of user balance operations, which involve Internal Balance (deposit, withdraw or transfer) * and plain ERC20 transfers using the Vault's allowance. This last feature is particularly useful for relayers, as * it lets integrators reuse a user's Vault allowance. * * For each operation, if the caller is not `sender`, it must be an authorized relayer for them. */ function manageUserBalance(UserBalanceOp[] memory ops) external payable; /** * @dev Data for `manageUserBalance` operations, which include the possibility for ETH to be sent and received without manual WETH wrapping or unwrapping. */ struct UserBalanceOp { UserBalanceOpKind kind; IAsset asset; uint256 amount; address sender; address payable recipient; } // There are four possible operations in `manageUserBalance`: // // - DEPOSIT_INTERNAL // Increases the Internal Balance of the `recipient` account by transferring tokens from the corresponding // `sender`. The sender must have allowed the Vault to use their tokens via `IERC20.approve()`. // // ETH can be used by passing the ETH sentinel value as the asset and forwarding ETH in the call: it will be wrapped // and deposited as WETH. Any ETH amount remaining will be sent back to the caller (not the sender, which is // relevant for relayers). // // Emits an `InternalBalanceChanged` event. // // // - WITHDRAW_INTERNAL // Decreases the Internal Balance of the `sender` account by transferring tokens to the `recipient`. // // ETH can be used by passing the ETH sentinel value as the asset. This will deduct WETH instead, unwrap it and send // it to the recipient as ETH. // // Emits an `InternalBalanceChanged` event. // // // - TRANSFER_INTERNAL // Transfers tokens from the Internal Balance of the `sender` account to the Internal Balance of `recipient`. // // Reverts if the ETH sentinel value is passed. // // Emits an `InternalBalanceChanged` event. // // // - TRANSFER_EXTERNAL // Transfers tokens from `sender` to `recipient`, using the Vault's ERC20 allowance. This is typically used by // relayers, as it lets them reuse a user's Vault allowance. // // Reverts if the ETH sentinel value is passed. // // Emits an `ExternalBalanceTransfer` event. enum UserBalanceOpKind { DEPOSIT_INTERNAL, WITHDRAW_INTERNAL, TRANSFER_INTERNAL, TRANSFER_EXTERNAL } /** * @dev Emitted when a user's Internal Balance changes, either from calls to `manageUserBalance`, or through * interacting with Pools using Internal Balance. * * Because Internal Balance works exclusively with ERC20 tokens, ETH deposits and withdrawals will use the WETH * address. */ event InternalBalanceChanged(address indexed user, IERC20 indexed token, int256 delta); /** * @dev Emitted when a user's Vault ERC20 allowance is used by the Vault to transfer tokens to an external account. */ event ExternalBalanceTransfer(IERC20 indexed token, address indexed sender, address recipient, uint256 amount); // Pools // // There are three specialization settings for Pools, which allow for cheaper swaps at the cost of reduced // functionality: // // - General: no specialization, suited for all Pools. IGeneralPool is used for swap request callbacks, passing the // balance of all tokens in the Pool. These Pools have the largest swap costs (because of the extra storage reads), // which increase with the number of registered tokens. // // - Minimal Swap Info: IMinimalSwapInfoPool is used instead of IGeneralPool, which saves gas by only passing the // balance of the two tokens involved in the swap. This is suitable for some pricing algorithms, like the weighted // constant product one popularized by Balancer V1. Swap costs are smaller compared to general Pools, and are // independent of the number of registered tokens. // // - Two Token: only allows two tokens to be registered. This achieves the lowest possible swap gas cost. Like // minimal swap info Pools, these are called via IMinimalSwapInfoPool. enum PoolSpecialization { GENERAL, MINIMAL_SWAP_INFO, TWO_TOKEN } /** * @dev Registers the caller account as a Pool with a given specialization setting. Returns the Pool's ID, which * is used in all Pool-related functions. Pools cannot be deregistered, nor can the Pool's specialization be * changed. * * The caller is expected to be a smart contract that implements either `IGeneralPool` or `IMinimalSwapInfoPool`, * depending on the chosen specialization setting. This contract is known as the Pool's contract. * * Note that the same contract may register itself as multiple Pools with unique Pool IDs, or in other words, * multiple Pools may share the same contract. * * Emits a `PoolRegistered` event. */ function registerPool(PoolSpecialization specialization) external returns (bytes32); /** * @dev Emitted when a Pool is registered by calling `registerPool`. */ event PoolRegistered(bytes32 indexed poolId, address indexed poolAddress, PoolSpecialization specialization); /** * @dev Returns a Pool's contract address and specialization setting. */ function getPool(bytes32 poolId) external view returns (address, PoolSpecialization); /** * @dev Registers `tokens` for the `poolId` Pool. Must be called by the Pool's contract. * * Pools can only interact with tokens they have registered. Users join a Pool by transferring registered tokens, * exit by receiving registered tokens, and can only swap registered tokens. * * Each token can only be registered once. For Pools with the Two Token specialization, `tokens` must have a length * of two, that is, both tokens must be registered in the same `registerTokens` call, and they must be sorted in * ascending order. * * The `tokens` and `assetManagers` arrays must have the same length, and each entry in these indicates the Asset * Manager for the corresponding token. Asset Managers can manage a Pool's tokens via `managePoolBalance`, * depositing and withdrawing them directly, and can even set their balance to arbitrary amounts. They are therefore * expected to be highly secured smart contracts with sound design principles, and the decision to register an * Asset Manager should not be made lightly. * * Pools can choose not to assign an Asset Manager to a given token by passing in the zero address. Once an Asset * Manager is set, it cannot be changed except by deregistering the associated token and registering again with a * different Asset Manager. * * Emits a `TokensRegistered` event. */ function registerTokens( bytes32 poolId, IERC20[] memory tokens, address[] memory assetManagers ) external; /** * @dev Emitted when a Pool registers tokens by calling `registerTokens`. */ event TokensRegistered(bytes32 indexed poolId, IERC20[] tokens, address[] assetManagers); /** * @dev Deregisters `tokens` for the `poolId` Pool. Must be called by the Pool's contract. * * Only registered tokens (via `registerTokens`) can be deregistered. Additionally, they must have zero total * balance. For Pools with the Two Token specialization, `tokens` must have a length of two, that is, both tokens * must be deregistered in the same `deregisterTokens` call. * * A deregistered token can be re-registered later on, possibly with a different Asset Manager. * * Emits a `TokensDeregistered` event. */ function deregisterTokens(bytes32 poolId, IERC20[] memory tokens) external; /** * @dev Emitted when a Pool deregisters tokens by calling `deregisterTokens`. */ event TokensDeregistered(bytes32 indexed poolId, IERC20[] tokens); /** * @dev Returns detailed information for a Pool's registered token. * * `cash` is the number of tokens the Vault currently holds for the Pool. `managed` is the number of tokens * withdrawn and held outside the Vault by the Pool's token Asset Manager. The Pool's total balance for `token` * equals the sum of `cash` and `managed`. * * Internally, `cash` and `managed` are stored using 112 bits. No action can ever cause a Pool's token `cash`, * `managed` or `total` balance to be greater than 2^112 - 1. * * `lastChangeBlock` is the number of the block in which `token`'s total balance was last modified (via either a * join, exit, swap, or Asset Manager update). This value is useful to avoid so-called 'sandwich attacks', for * example when developing price oracles. A change of zero (e.g. caused by a swap with amount zero) is considered a * change for this purpose, and will update `lastChangeBlock`. * * `assetManager` is the Pool's token Asset Manager. */ function getPoolTokenInfo(bytes32 poolId, IERC20 token) external view returns ( uint256 cash, uint256 managed, uint256 lastChangeBlock, address assetManager ); /** * @dev Returns a Pool's registered tokens, the total balance for each, and the latest block when *any* of * the tokens' `balances` changed. * * The order of the `tokens` array is the same order that will be used in `joinPool`, `exitPool`, as well as in all * Pool hooks (where applicable). Calls to `registerTokens` and `deregisterTokens` may change this order. * * If a Pool only registers tokens once, and these are sorted in ascending order, they will be stored in the same * order as passed to `registerTokens`. * * Total balances include both tokens held by the Vault and those withdrawn by the Pool's Asset Managers. These are * the amounts used by joins, exits and swaps. For a detailed breakdown of token balances, use `getPoolTokenInfo` * instead. */ function getPoolTokens(bytes32 poolId) external view returns ( IERC20[] memory tokens, uint256[] memory balances, uint256 lastChangeBlock ); /** * @dev Called by users to join a Pool, which transfers tokens from `sender` into the Pool's balance. This will * trigger custom Pool behavior, which will typically grant something in return to `recipient` - often tokenized * Pool shares. * * If the caller is not `sender`, it must be an authorized relayer for them. * * The `assets` and `maxAmountsIn` arrays must have the same length, and each entry indicates the maximum amount * to send for each asset. The amounts to send are decided by the Pool and not the Vault: it just enforces * these maximums. * * If joining a Pool that holds WETH, it is possible to send ETH directly: the Vault will do the wrapping. To enable * this mechanism, the IAsset sentinel value (the zero address) must be passed in the `assets` array instead of the * WETH address. Note that it is not possible to combine ETH and WETH in the same join. Any excess ETH will be sent * back to the caller (not the sender, which is important for relayers). * * `assets` must have the same length and order as the array returned by `getPoolTokens`. This prevents issues when * interacting with Pools that register and deregister tokens frequently. If sending ETH however, the array must be * sorted *before* replacing the WETH address with the ETH sentinel value (the zero address), which means the final * `assets` array might not be sorted. Pools with no registered tokens cannot be joined. * * If `fromInternalBalance` is true, the caller's Internal Balance will be preferred: ERC20 transfers will only * be made for the difference between the requested amount and Internal Balance (if any). Note that ETH cannot be * withdrawn from Internal Balance: attempting to do so will trigger a revert. * * This causes the Vault to call the `IBasePool.onJoinPool` hook on the Pool's contract, where Pools implement * their own custom logic. This typically requires additional information from the user (such as the expected number * of Pool shares). This can be encoded in the `userData` argument, which is ignored by the Vault and passed * directly to the Pool's contract, as is `recipient`. * * Emits a `PoolBalanceChanged` event. */ function joinPool( bytes32 poolId, address sender, address recipient, JoinPoolRequest memory request ) external payable; struct JoinPoolRequest { IAsset[] assets; uint256[] maxAmountsIn; bytes userData; bool fromInternalBalance; } /** * @dev Called by users to exit a Pool, which transfers tokens from the Pool's balance to `recipient`. This will * trigger custom Pool behavior, which will typically ask for something in return from `sender` - often tokenized * Pool shares. The amount of tokens that can be withdrawn is limited by the Pool's `cash` balance (see * `getPoolTokenInfo`). * * If the caller is not `sender`, it must be an authorized relayer for them. * * The `tokens` and `minAmountsOut` arrays must have the same length, and each entry in these indicates the minimum * token amount to receive for each token contract. The amounts to send are decided by the Pool and not the Vault: * it just enforces these minimums. * * If exiting a Pool that holds WETH, it is possible to receive ETH directly: the Vault will do the unwrapping. To * enable this mechanism, the IAsset sentinel value (the zero address) must be passed in the `assets` array instead * of the WETH address. Note that it is not possible to combine ETH and WETH in the same exit. * * `assets` must have the same length and order as the array returned by `getPoolTokens`. This prevents issues when * interacting with Pools that register and deregister tokens frequently. If receiving ETH however, the array must * be sorted *before* replacing the WETH address with the ETH sentinel value (the zero address), which means the * final `assets` array might not be sorted. Pools with no registered tokens cannot be exited. * * If `toInternalBalance` is true, the tokens will be deposited to `recipient`'s Internal Balance. Otherwise, * an ERC20 transfer will be performed. Note that ETH cannot be deposited to Internal Balance: attempting to * do so will trigger a revert. * * `minAmountsOut` is the minimum amount of tokens the user expects to get out of the Pool, for each token in the * `tokens` array. This array must match the Pool's registered tokens. * * This causes the Vault to call the `IBasePool.onExitPool` hook on the Pool's contract, where Pools implement * their own custom logic. This typically requires additional information from the user (such as the expected number * of Pool shares to return). This can be encoded in the `userData` argument, which is ignored by the Vault and * passed directly to the Pool's contract. * * Emits a `PoolBalanceChanged` event. */ function exitPool( bytes32 poolId, address sender, address payable recipient, ExitPoolRequest memory request ) external; struct ExitPoolRequest { IAsset[] assets; uint256[] minAmountsOut; bytes userData; bool toInternalBalance; } /** * @dev Emitted when a user joins or exits a Pool by calling `joinPool` or `exitPool`, respectively. */ event PoolBalanceChanged( bytes32 indexed poolId, address indexed liquidityProvider, IERC20[] tokens, int256[] deltas, uint256[] protocolFeeAmounts ); enum PoolBalanceChangeKind { JOIN, EXIT } // Swaps // // Users can swap tokens with Pools by calling the `swap` and `batchSwap` functions. To do this, // they need not trust Pool contracts in any way: all security checks are made by the Vault. They must however be // aware of the Pools' pricing algorithms in order to estimate the prices Pools will quote. // // The `swap` function executes a single swap, while `batchSwap` can perform multiple swaps in sequence. // In each individual swap, tokens of one kind are sent from the sender to the Pool (this is the 'token in'), // and tokens of another kind are sent from the Pool to the recipient in exchange (this is the 'token out'). // More complex swaps, such as one token in to multiple tokens out can be achieved by batching together // individual swaps. // // There are two swap kinds: // - 'given in' swaps, where the amount of tokens in (sent to the Pool) is known, and the Pool determines (via the // `onSwap` hook) the amount of tokens out (to send to the recipient). // - 'given out' swaps, where the amount of tokens out (received from the Pool) is known, and the Pool determines // (via the `onSwap` hook) the amount of tokens in (to receive from the sender). // // Additionally, it is possible to chain swaps using a placeholder input amount, which the Vault replaces with // the calculated output of the previous swap. If the previous swap was 'given in', this will be the calculated // tokenOut amount. If the previous swap was 'given out', it will use the calculated tokenIn amount. These extended // swaps are known as 'multihop' swaps, since they 'hop' through a number of intermediate tokens before arriving at // the final intended token. // // In all cases, tokens are only transferred in and out of the Vault (or withdrawn from and deposited into Internal // Balance) after all individual swaps have been completed, and the net token balance change computed. This makes // certain swap patterns, such as multihops, or swaps that interact with the same token pair in multiple Pools, cost // much less gas than they would otherwise. // // It also means that under certain conditions it is possible to perform arbitrage by swapping with multiple // Pools in a way that results in net token movement out of the Vault (profit), with no tokens being sent in (only // updating the Pool's internal accounting). // // To protect users from front-running or the market changing rapidly, they supply a list of 'limits' for each token // involved in the swap, where either the maximum number of tokens to send (by passing a positive value) or the // minimum amount of tokens to receive (by passing a negative value) is specified. // // Additionally, a 'deadline' timestamp can also be provided, forcing the swap to fail if it occurs after // this point in time (e.g. if the transaction failed to be included in a block promptly). // // If interacting with Pools that hold WETH, it is possible to both send and receive ETH directly: the Vault will do // the wrapping and unwrapping. To enable this mechanism, the IAsset sentinel value (the zero address) must be // passed in the `assets` array instead of the WETH address. Note that it is possible to combine ETH and WETH in the // same swap. Any excess ETH will be sent back to the caller (not the sender, which is relevant for relayers). // // Finally, Internal Balance can be used when either sending or receiving tokens. enum SwapKind { GIVEN_IN, GIVEN_OUT } /** * @dev Performs a swap with a single Pool. * * If the swap is 'given in' (the number of tokens to send to the Pool is known), it returns the amount of tokens * taken from the Pool, which must be greater than or equal to `limit`. * * If the swap is 'given out' (the number of tokens to take from the Pool is known), it returns the amount of tokens * sent to the Pool, which must be less than or equal to `limit`. * * Internal Balance usage and the recipient are determined by the `funds` struct. * * Emits a `Swap` event. */ function swap( SingleSwap memory singleSwap, FundManagement memory funds, uint256 limit, uint256 deadline ) external payable returns (uint256); /** * @dev Data for a single swap executed by `swap`. `amount` is either `amountIn` or `amountOut` depending on * the `kind` value. * * `assetIn` and `assetOut` are either token addresses, or the IAsset sentinel value for ETH (the zero address). * Note that Pools never interact with ETH directly: it will be wrapped to or unwrapped from WETH by the Vault. * * The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be * used to extend swap behavior. */ struct SingleSwap { bytes32 poolId; SwapKind kind; IAsset assetIn; IAsset assetOut; uint256 amount; bytes userData; } /** * @dev Performs a series of swaps with one or multiple Pools. In each individual swap, the caller determines either * the amount of tokens sent to or received from the Pool, depending on the `kind` value. * * Returns an array with the net Vault asset balance deltas. Positive amounts represent tokens (or ETH) sent to the * Vault, and negative amounts represent tokens (or ETH) sent by the Vault. Each delta corresponds to the asset at * the same index in the `assets` array. * * Swaps are executed sequentially, in the order specified by the `swaps` array. Each array element describes a * Pool, the token to be sent to this Pool, the token to receive from it, and an amount that is either `amountIn` or * `amountOut` depending on the swap kind. * * Multihop swaps can be executed by passing an `amount` value of zero for a swap. This will cause the amount in/out * of the previous swap to be used as the amount in for the current one. In a 'given in' swap, 'tokenIn' must equal * the previous swap's `tokenOut`. For a 'given out' swap, `tokenOut` must equal the previous swap's `tokenIn`. * * The `assets` array contains the addresses of all assets involved in the swaps. These are either token addresses, * or the IAsset sentinel value for ETH (the zero address). Each entry in the `swaps` array specifies tokens in and * out by referencing an index in `assets`. Note that Pools never interact with ETH directly: it will be wrapped to * or unwrapped from WETH by the Vault. * * Internal Balance usage, sender, and recipient are determined by the `funds` struct. The `limits` array specifies * the minimum or maximum amount of each token the vault is allowed to transfer. * * `batchSwap` can be used to make a single swap, like `swap` does, but doing so requires more gas than the * equivalent `swap` call. * * Emits `Swap` events. */ function batchSwap( SwapKind kind, BatchSwapStep[] memory swaps, IAsset[] memory assets, FundManagement memory funds, int256[] memory limits, uint256 deadline ) external payable returns (int256[] memory); /** * @dev Data for each individual swap executed by `batchSwap`. The asset in and out fields are indexes into the * `assets` array passed to that function, and ETH assets are converted to WETH. * * If `amount` is zero, the multihop mechanism is used to determine the actual amount based on the amount in/out * from the previous swap, depending on the swap kind. * * The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be * used to extend swap behavior. */ struct BatchSwapStep { bytes32 poolId; uint256 assetInIndex; uint256 assetOutIndex; uint256 amount; bytes userData; } /** * @dev Emitted for each individual swap performed by `swap` or `batchSwap`. */ event Swap( bytes32 indexed poolId, IERC20 indexed tokenIn, IERC20 indexed tokenOut, uint256 amountIn, uint256 amountOut ); /** * @dev All tokens in a swap are either sent from the `sender` account to the Vault, or from the Vault to the * `recipient` account. * * If the caller is not `sender`, it must be an authorized relayer for them. * * If `fromInternalBalance` is true, the `sender`'s Internal Balance will be preferred, performing an ERC20 * transfer for the difference between the requested amount and the User's Internal Balance (if any). The `sender` * must have allowed the Vault to use their tokens via `IERC20.approve()`. This matches the behavior of * `joinPool`. * * If `toInternalBalance` is true, tokens will be deposited to `recipient`'s internal balance instead of * transferred. This matches the behavior of `exitPool`. * * Note that ETH cannot be deposited to or withdrawn from Internal Balance: attempting to do so will trigger a * revert. */ struct FundManagement { address sender; bool fromInternalBalance; address payable recipient; bool toInternalBalance; } /** * @dev Simulates a call to `batchSwap`, returning an array of Vault asset deltas. Calls to `swap` cannot be * simulated directly, but an equivalent `batchSwap` call can and will yield the exact same result. * * Each element in the array corresponds to the asset at the same index, and indicates the number of tokens (or ETH) * the Vault would take from the sender (if positive) or send to the recipient (if negative). The arguments it * receives are the same that an equivalent `batchSwap` call would receive. * * Unlike `batchSwap`, this function performs no checks on the sender or recipient field in the `funds` struct. * This makes it suitable to be called by off-chain applications via eth_call without needing to hold tokens, * approve them for the Vault, or even know a user's address. * * Note that this function is not 'view' (due to implementation details): the client code must explicitly execute * eth_call instead of eth_sendTransaction. */ function queryBatchSwap( SwapKind kind, BatchSwapStep[] memory swaps, IAsset[] memory assets, FundManagement memory funds ) external returns (int256[] memory assetDeltas); // Flash Loans /** * @dev Performs a 'flash loan', sending tokens to `recipient`, executing the `receiveFlashLoan` hook on it, * and then reverting unless the tokens plus a proportional protocol fee have been returned. * * The `tokens` and `amounts` arrays must have the same length, and each entry in these indicates the loan amount * for each token contract. `tokens` must be sorted in ascending order. * * The 'userData' field is ignored by the Vault, and forwarded as-is to `recipient` as part of the * `receiveFlashLoan` call. * * Emits `FlashLoan` events. */ function flashLoan( IFlashLoanRecipient recipient, IERC20[] memory tokens, uint256[] memory amounts, bytes memory userData ) external; /** * @dev Emitted for each individual flash loan performed by `flashLoan`. */ event FlashLoan(IFlashLoanRecipient indexed recipient, IERC20 indexed token, uint256 amount, uint256 feeAmount); // Asset Management // // Each token registered for a Pool can be assigned an Asset Manager, which is able to freely withdraw the Pool's // tokens from the Vault, deposit them, or assign arbitrary values to its `managed` balance (see // `getPoolTokenInfo`). This makes them extremely powerful and dangerous. Even if an Asset Manager only directly // controls one of the tokens in a Pool, a malicious manager could set that token's balance to manipulate the // prices of the other tokens, and then drain the Pool with swaps. The risk of using Asset Managers is therefore // not constrained to the tokens they are managing, but extends to the entire Pool's holdings. // // However, a properly designed Asset Manager smart contract can be safely used for the Pool's benefit, // for example by lending unused tokens out for interest, or using them to participate in voting protocols. // // This concept is unrelated to the IAsset interface. /** * @dev Performs a set of Pool balance operations, which may be either withdrawals, deposits or updates. * * Pool Balance management features batching, which means a single contract call can be used to perform multiple * operations of different kinds, with different Pools and tokens, at once. * * For each operation, the caller must be registered as the Asset Manager for `token` in `poolId`. */ function managePoolBalance(PoolBalanceOp[] memory ops) external; struct PoolBalanceOp { PoolBalanceOpKind kind; bytes32 poolId; IERC20 token; uint256 amount; } /** * Withdrawals decrease the Pool's cash, but increase its managed balance, leaving the total balance unchanged. * * Deposits increase the Pool's cash, but decrease its managed balance, leaving the total balance unchanged. * * Updates don't affect the Pool's cash balance, but because the managed balance changes, it does alter the total. * The external amount can be either increased or decreased by this call (i.e., reporting a gain or a loss). */ enum PoolBalanceOpKind { WITHDRAW, DEPOSIT, UPDATE } /** * @dev Emitted when a Pool's token Asset Manager alters its balance via `managePoolBalance`. */ event PoolBalanceManaged( bytes32 indexed poolId, address indexed assetManager, IERC20 indexed token, int256 cashDelta, int256 managedDelta ); // Protocol Fees // // Some operations cause the Vault to collect tokens in the form of protocol fees, which can then be withdrawn by // permissioned accounts. // // There are two kinds of protocol fees: // // - flash loan fees: charged on all flash loans, as a percentage of the amounts lent. // // - swap fees: a percentage of the fees charged by Pools when performing swaps. For a number of reasons, including // swap gas costs and interface simplicity, protocol swap fees are not charged on each individual swap. Rather, // Pools are expected to keep track of how much they have charged in swap fees, and pay any outstanding debts to the // Vault when they are joined or exited. This prevents users from joining a Pool with unpaid debt, as well as // exiting a Pool in debt without first paying their share. /** * @dev Returns the current protocol fee module. */ function getProtocolFeesCollector() external view returns (IProtocolFeesCollector); /** * @dev Safety mechanism to pause most Vault operations in the event of an emergency - typically detection of an * error in some part of the system. * * The Vault can only be paused during an initial time period, after which pausing is forever disabled. * * While the contract is paused, the following features are disabled: * - depositing and transferring internal balance * - transferring external balance (using the Vault's allowance) * - swaps * - joining Pools * - Asset Manager interactions * * Internal Balance can still be withdrawn, and Pools exited. */ function setPaused(bool paused) external; /** * @dev Returns the Vault's WETH instance. */ function WETH() external view returns (IWETH); // solhint-disable-previous-line func-name-mixedcase }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "./IVault.sol"; import "./IPoolSwapStructs.sol"; /** * @dev Interface for adding and removing liquidity that all Pool contracts should implement. Note that this is not * the complete Pool contract interface, as it is missing the swap hooks. Pool contracts should also inherit from * either IGeneralPool or IMinimalSwapInfoPool */ interface IBasePool is IPoolSwapStructs { /** * @dev Called by the Vault when a user calls `IVault.joinPool` to add liquidity to this Pool. Returns how many of * each registered token the user should provide, as well as the amount of protocol fees the Pool owes to the Vault. * The Vault will then take tokens from `sender` and add them to the Pool's balances, as well as collect * the reported amount in protocol fees, which the pool should calculate based on `protocolSwapFeePercentage`. * * Protocol fees are reported and charged on join events so that the Pool is free of debt whenever new users join. * * `sender` is the account performing the join (from which tokens will be withdrawn), and `recipient` is the account * designated to receive any benefits (typically pool shares). `currentBalances` contains the total balances * for each token the Pool registered in the Vault, in the same order that `IVault.getPoolTokens` would return. * * `lastChangeBlock` is the last block in which *any* of the Pool's registered tokens last changed its total * balance. * * `userData` contains any pool-specific instructions needed to perform the calculations, such as the type of * join (e.g., proportional given an amount of pool shares, single-asset, multi-asset, etc.) * * Contracts implementing this function should check that the caller is indeed the Vault before performing any * state-changing operations, such as minting pool shares. */ function onJoinPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) external returns (uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts); /** * @dev Called by the Vault when a user calls `IVault.exitPool` to remove liquidity from this Pool. Returns how many * tokens the Vault should deduct from the Pool's balances, as well as the amount of protocol fees the Pool owes * to the Vault. The Vault will then take tokens from the Pool's balances and send them to `recipient`, * as well as collect the reported amount in protocol fees, which the Pool should calculate based on * `protocolSwapFeePercentage`. * * Protocol fees are charged on exit events to guarantee that users exiting the Pool have paid their share. * * `sender` is the account performing the exit (typically the pool shareholder), and `recipient` is the account * to which the Vault will send the proceeds. `currentBalances` contains the total token balances for each token * the Pool registered in the Vault, in the same order that `IVault.getPoolTokens` would return. * * `lastChangeBlock` is the last block in which *any* of the Pool's registered tokens last changed its total * balance. * * `userData` contains any pool-specific instructions needed to perform the calculations, such as the type of * exit (e.g., proportional given an amount of pool shares, single-asset, multi-asset, etc.) * * Contracts implementing this function should check that the caller is indeed the Vault before performing any * state-changing operations, such as burning pool shares. */ function onExitPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) external returns (uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts); function getPoolId() external view returns (bytes32); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ERC20.sol"; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ERC20Permit.sol"; /** * @title Highly opinionated token implementation * @author Balancer Labs * @dev * - Includes functions to increase and decrease allowance as a workaround * for the well-known issue with `approve`: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * - Allows for 'infinite allowance', where an allowance of 0xff..ff is not * decreased by calls to transferFrom * - Lets a token holder use `transferFrom` to send their own tokens, * without first setting allowance * - Emits 'Approval' events whenever allowance is changed by `transferFrom` */ contract BalancerPoolToken is ERC20, ERC20Permit { constructor(string memory tokenName, string memory tokenSymbol) ERC20(tokenName, tokenSymbol) ERC20Permit(tokenName) { // solhint-disable-previous-line no-empty-blocks } // Overrides /** * @dev Override to allow for 'infinite allowance' and let the token owner use `transferFrom` with no self-allowance */ function transferFrom( address sender, address recipient, uint256 amount ) public override returns (bool) { uint256 currentAllowance = allowance(sender, msg.sender); _require(msg.sender == sender || currentAllowance >= amount, Errors.ERC20_TRANSFER_EXCEEDS_ALLOWANCE); _transfer(sender, recipient, amount); if (msg.sender != sender && currentAllowance != uint256(-1)) { // Because of the previous require, we know that if msg.sender != sender then currentAllowance >= amount _approve(sender, msg.sender, currentAllowance - amount); } return true; } /** * @dev Override to allow decreasing allowance by more than the current amount (setting it to zero) */ function decreaseAllowance(address spender, uint256 amount) public override returns (bool) { uint256 currentAllowance = allowance(msg.sender, spender); if (amount >= currentAllowance) { _approve(msg.sender, spender, 0); } else { // No risk of underflow due to if condition _approve(msg.sender, spender, currentAllowance - amount); } return true; } // Internal functions function _mintPoolTokens(address recipient, uint256 amount) internal { _mint(recipient, amount); } function _burnPoolTokens(address sender, uint256 amount) internal { _burn(sender, amount); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-solidity-utils/contracts/helpers/Authentication.sol"; import "@balancer-labs/v2-vault/contracts/interfaces/IAuthorizer.sol"; import "./BasePool.sol"; /** * @dev Base authorization layer implementation for Pools. * * The owner account can call some of the permissioned functions - access control of the rest is delegated to the * Authorizer. Note that this owner is immutable: more sophisticated permission schemes, such as multiple ownership, * granular roles, etc., could be built on top of this by making the owner a smart contract. * * Access control of all other permissioned functions is delegated to an Authorizer. It is also possible to delegate * control of *all* permissioned functions to the Authorizer by setting the owner address to `_DELEGATE_OWNER`. */ abstract contract BasePoolAuthorization is Authentication { address private immutable _owner; address private constant _DELEGATE_OWNER = 0xBA1BA1ba1BA1bA1bA1Ba1BA1ba1BA1bA1ba1ba1B; constructor(address owner) { _owner = owner; } function getOwner() public view returns (address) { return _owner; } function getAuthorizer() external view returns (IAuthorizer) { return _getAuthorizer(); } function _canPerform(bytes32 actionId, address account) internal view override returns (bool) { if ((getOwner() != _DELEGATE_OWNER) && _isOwnerOnlyAction(actionId)) { // Only the owner can perform "owner only" actions, unless the owner is delegated. return msg.sender == getOwner(); } else { // Non-owner actions are always processed via the Authorizer, as "owner only" ones are when delegated. return _getAuthorizer().canPerform(actionId, account, address(this)); } } function _isOwnerOnlyAction(bytes32 actionId) internal view virtual returns (bool); function _getAuthorizer() internal view virtual returns (IAuthorizer); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol"; interface IAssetManager { /** * @notice Emitted when asset manager is rebalanced */ event Rebalance(bytes32 poolId); /** * @notice Sets the config */ function setConfig(bytes32 poolId, bytes calldata config) external; /** * @notice Returns the asset manager's token */ function getToken() external view returns (IERC20); /** * @return the current assets under management of this asset manager */ function getAUM(bytes32 poolId) external view returns (uint256); /** * @return poolCash - The up-to-date cash balance of the pool * @return poolManaged - The up-to-date managed balance of the pool */ function getPoolBalances(bytes32 poolId) external view returns (uint256 poolCash, uint256 poolManaged); /** * @return The difference in tokens between the target investment * and the currently invested amount (i.e. the amount that can be invested) */ function maxInvestableBalance(bytes32 poolId) external view returns (int256); /** * @notice Updates the Vault on the value of the pool's investment returns */ function updateBalanceOfPool(bytes32 poolId) external; /** * @notice Determines whether the pool should rebalance given the provided balances */ function shouldRebalance(uint256 cash, uint256 managed) external view returns (bool); /** * @notice Rebalances funds between the pool and the asset manager to maintain target investment percentage. * @param poolId - the poolId of the pool to be rebalanced * @param force - a boolean representing whether a rebalance should be forced even when the pool is near balance */ function rebalance(bytes32 poolId, bool force) external; }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; /** * @dev Interface for the TemporarilyPausable helper. */ interface ITemporarilyPausable { /** * @dev Emitted every time the pause state changes by `_setPaused`. */ event PausedStateChanged(bool paused); /** * @dev Returns the current paused state. */ function getPausedState() external view returns ( bool paused, uint256 pauseWindowEndTime, uint256 bufferPeriodEndTime ); }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "../helpers/BalancerErrors.sol"; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; _require(c >= a, Errors.ADD_OVERFLOW); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, Errors.SUB_OVERFLOW); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, uint256 errorCode) internal pure returns (uint256) { _require(b <= a, errorCode); uint256 c = a - b; return c; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; /** * @dev Interface for the SignatureValidator helper, used to support meta-transactions. */ interface ISignaturesValidator { /** * @dev Returns the EIP712 domain separator. */ function getDomainSeparator() external view returns (bytes32); /** * @dev Returns the next nonce used by an address to sign messages. */ function getNextNonce(address user) external view returns (uint256); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "../openzeppelin/IERC20.sol"; /** * @dev Interface for WETH9. * See https://github.com/gnosis/canonical-weth/blob/0dd1ea3e295eef916d0c6223ec63141137d22d67/contracts/WETH9.sol */ interface IWETH is IERC20 { function deposit() external payable; function withdraw(uint256 amount) external; }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; /** * @dev This is an empty interface used to represent either ERC20-conforming token contracts or ETH (using the zero * address sentinel value). We're just relying on the fact that `interface` can be used to declare new address-like * types. * * This concept is unrelated to a Pool's Asset Managers. */ interface IAsset { // solhint-disable-previous-line no-empty-blocks }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; interface IAuthorizer { /** * @dev Returns true if `account` can perform the action described by `actionId` in the contract `where`. */ function canPerform( bytes32 actionId, address account, address where ) external view returns (bool); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; // Inspired by Aave Protocol's IFlashLoanReceiver. import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol"; interface IFlashLoanRecipient { /** * @dev When `flashLoan` is called on the Vault, it invokes the `receiveFlashLoan` hook on the recipient. * * At the time of the call, the Vault will have transferred `amounts` for `tokens` to the recipient. Before this * call returns, the recipient must have transferred `amounts` plus `feeAmounts` for each token back to the * Vault, or else the entire flash loan will revert. * * `userData` is the same value passed in the `IVault.flashLoan` call. */ function receiveFlashLoan( IERC20[] memory tokens, uint256[] memory amounts, uint256[] memory feeAmounts, bytes memory userData ) external; }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol"; import "./IVault.sol"; import "./IAuthorizer.sol"; interface IProtocolFeesCollector { event SwapFeePercentageChanged(uint256 newSwapFeePercentage); event FlashLoanFeePercentageChanged(uint256 newFlashLoanFeePercentage); function withdrawCollectedFees( IERC20[] calldata tokens, uint256[] calldata amounts, address recipient ) external; function setSwapFeePercentage(uint256 newSwapFeePercentage) external; function setFlashLoanFeePercentage(uint256 newFlashLoanFeePercentage) external; function getSwapFeePercentage() external view returns (uint256); function getFlashLoanFeePercentage() external view returns (uint256); function getCollectedFeeAmounts(IERC20[] memory tokens) external view returns (uint256[] memory feeAmounts); function getAuthorizer() external view returns (IAuthorizer); function vault() external view returns (IVault); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol"; import "./IVault.sol"; interface IPoolSwapStructs { // This is not really an interface - it just defines common structs used by other interfaces: IGeneralPool and // IMinimalSwapInfoPool. // // This data structure represents a request for a token swap, where `kind` indicates the swap type ('given in' or // 'given out') which indicates whether or not the amount sent by the pool is known. // // The pool receives `tokenIn` and sends `tokenOut`. `amount` is the number of `tokenIn` tokens the pool will take // in, or the number of `tokenOut` tokens the Pool will send out, depending on the given swap `kind`. // // All other fields are not strictly necessary for most swaps, but are provided to support advanced scenarios in // some Pools. // // `poolId` is the ID of the Pool involved in the swap - this is useful for Pool contracts that implement more than // one Pool. // // The meaning of `lastChangeBlock` depends on the Pool specialization: // - Two Token or Minimal Swap Info: the last block in which either `tokenIn` or `tokenOut` changed its total // balance. // - General: the last block in which *any* of the Pool's registered tokens changed its total balance. // // `from` is the origin address for the funds the Pool receives, and `to` is the destination address // where the Pool sends the outgoing tokens. // // `userData` is extra data provided by the caller - typically a signature from a trusted party. struct SwapRequest { IVault.SwapKind kind; IERC20 tokenIn; IERC20 tokenOut; uint256 amount; // Misc data bytes32 poolId; uint256 lastChangeBlock; address from; address to; bytes userData; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "./ERC20.sol"; import "./IERC20Permit.sol"; import "./EIP712.sol"; /** * @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. * * _Available since v3.4._ */ abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712 { mapping(address => uint256) private _nonces; // solhint-disable-next-line var-name-mixedcase bytes32 private immutable _PERMIT_TYPEHASH = keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"); /** * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`. * * It's a good idea to use the same `name` that is defined as the ERC20 token name. */ constructor(string memory name) EIP712(name, "1") {} /** * @dev See {IERC20Permit-permit}. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual override { // solhint-disable-next-line not-rely-on-time _require(block.timestamp <= deadline, Errors.EXPIRED_PERMIT); uint256 nonce = _nonces[owner]; bytes32 structHash = keccak256(abi.encode(_PERMIT_TYPEHASH, owner, spender, value, nonce, deadline)); bytes32 hash = _hashTypedDataV4(structHash); address signer = ecrecover(hash, v, r, s); _require((signer != address(0)) && (signer == owner), Errors.INVALID_SIGNATURE); _nonces[owner] = nonce + 1; _approve(owner, spender, value); } /** * @dev See {IERC20Permit-nonces}. */ function nonces(address owner) public view override returns (uint256) { return _nonces[owner]; } /** * @dev See {IERC20Permit-DOMAIN_SEPARATOR}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view override returns (bytes32) { return _domainSeparatorV4(); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over `owner`'s tokens, * given `owner`'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for `permit`, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /** * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data. * * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible, * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding * they need in their contracts using a combination of `abi.encode` and `keccak256`. * * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA * ({_hashTypedDataV4}). * * The implementation of the domain separator was designed to be as efficient as possible while still properly updating * the chain id to protect against replay attacks on an eventual fork of the chain. * * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask]. * * _Available since v3.4._ */ abstract contract EIP712 { /* solhint-disable var-name-mixedcase */ bytes32 private immutable _HASHED_NAME; bytes32 private immutable _HASHED_VERSION; bytes32 private immutable _TYPE_HASH; /* solhint-enable var-name-mixedcase */ /** * @dev Initializes the domain separator and parameter caches. * * The meaning of `name` and `version` is specified in * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]: * * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol. * - `version`: the current major version of the signing domain. * * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart * contract upgrade]. */ constructor(string memory name, string memory version) { _HASHED_NAME = keccak256(bytes(name)); _HASHED_VERSION = keccak256(bytes(version)); _TYPE_HASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"); } /** * @dev Returns the domain separator for the current chain. */ function _domainSeparatorV4() internal view virtual returns (bytes32) { return keccak256(abi.encode(_TYPE_HASH, _HASHED_NAME, _HASHED_VERSION, _getChainId(), address(this))); } /** * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this * function returns the hash of the fully encoded EIP712 message for this domain. * * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example: * * ```solidity * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode( * keccak256("Mail(address to,string contents)"), * mailTo, * keccak256(bytes(mailContents)) * ))); * address signer = ECDSA.recover(digest, signature); * ``` */ function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) { return keccak256(abi.encodePacked("\x19\x01", _domainSeparatorV4(), structHash)); } function _getChainId() private view returns (uint256 chainId) { // Silence state mutability warning without generating bytecode. // See https://github.com/ethereum/solidity/issues/10090#issuecomment-741789128 and // https://github.com/ethereum/solidity/issues/2691 this; // solhint-disable-next-line no-inline-assembly assembly { chainId := chainid() } } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "./BalancerErrors.sol"; import "./IAuthentication.sol"; /** * @dev Building block for performing access control on external functions. * * This contract is used via the `authenticate` modifier (or the `_authenticateCaller` function), which can be applied * to external functions to only make them callable by authorized accounts. * * Derived contracts must implement the `_canPerform` function, which holds the actual access control logic. */ abstract contract Authentication is IAuthentication { bytes32 private immutable _actionIdDisambiguator; /** * @dev The main purpose of the `actionIdDisambiguator` is to prevent accidental function selector collisions in * multi contract systems. * * There are two main uses for it: * - if the contract is a singleton, any unique identifier can be used to make the associated action identifiers * unique. The contract's own address is a good option. * - if the contract belongs to a family that shares action identifiers for the same functions, an identifier * shared by the entire family (and no other contract) should be used instead. */ constructor(bytes32 actionIdDisambiguator) { _actionIdDisambiguator = actionIdDisambiguator; } /** * @dev Reverts unless the caller is allowed to call this function. Should only be applied to external functions. */ modifier authenticate() { _authenticateCaller(); _; } /** * @dev Reverts unless the caller is allowed to call the entry point function. */ function _authenticateCaller() internal view { bytes32 actionId = getActionId(msg.sig); _require(_canPerform(actionId, msg.sender), Errors.SENDER_NOT_ALLOWED); } function getActionId(bytes4 selector) public view override returns (bytes32) { // Each external function is dynamically assigned an action identifier as the hash of the disambiguator and the // function selector. Disambiguation is necessary to avoid potential collisions in the function selectors of // multiple contracts. return keccak256(abi.encodePacked(_actionIdDisambiguator, selector)); } function _canPerform(bytes32 actionId, address user) internal view virtual returns (bool); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; interface IAuthentication { /** * @dev Returns the action identifier associated with the external function described by `selector`. */ function getActionId(bytes4 selector) external view returns (bytes32); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "./IBasePool.sol"; /** * @dev Pool contracts with the MinimalSwapInfo or TwoToken specialization settings should implement this interface. * * This is called by the Vault when a user calls `IVault.swap` or `IVault.batchSwap` to swap with this Pool. * Returns the number of tokens the Pool will grant to the user in a 'given in' swap, or that the user will grant * to the pool in a 'given out' swap. * * This can often be implemented by a `view` function, since many pricing algorithms don't need to track state * changes in swaps. However, contracts implementing this in non-view functions should check that the caller is * indeed the Vault. */ interface IMinimalSwapInfoPool is IBasePool { function onSwap( SwapRequest memory swapRequest, uint256 currentBalanceTokenIn, uint256 currentBalanceTokenOut ) external returns (uint256 amount); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-vault/contracts/interfaces/IVault.sol"; /** * @dev Base contract for Pool factories. * * Pools are deployed from factories to allow third parties to reason about them. Unknown Pools may have arbitrary * logic: being able to assert that a Pool's behavior follows certain rules (those imposed by the contracts created by * the factory) is very powerful. */ abstract contract BasePoolFactory { IVault private immutable _vault; mapping(address => bool) private _isPoolFromFactory; event PoolCreated(address indexed pool); constructor(IVault vault) { _vault = vault; } /** * @dev Returns the Vault's address. */ function getVault() public view returns (IVault) { return _vault; } /** * @dev Returns true if `pool` was created by this factory. */ function isPoolFromFactory(address pool) external view returns (bool) { return _isPoolFromFactory[pool]; } /** * @dev Registers a new created pool. * * Emits a `PoolCreated` event. */ function _register(address pool) internal { _isPoolFromFactory[pool] = true; emit PoolCreated(pool); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; /** * @dev Utility to create Pool factories for Pools that use the `TemporarilyPausable` contract. * * By calling `TemporarilyPausable`'s constructor with the result of `getPauseConfiguration`, all Pools created by this * factory will share the same Pause Window end time, after which both old and new Pools will not be pausable. */ contract FactoryWidePauseWindow { // This contract relies on timestamps in a similar way as `TemporarilyPausable` does - the same caveats apply. // solhint-disable not-rely-on-time uint256 private constant _INITIAL_PAUSE_WINDOW_DURATION = 90 days; uint256 private constant _BUFFER_PERIOD_DURATION = 30 days; // Time when the pause window for all created Pools expires, and the pause window duration of new Pools becomes // zero. uint256 private immutable _poolsPauseWindowEndTime; constructor() { _poolsPauseWindowEndTime = block.timestamp + _INITIAL_PAUSE_WINDOW_DURATION; } /** * @dev Returns the current `TemporarilyPausable` configuration that will be applied to Pools created by this * factory. * * `pauseWindowDuration` will decrease over time until it reaches zero, at which point both it and * `bufferPeriodDuration` will be zero forever, meaning deployed Pools will not be pausable. */ function getPauseConfiguration() public view returns (uint256 pauseWindowDuration, uint256 bufferPeriodDuration) { uint256 currentTime = block.timestamp; if (currentTime < _poolsPauseWindowEndTime) { // The buffer period is always the same since its duration is related to how much time is needed to respond // to a potential emergency. The Pause Window duration however decreases as the end time approaches. pauseWindowDuration = _poolsPauseWindowEndTime - currentTime; // No need for checked arithmetic. bufferPeriodDuration = _BUFFER_PERIOD_DURATION; } else { // After the end time, newly created Pools have no Pause Window, nor Buffer Period (since they are not // pausable in the first place). pauseWindowDuration = 0; bufferPeriodDuration = 0; } } }
{ "optimizer": { "enabled": true, "runs": 9999 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "abi" ] } }, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"contract IVault","name":"vault","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pool","type":"address"}],"name":"PoolCreated","type":"event"},{"inputs":[{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"contract IERC20[]","name":"tokens","type":"address[]"},{"internalType":"uint256","name":"amplificationParameter","type":"uint256"},{"internalType":"uint256","name":"swapFeePercentage","type":"uint256"},{"internalType":"address","name":"owner","type":"address"}],"name":"create","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"getPauseConfiguration","outputs":[{"internalType":"uint256","name":"pauseWindowDuration","type":"uint256"},{"internalType":"uint256","name":"bufferPeriodDuration","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getVault","outputs":[{"internalType":"contract IVault","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"pool","type":"address"}],"name":"isPoolFromFactory","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"}]
Contract Creation Code
60c060405234801561001057600080fd5b50604051615e10380380615e1083398101604081905261002f9161004d565b60601b6001600160601b0319166080526276a700420160a05261007b565b60006020828403121561005e578081fd5b81516001600160a01b0381168114610074578182fd5b9392505050565b60805160601c60a051615d6b6100a56000398060d652806101005250806101ea5250615d6b6000f3fe60806040523480156200001157600080fd5b5060043610620000525760003560e01c80632da47c4014620000575780636634b753146200007a5780637932c7f314620000a05780638d928af814620000c6575b600080fd5b62000061620000d0565b60405162000071929190620005f4565b60405180910390f35b620000916200008b36600462000330565b6200013c565b60405162000071919062000522565b620000b7620000b136600462000356565b62000167565b60405162000071919062000501565b620000b7620001e8565b600080427f00000000000000000000000000000000000000000000000000000000000000008110156200012e57807f000000000000000000000000000000000000000000000000000000000000000003925062278d00915062000137565b60009250600091505b509091565b73ffffffffffffffffffffffffffffffffffffffff1660009081526020819052604090205460ff1690565b600080600062000176620000d0565b91509150600062000186620001e8565b8a8a8a8a8a88888c6040516200019c9062000283565b620001b0999897969594939291906200052d565b604051809103906000f080158015620001cd573d6000803e3d6000fd5b509050620001db816200020c565b9998505050505050505050565b7f000000000000000000000000000000000000000000000000000000000000000090565b73ffffffffffffffffffffffffffffffffffffffff811660008181526020819052604080822080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00166001179055517f83a48fbcfc991335314e74d0496aab6a1987e992ddc85dddbcc4d6dd6ef2e9fc9190a250565b6156cc806200066a83390190565b80356200029e8162000643565b92915050565b600082601f830112620002b5578081fd5b813567ffffffffffffffff811115620002cc578182fd5b620002ff60207fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f8401160162000602565b91508082528360208285010111156200031757600080fd5b8060208401602084013760009082016020015292915050565b60006020828403121562000342578081fd5b81356200034f8162000643565b9392505050565b60008060008060008060c087890312156200036f578182fd5b863567ffffffffffffffff8082111562000387578384fd5b620003958a838b01620002a4565b9750602091508189013581811115620003ac578485fd5b620003ba8b828c01620002a4565b975050604089013581811115620003cf578485fd5b8901601f81018b13620003e0578485fd5b803582811115620003ef578586fd5b83810292506200040184840162000602565b8181528481019083860185850187018f10156200041c578889fd5b8895505b838610156200044a57620004358f8262000291565b83526001959095019491860191860162000420565b509850505050606089013594505050608087013591506200046f8860a0890162000291565b90509295509295509295565b73ffffffffffffffffffffffffffffffffffffffff169052565b60008151808452815b81811015620004bc576020818501810151868301820152016200049e565b81811115620004ce5782602083870101525b50601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0169290920160200192915050565b73ffffffffffffffffffffffffffffffffffffffff91909116815260200190565b901515815260200190565b600061012073ffffffffffffffffffffffffffffffffffffffff8c16835260208181850152620005608285018d62000495565b9150838203604085015262000576828c62000495565b84810360608601528a51808252828c01935090820190845b81811015620005b657620005a385516200062a565b835293830193918301916001016200058e565b50508093505050508660808301528560a08301528460c08301528360e0830152620005e66101008301846200047b565b9a9950505050505050505050565b918252602082015260400190565b60405181810167ffffffffffffffff811182821017156200062257600080fd5b604052919050565b73ffffffffffffffffffffffffffffffffffffffff1690565b73ffffffffffffffffffffffffffffffffffffffff811681146200066657600080fd5b5056fe6103e06040527f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9610120523480156200003757600080fd5b50604051620056cc380380620056cc8339810160408190526200005a9162000bf3565b8886516002146200006d57600062000070565b60025b8989898a516001600160401b03811180156200008b57600080fd5b50604051908082528060200260200182016040528015620000b6578160200160208202803683370190505b506040805180820190915260018152603160f81b602080830191909152336080526001600160601b031960608a901b1660a05285518c928c928c928c92859285928c928c92849283929183918691620001159160039185019062000a11565b5080516200012b90600490602084019062000a11565b50506005805460ff1916601217905550815160209283012060c052805191012060e05250507f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f61010052506200018a6276a70083111561019462000699565b6200019e62278d0082111561019562000699565b4290910161014081905201610160528551620001c0906002111560c862000699565b620001d860088751111560c96200069960201b60201c565b620001ee86620006ae60201b62000f831760201c565b620001f984620006ba565b6040516309b2760f60e01b81526000906001600160a01b038c16906309b2760f906200022a908d9060040162000d8f565b602060405180830381600087803b1580156200024557600080fd5b505af11580156200025a573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019062000280919062000bda565b604051633354e3e960e11b81529091506001600160a01b038c16906366a9c7d290620002b59084908b908b9060040162000cf3565b600060405180830381600087803b158015620002d057600080fd5b505af1158015620002e5573d6000803e3d6000fd5b505088516001600160601b031960608f901b16610180526101a08490526101c0819052915050806200031957600062000330565b876000815181106200032757fe5b60200260200101515b60601b6001600160601b0319166101e052600181116200035257600062000369565b876001815181106200036057fe5b60200260200101515b60601b6001600160601b03191661020052600281116200038b576000620003a2565b876002815181106200039957fe5b60200260200101515b60601b6001600160601b0319166102205260038111620003c4576000620003db565b87600381518110620003d257fe5b60200260200101515b60601b6001600160601b0319166102405260048111620003fd57600062000414565b876004815181106200040b57fe5b60200260200101515b60601b6001600160601b0319166102605260058111620004365760006200044d565b876005815181106200044457fe5b60200260200101515b60601b6001600160601b03191661028052600681116200046f57600062000486565b876006815181106200047d57fe5b60200260200101515b60601b6001600160601b0319166102a05260078111620004a8576000620004bf565b87600781518110620004b657fe5b60200260200101515b60601b6001600160601b0319166102c05280620004de57600062000504565b6200050488600081518110620004f057fe5b60200260200101516200072960201b60201c565b6102e05260018111620005195760006200052b565b6200052b88600181518110620004f057fe5b61030052600281116200054057600062000552565b6200055288600281518110620004f057fe5b61032052600381116200056757600062000579565b6200057988600381518110620004f057fe5b61034052600481116200058e576000620005a0565b620005a088600481518110620004f057fe5b6103605260058111620005b5576000620005c7565b620005c788600581518110620004f057fe5b6103805260068111620005dc576000620005ee565b620005ee88600681518110620004f057fe5b6103a052600781116200060357600062000615565b6200061588600781518110620004f057fe5b6103c05250508f516200063c9a5060051015985061012f9750506200069995505050505050565b6200064e600186101561012c62000699565b6200066161138886111561012d62000699565b60006200067c866103e8620007d560201b62000f8d1760201c565b9050620006898162000806565b5050505050505050505062000e11565b81620006aa57620006aa8162000845565b5050565b80620006aa8162000898565b620006cf64e8d4a5100082101560cb62000699565b620006e767016345785d8a000082111560ca62000699565b60088190556040517fa9ba3ffe0b6c366b81232caab38605a0699ad5398d6cce76f91ee809e322dafc906200071e90839062000da4565b60405180910390a150565b600080826001600160a01b031663313ce5676040518163ffffffff1660e01b815260040160206040518083038186803b1580156200076657600080fd5b505afa1580156200077b573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190620007a1919062000cd0565b60ff1690506000620007c06012836200092560201b62000fb11760201c565b600a0a670de0b6b3a764000002949350505050565b6000828202620007fd841580620007f5575083858381620007f257fe5b04145b600362000699565b90505b92915050565b62000814818042806200093d565b7fa0d01593e47e69d07e0ccd87bece09411e07dd1ed40ca8f2e7af2976542a0233816040516200071e919062000da4565b62461bcd60e51b6000908152602060045260076024526642414c23000030600a808404818106603090810160081b95839006959095019082900491820690940160101b939093010160c81b604452606490fd5b600281511015620008a95762000922565b600081600081518110620008b957fe5b602002602001015190506000600190505b82518110156200091f576000838281518110620008e357fe5b6020026020010151905062000914816001600160a01b0316846001600160a01b03161060656200069960201b60201c565b9150600101620008ca565b50505b50565b60006200093783831115600162000699565b50900390565b6200095e816001600160401b031660c062000a0d60201b62000fc71760201c565b6200097f836001600160401b0316608062000a0d60201b62000fc71760201c565b620009a0856001600160401b0316604062000a0d60201b62000fc71760201c565b620009c1876001600160401b0316600062000a0d60201b62000fc71760201c565b1717176009556040517f1835882ee7a34ac194f717a35e09bb1d24c82a3b9d854ab6c9749525b714cdf290620009ff90869086908690869062000dad565b60405180910390a150505050565b1b90565b828054600181600116156101000203166002900490600052602060002090601f016020900481019282601f1062000a5457805160ff191683800117855562000a84565b8280016001018555821562000a84579182015b8281111562000a8457825182559160200191906001019062000a67565b5062000a9292915062000a96565b5090565b5b8082111562000a92576000815560010162000a97565b8051620008008162000dfb565b600082601f83011262000acb578081fd5b81516001600160401b0381111562000ae1578182fd5b602080820262000af382820162000dc8565b8381529350818401858301828701840188101562000b1057600080fd5b600092505b8483101562000b4057805162000b2b8162000dfb565b82526001929092019190830190830162000b15565b505050505092915050565b600082601f83011262000b5c578081fd5b81516001600160401b0381111562000b72578182fd5b602062000b88601f8301601f1916820162000dc8565b9250818352848183860101111562000b9f57600080fd5b60005b8281101562000bbf57848101820151848201830152810162000ba2565b8281111562000bd15760008284860101525b50505092915050565b60006020828403121562000bec578081fd5b5051919050565b60008060008060008060008060006101208a8c03121562000c12578485fd5b62000c1e8b8b62000aad565b60208b01519099506001600160401b038082111562000c3b578687fd5b62000c498d838e0162000b4b565b995060408c015191508082111562000c5f578687fd5b62000c6d8d838e0162000b4b565b985060608c015191508082111562000c83578687fd5b5062000c928c828d0162000aba565b96505060808a0151945060a08a0151935060c08a0151925060e08a0151915062000cc18b6101008c0162000aad565b90509295985092959850929598565b60006020828403121562000ce2578081fd5b815160ff81168114620007fd578182fd5b60006060820185835260206060818501528186518084526080860191508288019350845b8181101562000d3f5762000d2c855162000def565b8352938301939183019160010162000d17565b505084810360408601528551808252908201925081860190845b8181101562000d815762000d6e835162000def565b8552938301939183019160010162000d59565b509298975050505050505050565b602081016003831062000d9e57fe5b91905290565b90815260200190565b93845260208401929092526040830152606082015260800190565b6040518181016001600160401b038111828210171562000de757600080fd5b604052919050565b6001600160a01b031690565b6001600160a01b03811681146200092257600080fd5b60805160a05160601c60c05160e051610100516101205161014051610160516101805160601c6101a0516101c0516101e05160601c6102005160601c6102205160601c6102405160601c6102605160601c6102805160601c6102a05160601c6102c05160601c6102e05161030051610320516103405161036051610380516103a0516103c05161475462000f786000398061124b528061221a52508061120852806121b95250806111c5528061215852508061118252806120f752508061113f52806120965250806110fc52806120355250806110b95280611fd45250806110685280611f735250806121df52508061217e52508061211d5250806120bc52508061205b525080611ffa525080611f99525080611f385280612b73525080610fcd5250806107b5525080610ae15250806114f15250806114cd525080610cf352508061174a52508061178c52508061176b525080610abd525080610a4752506147546000f3fe608060405234801561001057600080fd5b50600436106102265760003560e01c80636daccffa1161012a57806395d89b41116100bd578063aaabadc51161008c578063d5c096c411610071578063d5c096c41461046f578063dd62ed3e14610482578063eb0f24d61461049557610226565b8063aaabadc514610454578063d505accf1461045c57610226565b806395d89b41146104135780639d2c110c1461041b578063a457c2d71461042e578063a9059cbb1461044157610226565b8063851c1bb3116100f9578063851c1bb3146103d057806387ec6817146103e3578063893d20e8146103f65780638d928af81461040b57610226565b80636daccffa1461037257806370a082311461038957806374f3b0091461039c5780637ecebe00146103bd57610226565b8063313ce567116101bd578063395093511161018c57806355c676281161017157806355c67628146103415780636028bfd414610349578063679aefce1461036a57610226565b8063395093511461031b57806350dd6ed91461032e57610226565b8063313ce567146102e35780633644e515146102f857806338e9922e1461030057806338fff2d01461031357610226565b806318160ddd116101f957806318160ddd1461029e5780631c0de051146102a657806323b872dd146102bd5780632f1a0bc9146102d057610226565b806301ec954a1461022b57806306fdde0314610254578063095ea7b31461026957806316c38b3c14610289575b600080fd5b61023e6102393660046142d9565b61049d565b60405161024b9190614566565b60405180910390f35b61025c6104fc565b60405161024b919061463c565b61027c610277366004613f52565b6105b1565b60405161024b9190614543565b61029c610297366004614049565b6105c8565b005b61023e6105dc565b6102ae6105e2565b60405161024b9392919061454e565b61027c6102cb366004613e9d565b61060b565b61029c6102de3660046143ae565b61069f565b6102eb610782565b60405161024b9190614699565b61023e61078b565b61029c61030e366004614396565b61079a565b61023e6107b3565b61027c610329366004613f52565b6107d7565b61029c61033c366004614180565b610812565b61023e610830565b61035c610357366004614081565b610836565b60405161024b92919061464f565b61023e61086d565b61037a61094b565b60405161024b93929190614668565b61023e610397366004613e49565b610966565b6103af6103aa366004614081565b610985565b60405161024b92919061451e565b61023e6103cb366004613e49565b610a28565b61023e6103de366004614124565b610a43565b61035c6103f1366004614081565b610a95565b6103fe610abb565b60405161024b919061450a565b6103fe610adf565b61025c610b03565b61023e61042936600461434a565b610b82565b61027c61043c366004613f52565b610c69565b61027c61044f366004613f52565b610ca7565b6103fe610cb4565b61029c61046a366004613edd565b610cbe565b6103af61047d366004614081565b610e07565b61023e610490366004613e65565b610f2c565b61029c610f57565b60006104b183836104ac610fcb565b610fef565b60606104bb61100c565b90506000865160018111156104cc57fe5b146104e3576104de8686868685611289565b6104f0565b6104f08686868685611300565b9150505b949350505050565b60038054604080516020601f60027fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156105a65780601f1061057b576101008083540402835291602001916105a6565b820191906000526020600020905b81548152906001019060200180831161058957829003601f168201915b505050505090505b90565b60006105be338484611364565b5060015b92915050565b6105d06113cc565b6105d981611412565b50565b60025490565b60008060006105ef6114ae565b1592506105fa6114cb565b91506106046114ef565b9050909192565b6000806106188533610f2c565b905061063c336001600160a01b03871614806106345750838210155b61019e611513565b610647858585611521565b336001600160a01b0386161480159061068057507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8114155b15610692576106928533858403611364565b60019150505b9392505050565b6106a76113cc565b6106b7600183101561012c611513565b6106c861138883111561012d611513565b60006106d48242610fb1565b90506106e86201518082101561013d611513565b6000806106f3611601565b91509150610704811561013e611513565b6000610712866103e8610f8d565b905060008382116107415761073c61072d6201518086610f8d565b6107378488610f8d565b611675565b61075b565b61075b6107516201518084610f8d565b6107378688610f8d565b905061076d600282111561013f611513565b610779848342896116a8565b50505050505050565b60055460ff1690565b6000610795611746565b905090565b6107a26113cc565b6107aa6117e3565b6105d9816117f8565b7f000000000000000000000000000000000000000000000000000000000000000090565b3360008181526001602090815260408083206001600160a01b038716845290915281205490916105be91859061080d9086611856565b611364565b61081a6113cc565b6108226117e3565b61082c8282611868565b5050565b60085490565b6000606061084c8651610847610fcb565b611980565b6108618989898989898961198d611a31611a92565b97509795505050505050565b60006060610879610adf565b6001600160a01b031663f94d466861088f6107b3565b6040518263ffffffff1660e01b81526004016108ab9190614566565b60006040518083038186803b1580156108c357600080fd5b505afa1580156108d7573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f191682016040526108ff9190810190613f7d565b50915050600061090d611601565b5090506109218261091c61100c565b611c22565b600061092f82846000611c83565b905061094361093c6105dc565b8290611e1f565b935050505090565b6000806000610958611601565b90949093506103e892509050565b6001600160a01b0381166000908152602081905260409020545b919050565b606080886109af610994610adf565b6001600160a01b0316336001600160a01b03161460cd611513565b6109c46109ba6107b3565b82146101f4611513565b60606109ce61100c565b90506109da8882611c22565b60006060806109ef8e8e8e8e8e8e8a8f61198d565b9250925092506109ff8d84611e70565b610a098285611a31565b610a138185611a31565b909550935050505b5097509795505050505050565b6001600160a01b031660009081526006602052604090205490565b60007f000000000000000000000000000000000000000000000000000000000000000082604051602001610a78929190614494565b604051602081830303815290604052805190602001209050919050565b60006060610aa68651610847610fcb565b61086189898989898989611e7a611ed3611a92565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b60048054604080516020601f60027fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156105a65780601f1061057b576101008083540402835291602001916105a6565b600080610b928560200151611f34565b90506000610ba38660400151611f34565b9050600086516001811115610bb457fe5b1415610c1a57610bc78660600151612249565b6060870152610bd6858361226d565b9450610be2848261226d565b9350610bf286606001518361226d565b60608701526000610c04878787612279565b9050610c1081836122bd565b9350505050610698565b610c24858361226d565b9450610c30848261226d565b9350610c4086606001518261226d565b60608701526000610c528787876122c9565b9050610c5e81846122f8565b9050610c1081612304565b600080610c763385610f2c565b9050808310610c9057610c8b33856000611364565b610c9d565b610c9d3385858403611364565b5060019392505050565b60006105be338484611521565b600061079561232d565b610ccc8442111560d1611513565b6001600160a01b0387166000908152600660209081526040808320549051909291610d23917f0000000000000000000000000000000000000000000000000000000000000000918c918c918c9188918d910161458e565b6040516020818303038152906040528051906020012090506000610d46826123a7565b9050600060018288888860405160008152602001604052604051610d6d949392919061461e565b6020604051602081039080840390855afa158015610d8f573d6000803e3d6000fd5b5050604051601f1901519150610dd190506001600160a01b03821615801590610dc957508b6001600160a01b0316826001600160a01b0316145b6101f8611513565b6001600160a01b038b166000908152600660205260409020600185019055610dfa8b8b8b611364565b5050505050505050505050565b60608088610e16610994610adf565b610e216109ba6107b3565b6060610e2b61100c565b9050610e356105dc565b610edc5760006060610e4a8d8d8d868b6123c3565b91509150610e5f620f424083101560cc611513565b610e6d6000620f4240612452565b610e7c8b620f42408403612452565b610e868184611ed3565b80610e8f610fcb565b67ffffffffffffffff81118015610ea557600080fd5b50604051908082528060200260200182016040528015610ecf578160200160208202803683370190505b5095509550505050610a1b565b610ee68882611c22565b6000606080610efb8e8e8e8e8e8e8a8f611e7a565b925092509250610f0b8c84612452565b610f158285611ed3565b610f1f8185611a31565b9095509350610a1b915050565b6001600160a01b03918216600090815260016020908152604080832093909416825291909152205490565b610f5f6113cc565b600080610f6a611601565b91509150610f7a81610140611513565b61082c8261245c565b8061082c81612497565b6000828202610698841580610faa575083858381610fa757fe5b04145b6003611513565b6000610fc1838311156001611513565b50900390565b1b90565b7f000000000000000000000000000000000000000000000000000000000000000090565b611007818410801561100057508183105b6064611513565b505050565b60606000611018610fcb565b905060608167ffffffffffffffff8111801561103357600080fd5b5060405190808252806020026020018201604052801561105d578160200160208202803683370190505b50905081156110a5577f00000000000000000000000000000000000000000000000000000000000000008160008151811061109457fe5b6020026020010181815250506110ae565b91506105ae9050565b60018211156110a5577f0000000000000000000000000000000000000000000000000000000000000000816001815181106110e557fe5b60200260200101818152505060028211156110a5577f00000000000000000000000000000000000000000000000000000000000000008160028151811061112857fe5b60200260200101818152505060038211156110a5577f00000000000000000000000000000000000000000000000000000000000000008160038151811061116b57fe5b60200260200101818152505060048211156110a5577f0000000000000000000000000000000000000000000000000000000000000000816004815181106111ae57fe5b60200260200101818152505060058211156110a5577f0000000000000000000000000000000000000000000000000000000000000000816005815181106111f157fe5b60200260200101818152505060068211156110a5577f00000000000000000000000000000000000000000000000000000000000000008160068151811061123457fe5b60200260200101818152505060078211156110a5577f00000000000000000000000000000000000000000000000000000000000000008160078151811061127757fe5b60200260200101818152505091505090565b60006112958583611c22565b6112b686606001518385815181106112a957fe5b602002602001015161226d565b606087015260006112c987878787612510565b90506112e8818487815181106112db57fe5b60200260200101516122f8565b90506112f381612304565b9150505b95945050505050565b600061130f8660600151612249565b606087015261131e8583611c22565b61133286606001518386815181106112a957fe5b606087015260006113458787878761253a565b90506112f38184868151811061135757fe5b60200260200101516122bd565b6001600160a01b0380841660008181526001602090815260408083209487168084529490915290819020849055517f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925906113bf908590614566565b60405180910390a3505050565b60006113fb6000357fffffffff0000000000000000000000000000000000000000000000000000000016610a43565b90506105d961140a8233612564565b610191611513565b80156114325761142d6114236114cb565b4210610193611513565b611447565b61144761143d6114ef565b42106101a9611513565b600780547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00168215151790556040517f9e3a5e37224532dea67b89face185703738a228a6e8a23dee546960180d3be64906114a3908390614543565b60405180910390a150565b60006114b86114ef565b42118061079557505060075460ff161590565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b8161082c5761082c81612654565b6115386001600160a01b0384161515610198611513565b61154f6001600160a01b0383161515610199611513565b61155a838383611007565b6001600160a01b03831660009081526020819052604090205461158090826101a06126c1565b6001600160a01b0380851660009081526020819052604080822093909355908416815220546115af9082611856565b6001600160a01b0380841660008181526020819052604090819020939093559151908516907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef906113bf908590614566565b6000806000806000806116126126d7565b93509350935093508042101561166557600194508383111561164957818103824203858503028161163f57fe5b0484019550611660565b818103824203848603028161165a57fe5b04840395505b61166d565b600094508295505b505050509091565b60006116848215156004611513565b82611691575060006105c2565b81600184038161169d57fe5b0460010190506105c2565b6116bd8167ffffffffffffffff1660c0610fc7565b6116d28367ffffffffffffffff166080610fc7565b6116e78567ffffffffffffffff166040610fc7565b6116fc8767ffffffffffffffff166000610fc7565b1717176009556040517f1835882ee7a34ac194f717a35e09bb1d24c82a3b9d854ab6c9749525b714cdf29061173890869086908690869061467e565b60405180910390a150505050565b60007f00000000000000000000000000000000000000000000000000000000000000007f00000000000000000000000000000000000000000000000000000000000000007f00000000000000000000000000000000000000000000000000000000000000006117b361272e565b306040516020016117c89594939291906145c2565b60405160208183030381529060405280519060200120905090565b6117f66117ee6114ae565b610192611513565b565b61180b64e8d4a5100082101560cb611513565b61182167016345785d8a000082111560ca611513565b60088190556040517fa9ba3ffe0b6c366b81232caab38605a0699ad5398d6cce76f91ee809e322dafc906114a3908390614566565b60008282016106988482101583611513565b60006118726107b3565b9050600061187e610adf565b6001600160a01b031663b05f8e4883866040518363ffffffff1660e01b81526004016118ab929190614607565b60806040518083038186803b1580156118c357600080fd5b505afa1580156118d7573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906118fb91906143cf565b6040517f18e736d40000000000000000000000000000000000000000000000000000000081529094506001600160a01b03851693506318e736d492506119489150859087906004016145ee565b600060405180830381600087803b15801561196257600080fd5b505af1158015611976573d6000803e3d6000fd5b5050505050505050565b61082c8183146067611513565b600060608061199a6114ae565b156119bd576119a98887612732565b90506119b88882610fb161281f565b611a09565b6119c5610fcb565b67ffffffffffffffff811180156119db57600080fd5b50604051908082528060200260200182016040528015611a05578160200160208202803683370190505b5090505b611a1488868661288a565b9093509150611a2388836128f6565b985098509895505050505050565b60005b611a3c610fcb565b81101561100757611a73838281518110611a5257fe5b6020026020010151838381518110611a6657fe5b6020026020010151611e1f565b838281518110611a7f57fe5b6020908102919091010152600101611a34565b333014611b81576000306001600160a01b0316600036604051611ab69291906144c4565b6000604051808303816000865af19150503d8060008114611af3576040519150601f19603f3d011682016040523d82523d6000602084013e611af8565b606091505b505090508060008114611b0757fe5b60046000803e6000517fffffffff00000000000000000000000000000000000000000000000000000000167f43adbafb000000000000000000000000000000000000000000000000000000008114611b63573d6000803e3d6000fd5b506020600460003e604060205260243d03602460403e601c3d016000f35b6060611b8b61100c565b9050611b978782611c22565b60006060611baf8c8c8c8c8c8c898d8d63ffffffff16565b5091509150611bc281848663ffffffff16565b8051601f1982018390526343adbafb7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc08301526020027fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffdc82016044820181fd5b60005b611c2d610fcb565b81101561100757611c64838281518110611c4357fe5b6020026020010151838381518110611c5757fe5b6020026020010151612925565b838281518110611c7057fe5b6020908102919091010152600101611c25565b81516000908190815b81811015611cc457611cba868281518110611ca357fe5b60200260200101518461185690919063ffffffff16565b9250600101611c8c565b5081611cd557600092505050610698565b600082878302825b60ff811015611e07576000858a600081518110611cf657fe5b60200260200101510290506000600190505b86811015611d4a57611d40611d39611d33848e8581518110611d2657fe5b6020026020010151610f8d565b89610f8d565b868c612951565b9150600101611d08565b50839450611dbd611d8c611d73611d6a611d64878c610f8d565b85610f8d565b6103e88d612951565b611d86611d808a89610f8d565b88610f8d565b90611856565b611db7611daa611da06103e8880386610f8d565b6103e88e15612951565b611d868a60010189610f8d565b8b612951565b935084841115611de557600185850311611de05783975050505050505050610698565b611dfe565b600184860311611dfe5783975050505050505050610698565b50600101611cdd565b50611e13610142612654565b50505050509392505050565b6000611e2e8215156004611513565b82611e3b575060006105c2565b670de0b6b3a764000083810290611e5e90858381611e5557fe5b04146005611513565b828181611e6757fe5b049150506105c2565b61082c8282612971565b6000606080611e876117e3565b6060611e938988612732565b9050611ea28982610fb161281f565b60006060611eb18b8989612a2d565b91509150611ebf8b82612a86565b909d909c50909a5098505050505050505050565b60005b611ede610fcb565b81101561100757611f15838281518110611ef457fe5b6020026020010151838381518110611f0857fe5b6020026020010151612a93565b838281518110611f2157fe5b6020908102919091010152600101611ed6565b60007f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b03161415611f9757507f0000000000000000000000000000000000000000000000000000000000000000610980565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b03161415611ff857507f0000000000000000000000000000000000000000000000000000000000000000610980565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b0316141561205957507f0000000000000000000000000000000000000000000000000000000000000000610980565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b031614156120ba57507f0000000000000000000000000000000000000000000000000000000000000000610980565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b0316141561211b57507f0000000000000000000000000000000000000000000000000000000000000000610980565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b0316141561217c57507f0000000000000000000000000000000000000000000000000000000000000000610980565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b031614156121dd57507f0000000000000000000000000000000000000000000000000000000000000000610980565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b0316141561223e57507f0000000000000000000000000000000000000000000000000000000000000000610980565b610980610135612654565b60008061226160085484612ae190919063ffffffff16565b90506106988382610fb1565b60006106988383612925565b6000612290612286610fcb565b60021460d2611513565b60606000806122a0878787612b3b565b9250925092506122b28784848461253a565b979650505050505050565b60006106988383611e1f565b60006122d6612286610fcb565b60606000806122e6878787612b3b565b9250925092506122b287848484612510565b60006106988383612a93565b60006105c2612326600854670de0b6b3a7640000610fb190919063ffffffff16565b8390612a93565b6000612337610adf565b6001600160a01b031663aaabadc56040518163ffffffff1660e01b815260040160206040518083038186803b15801561236f57600080fd5b505afa158015612383573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906107959190614164565b60006123b1611746565b82604051602001610a789291906144d4565b600060606123cf6117e3565b60006123da84612c28565b90506123f560008260028111156123ed57fe5b1460ce611513565b606061240085612c3e565b905061240f8151610847610fcb565b6124198187611c22565b6000612423611601565b509050600061243482846001611c83565b9050806124418184612c54565b9b929a509198505050505050505050565b61082c8282612c5f565b612468818242426116a8565b7fa0d01593e47e69d07e0ccd87bece09411e07dd1ed40ca8f2e7af2976542a0233816040516114a39190614566565b6002815110156124a6576105d9565b6000816000815181106124b557fe5b602002602001015190506000600190505b82518110156110075760008382815181106124dd57fe5b60200260200101519050612506816001600160a01b0316846001600160a01b0316106065611513565b91506001016124c6565b600061251a6117e3565b6000612524611601565b50905060006122b2828787878b60600151612ced565b60006125446117e3565b600061254e611601565b50905060006122b2828787878b60600151612db1565b600073ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1b612583610abb565b6001600160a01b03161415801561259e575061259e83612e59565b156125c6576125ab610abb565b6001600160a01b0316336001600160a01b03161490506105c2565b6125ce61232d565b6001600160a01b0316639be2a8848484306040518463ffffffff1660e01b81526004016125fd9392919061456f565b60206040518083038186803b15801561261557600080fd5b505afa158015612629573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061264d9190614065565b90506105c2565b7f08c379a0000000000000000000000000000000000000000000000000000000006000908152602060045260076024526642414c23000030600a808404818106603090810160081b95839006959095019082900491820690940160101b939093010160c81b604452606490fd5b60006126d08484111583611513565b5050900390565b6000806000806126f36000600954612ec790919063ffffffff16565b600954909450612704906040612ec7565b600954909350612715906080612ec7565b6009549092506127269060c0612ec7565b905090919293565b4690565b60608061273d610fcb565b67ffffffffffffffff8111801561275357600080fd5b5060405190808252806020026020018201604052801561277d578160200160208202803683370190505b5090508261278c5790506105c2565b6000808560008151811061279c57fe5b602002602001015190506000600190505b6127b5610fcb565b8110156127ec5760008782815181106127ca57fe5b60200260200101519050828111156127e3578193508092505b506001016127ad565b506127fe600b5487600a548589612ed5565b83838151811061280a57fe5b60209081029190910101525090949350505050565b60005b61282a610fcb565b8110156128845761286584828151811061284057fe5b602002602001015184838151811061285457fe5b60200260200101518463ffffffff16565b84828151811061287157fe5b6020908102919091010152600101612822565b50505050565b60006060600061289984612c28565b905060008160028111156128a957fe5b14156128c3576128b98685612f49565b92509250506128ee565b60018160028111156128d157fe5b14156128e1576128b9868561300f565b6128b9868686613041565b505b935093915050565b6129038282610fb161281f565b600061290d611601565b50905061100761291f82856001611c83565b82612c54565b600082820261293f841580610faa575083858381610fa757fe5b670de0b6b3a764000090049392505050565b6000816129675761296284846130b8565b6104f4565b6104f48484611675565b6129886001600160a01b038316151561019b611513565b61299482600083611007565b6001600160a01b0382166000908152602081905260409020546129ba90826101a16126c1565b6001600160a01b0383166000908152602081905260409020556002546129e090826130d8565b6002556040516000906001600160a01b038416907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef90612a21908590614566565b60405180910390a35050565b600060606000612a3c84612c28565b90506001816002811115612a4c57fe5b1415612a5d576128b98686866130e6565b6002816002811115612a6b57fe5b1415612a7b576128b9868561314b565b6128ec610136612654565b612903828261185661281f565b6000612aa28215156004611513565b82612aaf575060006105c2565b670de0b6b3a764000083810290612ac990858381611e5557fe5b826001820381612ad557fe5b046001019150506105c2565b6000828202612afb841580610faa575083858381610fa757fe5b80612b0a5760009150506105c2565b670de0b6b3a76400007fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8201612ad5565b6040805160028082526060828101909352600091829181602001602082028036833701905050925085602001516001600160a01b03167f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03161415612be25760009150600190508483600081518110612bb757fe5b6020026020010181815250508383600181518110612bd157fe5b602002602001018181525050612c1f565b60009050600191508383600081518110612bf857fe5b6020026020010181815250508483600181518110612c1257fe5b6020026020010181815250505b93509350939050565b6000818060200190518101906105c291906141ce565b6060818060200190518101906106989190614294565b600a91909155600b55565b612c6b60008383611007565b600254612c789082611856565b6002556001600160a01b038216600090815260208190526040902054612c9e9082611856565b6001600160a01b0383166000818152602081905260408082209390935591519091907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef90612a21908590614566565b600080612cfc87876001611c83565b9050612d2483878681518110612d0e57fe5b6020026020010151610fb190919063ffffffff16565b868581518110612d3057fe5b6020026020010181815250506000612d4a888884896131db565b905083878681518110612d5957fe5b602002602001015101878681518110612d6e57fe5b602002602001018181525050612da56001611d86898981518110612d8e57fe5b602002602001015184610fb190919063ffffffff16565b98975050505050505050565b600080612dc087876001611c83565b9050612de883878781518110612dd257fe5b602002602001015161185690919063ffffffff16565b868681518110612df457fe5b6020026020010181815250506000612e0e888884886131db565b905083878781518110612e1d57fe5b602002602001015103878781518110612e3257fe5b602002602001018181525050612da56001612e53838a8981518110612d0e57fe5b90610fb1565b6000612e847f2f1a0bc900000000000000000000000000000000000000000000000000000000610a43565b821480612eb85750612eb57feb0f24d600000000000000000000000000000000000000000000000000000000610a43565b82145b806105c257506105c28261338b565b1c67ffffffffffffffff1690565b600080612ee4878787876131db565b905080868581518110612ef357fe5b602002602001015111612f0a5760009150506112f7565b600081878681518110612f1957fe5b6020026020010151039050612da5670de0b6b3a7640000612f43868461292590919063ffffffff16565b90611e1f565b60006060612f556117e3565b600080612f61856133ef565b91509150612f79612f70610fcb565b82106064611513565b6060612f83610fcb565b67ffffffffffffffff81118015612f9957600080fd5b50604051908082528060200260200182016040528015612fc3578160200160208202803683370190505b5090506000612fd0611601565b509050612fea81898587612fe26105dc565b600854613411565b828481518110612ff657fe5b6020908102919091010152509196919550909350505050565b60006060600061301e8461352d565b90506060613034868361302f6105dc565b613543565b9196919550909350505050565b6000606061304d6117e3565b6060600061305a856135f5565b9150915061306b8251610847610fcb565b6130758287611c22565b600061307f611601565b509050600061309a828a866130926105dc565b60085461360d565b90506130aa8382111560cf611513565b989297509195505050505050565b60006130c78215156004611513565b8183816130d057fe5b049392505050565b6000610698838360016126c1565b600060608060006130f6856135f5565b9150915061310c613105610fcb565b8351611980565b6131168287611c22565b6000613120611601565b509050600061313b828a866131336105dc565b6008546138a3565b90506130aa8382101560d0611513565b6000606060008061315b856133ef565b9150915061316a612f70610fcb565b6060613174610fcb565b67ffffffffffffffff8111801561318a57600080fd5b506040519080825280602002602001820160405280156131b4578160200160208202803683370190505b50905060006131c1611601565b509050612fea818985876131d36105dc565b600854613b32565b6000808451860290506000856000815181106131f357fe5b60200260200101519050600086518760008151811061320e57fe5b60200260200101510290506000600190505b87518110156132675761324c61324661323f848b8581518110611d2657fe5b8a51610f8d565b886130b8565b915061325d888281518110611ca357fe5b9250600101613220565b5086858151811061327457fe5b602002602001015182039150600061328c8788610f8d565b905060006132b86132ac6132a4846107378988610f8d565b6103e8610f8d565b8a8981518110611d2657fe5b905060006132d36132cc6132a48b896130b8565b8690611856565b90506000806132ef6132e58686611856565b6107378d86611856565b905060005b60ff81101561336f5781925061332461331186611d868586610f8d565b6107378e612e5388611d86886002610f8d565b91508282111561334d57600183830311613348575097506104f49650505050505050565b613367565b600182840311613367575097506104f49650505050505050565b6001016132f4565b5061337b610142612654565b5050505050505050949350505050565b60006133b67f38e9922e00000000000000000000000000000000000000000000000000000000610a43565b8214806105c257506133e77f50dd6ed900000000000000000000000000000000000000000000000000000000610a43565b909114919050565b60008082806020019051810190613406919061425e565b909590945092505050565b60008061342088886001611c83565b905060006134428261343c87613436818b610fb1565b90612a93565b90612ae1565b905060006134528a8a848b6131db565b90506000613466828b8b81518110612d0e57fe5b90506000805b8b518110156134a55761349b8c828151811061348457fe5b60200260200101518361185690919063ffffffff16565b915060010161346c565b5060006134ce828d8d815181106134b857fe5b6020026020010151611e1f90919063ffffffff16565b905060006134db82613c0f565b905060006134e98583612ae1565b905060006134f78683610fb1565b905061351861351183670de0b6b3a76400008e9003612925565b8290611856565b99505050505050505050509695505050505050565b6000818060200190518101906106989190614231565b606060006135518484611e1f565b90506060855167ffffffffffffffff8111801561356d57600080fd5b50604051908082528060200260200182016040528015613597578160200160208202803683370190505b50905060005b86518110156135eb576135cc838883815181106135b657fe5b602002602001015161292590919063ffffffff16565b8282815181106135d857fe5b602090810291909101015260010161359d565b5095945050505050565b606060008280602001905181019061340691906141ea565b600080805b86518110156136345761362a87828151811061348457fe5b9150600101613612565b506060855167ffffffffffffffff8111801561364f57600080fd5b50604051908082528060200260200182016040528015613679578160200160208202803683370190505b5090506000805b88518110156137405760006136b1858b848151811061369b57fe5b6020026020010151612a9390919063ffffffff16565b90506136ed8a83815181106136c257fe5b60200260200101516134368b85815181106136d957fe5b60200260200101518d8681518110612d0e57fe5b8483815181106136f957fe5b60200260200101818152505061373561372e8286858151811061371857fe5b6020026020010151612ae190919063ffffffff16565b8490611856565b925050600101613680565b506060885167ffffffffffffffff8111801561375b57600080fd5b50604051908082528060200260200182016040528015613785578160200160208202803683370190505b50905060005b89518110156138505760008482815181106137a257fe5b60200260200101518411156138095760006137cb6137bf86613c0f565b8d85815181106135b657fe5b905060006137df828d8681518110612d0e57fe5b90506138006137f982670de0b6b3a76400008d9003612a93565b8390611856565b92505050613820565b89828151811061381557fe5b602002602001015190505b613830818c8481518110612d0e57fe5b83838151811061383c57fe5b60209081029190910101525060010161378b565b50600061385f8b8b6001611c83565b9050600061386f8c846000611c83565b9050600061387d8284611e1f565b905061389261388b82613c0f565b8b90612ae1565b9d9c50505050505050505050505050565b600080805b86518110156138ca576138c087828151811061348457fe5b91506001016138a8565b506060855167ffffffffffffffff811180156138e557600080fd5b5060405190808252806020026020018201604052801561390f578160200160208202803683370190505b5090506000805b88518110156139a3576000613931858b84815181106134b857fe5b905061396d8a838151811061394257fe5b6020026020010151612f438b858151811061395957fe5b60200260200101518d8681518110612dd257fe5b84838151811061397957fe5b60200260200101818152505061399861372e828685815181106135b657fe5b925050600101613916565b506060885167ffffffffffffffff811180156139be57600080fd5b506040519080825280602002602001820160405280156139e8578160200160208202803683370190505b50905060005b8951811015613aa957600083858381518110613a0657fe5b60200260200101511115613a62576000613a2b6137bf86670de0b6b3a7640000610fb1565b90506000613a3f828d8681518110612d0e57fe5b9050613a596137f982670de0b6b3a76400008d9003612925565b92505050613a79565b898281518110613a6e57fe5b602002602001015190505b613a89818c8481518110612dd257fe5b838381518110613a9557fe5b6020908102919091010152506001016139ee565b506000613ab88b8b6001611c83565b90506000613ac88c846000611c83565b90506000613ad68284611e1f565b9050670de0b6b3a7640000811115613b2257613b148a7ffffffffffffffffffffffffffffffffffffffffffffffffff21f494c589c00008301612925565b9750505050505050506112f7565b60009750505050505050506112f7565b600080613b4188886001611c83565b90506000613b578261343c87613436818b611856565b90506000613b678a8a848b6131db565b90506000613b918a8a81518110613b7a57fe5b602002602001015183610fb190919063ffffffff16565b90506000805b8b51811015613bb957613baf8c828151811061348457fe5b9150600101613b97565b506000613bcc828d8d815181106134b857fe5b90506000613bd982613c0f565b90506000613be78583612ae1565b90506000613bf58683610fb1565b905061351861351183670de0b6b3a76400008e9003612a93565b6000670de0b6b3a76400008210613c275760006105c2565b50670de0b6b3a76400000390565b80356105c2816146ee565b600082601f830112613c50578081fd5b8135613c63613c5e826146ce565b6146a7565b818152915060208083019084810181840286018201871015613c8457600080fd5b60005b84811015613ca357813584529282019290820190600101613c87565b505050505092915050565b600082601f830112613cbe578081fd5b8151613ccc613c5e826146ce565b818152915060208083019084810181840286018201871015613ced57600080fd5b60005b84811015613ca357815184529282019290820190600101613cf0565b600082601f830112613d1c578081fd5b813567ffffffffffffffff811115613d32578182fd5b613d456020601f19601f840116016146a7565b9150808252836020828501011115613d5c57600080fd5b8060208401602084013760009082016020015292915050565b8035600281106105c257600080fd5b6000610120808385031215613d97578182fd5b613da0816146a7565b915050613dad8383613d75565b8152613dbc8360208401613c35565b6020820152613dce8360408401613c35565b6040820152606082013560608201526080820135608082015260a082013560a0820152613dfe8360c08401613c35565b60c0820152613e108360e08401613c35565b60e08201526101008083013567ffffffffffffffff811115613e3157600080fd5b613e3d85828601613d0c565b82840152505092915050565b600060208284031215613e5a578081fd5b8135610698816146ee565b60008060408385031215613e77578081fd5b8235613e82816146ee565b91506020830135613e92816146ee565b809150509250929050565b600080600060608486031215613eb1578081fd5b8335613ebc816146ee565b92506020840135613ecc816146ee565b929592945050506040919091013590565b600080600080600080600060e0888a031215613ef7578283fd5b8735613f02816146ee565b96506020880135613f12816146ee565b95506040880135945060608801359350608088013560ff81168114613f35578384fd5b9699959850939692959460a0840135945060c09093013592915050565b60008060408385031215613f64578182fd5b8235613f6f816146ee565b946020939093013593505050565b600080600060608486031215613f91578081fd5b835167ffffffffffffffff80821115613fa8578283fd5b818601915086601f830112613fbb578283fd5b8151613fc9613c5e826146ce565b80828252602080830192508086018b828387028901011115613fe9578788fd5b8796505b84871015614014578051614000816146ee565b845260019690960195928101928101613fed565b50890151909750935050508082111561402b578283fd5b5061403886828701613cae565b925050604084015190509250925092565b60006020828403121561405a578081fd5b813561069881614703565b600060208284031215614076578081fd5b815161069881614703565b600080600080600080600060e0888a03121561409b578081fd5b8735965060208801356140ad816146ee565b955060408801356140bd816146ee565b9450606088013567ffffffffffffffff808211156140d9578283fd5b6140e58b838c01613c40565b955060808a0135945060a08a0135935060c08a0135915080821115614108578283fd5b506141158a828b01613d0c565b91505092959891949750929550565b600060208284031215614135578081fd5b81357fffffffff0000000000000000000000000000000000000000000000000000000081168114610698578182fd5b600060208284031215614175578081fd5b8151610698816146ee565b60008060408385031215614192578182fd5b823561419d816146ee565b9150602083013567ffffffffffffffff8111156141b8578182fd5b6141c485828601613d0c565b9150509250929050565b6000602082840312156141df578081fd5b815161069881614711565b6000806000606084860312156141fe578081fd5b835161420981614711565b602085015190935067ffffffffffffffff811115614225578182fd5b61403886828701613cae565b60008060408385031215614243578182fd5b825161424e81614711565b6020939093015192949293505050565b600080600060608486031215614272578081fd5b835161427d81614711565b602085015160409095015190969495509392505050565b600080604083850312156142a6578182fd5b82516142b181614711565b602084015190925067ffffffffffffffff8111156142cd578182fd5b6141c485828601613cae565b600080600080608085870312156142ee578182fd5b843567ffffffffffffffff80821115614305578384fd5b61431188838901613d84565b95506020870135915080821115614326578384fd5b5061433387828801613c40565b949794965050505060408301359260600135919050565b60008060006060848603121561435e578081fd5b833567ffffffffffffffff811115614374578182fd5b61438086828701613d84565b9660208601359650604090950135949350505050565b6000602082840312156143a7578081fd5b5035919050565b600080604083850312156143c0578182fd5b50508035926020909101359150565b600080600080608085870312156143e4578182fd5b8451935060208501519250604085015191506060850151614404816146ee565b939692955090935050565b6000815180845260208085019450808401835b8381101561443e57815187529582019590820190600101614422565b509495945050505050565b60008151808452815b8181101561446e57602081850181015186830182015201614452565b8181111561447f5782602083870101525b50601f01601f19169290920160200192915050565b9182527fffffffff0000000000000000000000000000000000000000000000000000000016602082015260240190565b6000828483379101908152919050565b7f190100000000000000000000000000000000000000000000000000000000000081526002810192909252602282015260420190565b6001600160a01b0391909116815260200190565b600060408252614531604083018561440f565b82810360208401526112f7818561440f565b901515815260200190565b92151583526020830191909152604082015260600190565b90815260200190565b9283526001600160a01b03918216602084015216604082015260600190565b9586526001600160a01b0394851660208701529290931660408501526060840152608083019190915260a082015260c00190565b9485526020850193909352604084019190915260608301526001600160a01b0316608082015260a00190565b6000838252604060208301526104f46040830184614449565b9182526001600160a01b0316602082015260400190565b93845260ff9290921660208401526040830152606082015260800190565b6000602082526106986020830184614449565b6000838252604060208301526104f4604083018461440f565b9283529015156020830152604082015260600190565b93845260208401929092526040830152606082015260800190565b60ff91909116815260200190565b60405181810167ffffffffffffffff811182821017156146c657600080fd5b604052919050565b600067ffffffffffffffff8211156146e4578081fd5b5060209081020190565b6001600160a01b03811681146105d957600080fd5b80151581146105d957600080fd5b600381106105d957600080fdfea264697066735822122074699730ea8aa4fa00d2702d985bebe2cf30c6abf09e7ee52a1750d232c882ff64736f6c63430007010033a26469706673582212207cbe8f85ba368fdc5070617b2e445e9210e8ccfb093bd1e3452a817f143214c064736f6c63430007010033000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c8
Deployed Bytecode
0x60806040523480156200001157600080fd5b5060043610620000525760003560e01c80632da47c4014620000575780636634b753146200007a5780637932c7f314620000a05780638d928af814620000c6575b600080fd5b62000061620000d0565b60405162000071929190620005f4565b60405180910390f35b620000916200008b36600462000330565b6200013c565b60405162000071919062000522565b620000b7620000b136600462000356565b62000167565b60405162000071919062000501565b620000b7620001e8565b600080427f00000000000000000000000000000000000000000000000000000000614ca4658110156200012e57807f00000000000000000000000000000000000000000000000000000000614ca46503925062278d00915062000137565b60009250600091505b509091565b73ffffffffffffffffffffffffffffffffffffffff1660009081526020819052604090205460ff1690565b600080600062000176620000d0565b91509150600062000186620001e8565b8a8a8a8a8a88888c6040516200019c9062000283565b620001b0999897969594939291906200052d565b604051809103906000f080158015620001cd573d6000803e3d6000fd5b509050620001db816200020c565b9998505050505050505050565b7f000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c890565b73ffffffffffffffffffffffffffffffffffffffff811660008181526020819052604080822080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00166001179055517f83a48fbcfc991335314e74d0496aab6a1987e992ddc85dddbcc4d6dd6ef2e9fc9190a250565b6156cc806200066a83390190565b80356200029e8162000643565b92915050565b600082601f830112620002b5578081fd5b813567ffffffffffffffff811115620002cc578182fd5b620002ff60207fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f8401160162000602565b91508082528360208285010111156200031757600080fd5b8060208401602084013760009082016020015292915050565b60006020828403121562000342578081fd5b81356200034f8162000643565b9392505050565b60008060008060008060c087890312156200036f578182fd5b863567ffffffffffffffff8082111562000387578384fd5b620003958a838b01620002a4565b9750602091508189013581811115620003ac578485fd5b620003ba8b828c01620002a4565b975050604089013581811115620003cf578485fd5b8901601f81018b13620003e0578485fd5b803582811115620003ef578586fd5b83810292506200040184840162000602565b8181528481019083860185850187018f10156200041c578889fd5b8895505b838610156200044a57620004358f8262000291565b83526001959095019491860191860162000420565b509850505050606089013594505050608087013591506200046f8860a0890162000291565b90509295509295509295565b73ffffffffffffffffffffffffffffffffffffffff169052565b60008151808452815b81811015620004bc576020818501810151868301820152016200049e565b81811115620004ce5782602083870101525b50601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0169290920160200192915050565b73ffffffffffffffffffffffffffffffffffffffff91909116815260200190565b901515815260200190565b600061012073ffffffffffffffffffffffffffffffffffffffff8c16835260208181850152620005608285018d62000495565b9150838203604085015262000576828c62000495565b84810360608601528a51808252828c01935090820190845b81811015620005b657620005a385516200062a565b835293830193918301916001016200058e565b50508093505050508660808301528560a08301528460c08301528360e0830152620005e66101008301846200047b565b9a9950505050505050505050565b918252602082015260400190565b60405181810167ffffffffffffffff811182821017156200062257600080fd5b604052919050565b73ffffffffffffffffffffffffffffffffffffffff1690565b73ffffffffffffffffffffffffffffffffffffffff811681146200066657600080fd5b5056fe6103e06040527f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9610120523480156200003757600080fd5b50604051620056cc380380620056cc8339810160408190526200005a9162000bf3565b8886516002146200006d57600062000070565b60025b8989898a516001600160401b03811180156200008b57600080fd5b50604051908082528060200260200182016040528015620000b6578160200160208202803683370190505b506040805180820190915260018152603160f81b602080830191909152336080526001600160601b031960608a901b1660a05285518c928c928c928c92859285928c928c92849283929183918691620001159160039185019062000a11565b5080516200012b90600490602084019062000a11565b50506005805460ff1916601217905550815160209283012060c052805191012060e05250507f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f61010052506200018a6276a70083111561019462000699565b6200019e62278d0082111561019562000699565b4290910161014081905201610160528551620001c0906002111560c862000699565b620001d860088751111560c96200069960201b60201c565b620001ee86620006ae60201b62000f831760201c565b620001f984620006ba565b6040516309b2760f60e01b81526000906001600160a01b038c16906309b2760f906200022a908d9060040162000d8f565b602060405180830381600087803b1580156200024557600080fd5b505af11580156200025a573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019062000280919062000bda565b604051633354e3e960e11b81529091506001600160a01b038c16906366a9c7d290620002b59084908b908b9060040162000cf3565b600060405180830381600087803b158015620002d057600080fd5b505af1158015620002e5573d6000803e3d6000fd5b505088516001600160601b031960608f901b16610180526101a08490526101c0819052915050806200031957600062000330565b876000815181106200032757fe5b60200260200101515b60601b6001600160601b0319166101e052600181116200035257600062000369565b876001815181106200036057fe5b60200260200101515b60601b6001600160601b03191661020052600281116200038b576000620003a2565b876002815181106200039957fe5b60200260200101515b60601b6001600160601b0319166102205260038111620003c4576000620003db565b87600381518110620003d257fe5b60200260200101515b60601b6001600160601b0319166102405260048111620003fd57600062000414565b876004815181106200040b57fe5b60200260200101515b60601b6001600160601b0319166102605260058111620004365760006200044d565b876005815181106200044457fe5b60200260200101515b60601b6001600160601b03191661028052600681116200046f57600062000486565b876006815181106200047d57fe5b60200260200101515b60601b6001600160601b0319166102a05260078111620004a8576000620004bf565b87600781518110620004b657fe5b60200260200101515b60601b6001600160601b0319166102c05280620004de57600062000504565b6200050488600081518110620004f057fe5b60200260200101516200072960201b60201c565b6102e05260018111620005195760006200052b565b6200052b88600181518110620004f057fe5b61030052600281116200054057600062000552565b6200055288600281518110620004f057fe5b61032052600381116200056757600062000579565b6200057988600381518110620004f057fe5b61034052600481116200058e576000620005a0565b620005a088600481518110620004f057fe5b6103605260058111620005b5576000620005c7565b620005c788600581518110620004f057fe5b6103805260068111620005dc576000620005ee565b620005ee88600681518110620004f057fe5b6103a052600781116200060357600062000615565b6200061588600781518110620004f057fe5b6103c05250508f516200063c9a5060051015985061012f9750506200069995505050505050565b6200064e600186101561012c62000699565b6200066161138886111561012d62000699565b60006200067c866103e8620007d560201b62000f8d1760201c565b9050620006898162000806565b5050505050505050505062000e11565b81620006aa57620006aa8162000845565b5050565b80620006aa8162000898565b620006cf64e8d4a5100082101560cb62000699565b620006e767016345785d8a000082111560ca62000699565b60088190556040517fa9ba3ffe0b6c366b81232caab38605a0699ad5398d6cce76f91ee809e322dafc906200071e90839062000da4565b60405180910390a150565b600080826001600160a01b031663313ce5676040518163ffffffff1660e01b815260040160206040518083038186803b1580156200076657600080fd5b505afa1580156200077b573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190620007a1919062000cd0565b60ff1690506000620007c06012836200092560201b62000fb11760201c565b600a0a670de0b6b3a764000002949350505050565b6000828202620007fd841580620007f5575083858381620007f257fe5b04145b600362000699565b90505b92915050565b62000814818042806200093d565b7fa0d01593e47e69d07e0ccd87bece09411e07dd1ed40ca8f2e7af2976542a0233816040516200071e919062000da4565b62461bcd60e51b6000908152602060045260076024526642414c23000030600a808404818106603090810160081b95839006959095019082900491820690940160101b939093010160c81b604452606490fd5b600281511015620008a95762000922565b600081600081518110620008b957fe5b602002602001015190506000600190505b82518110156200091f576000838281518110620008e357fe5b6020026020010151905062000914816001600160a01b0316846001600160a01b03161060656200069960201b60201c565b9150600101620008ca565b50505b50565b60006200093783831115600162000699565b50900390565b6200095e816001600160401b031660c062000a0d60201b62000fc71760201c565b6200097f836001600160401b0316608062000a0d60201b62000fc71760201c565b620009a0856001600160401b0316604062000a0d60201b62000fc71760201c565b620009c1876001600160401b0316600062000a0d60201b62000fc71760201c565b1717176009556040517f1835882ee7a34ac194f717a35e09bb1d24c82a3b9d854ab6c9749525b714cdf290620009ff90869086908690869062000dad565b60405180910390a150505050565b1b90565b828054600181600116156101000203166002900490600052602060002090601f016020900481019282601f1062000a5457805160ff191683800117855562000a84565b8280016001018555821562000a84579182015b8281111562000a8457825182559160200191906001019062000a67565b5062000a9292915062000a96565b5090565b5b8082111562000a92576000815560010162000a97565b8051620008008162000dfb565b600082601f83011262000acb578081fd5b81516001600160401b0381111562000ae1578182fd5b602080820262000af382820162000dc8565b8381529350818401858301828701840188101562000b1057600080fd5b600092505b8483101562000b4057805162000b2b8162000dfb565b82526001929092019190830190830162000b15565b505050505092915050565b600082601f83011262000b5c578081fd5b81516001600160401b0381111562000b72578182fd5b602062000b88601f8301601f1916820162000dc8565b9250818352848183860101111562000b9f57600080fd5b60005b8281101562000bbf57848101820151848201830152810162000ba2565b8281111562000bd15760008284860101525b50505092915050565b60006020828403121562000bec578081fd5b5051919050565b60008060008060008060008060006101208a8c03121562000c12578485fd5b62000c1e8b8b62000aad565b60208b01519099506001600160401b038082111562000c3b578687fd5b62000c498d838e0162000b4b565b995060408c015191508082111562000c5f578687fd5b62000c6d8d838e0162000b4b565b985060608c015191508082111562000c83578687fd5b5062000c928c828d0162000aba565b96505060808a0151945060a08a0151935060c08a0151925060e08a0151915062000cc18b6101008c0162000aad565b90509295985092959850929598565b60006020828403121562000ce2578081fd5b815160ff81168114620007fd578182fd5b60006060820185835260206060818501528186518084526080860191508288019350845b8181101562000d3f5762000d2c855162000def565b8352938301939183019160010162000d17565b505084810360408601528551808252908201925081860190845b8181101562000d815762000d6e835162000def565b8552938301939183019160010162000d59565b509298975050505050505050565b602081016003831062000d9e57fe5b91905290565b90815260200190565b93845260208401929092526040830152606082015260800190565b6040518181016001600160401b038111828210171562000de757600080fd5b604052919050565b6001600160a01b031690565b6001600160a01b03811681146200092257600080fd5b60805160a05160601c60c05160e051610100516101205161014051610160516101805160601c6101a0516101c0516101e05160601c6102005160601c6102205160601c6102405160601c6102605160601c6102805160601c6102a05160601c6102c05160601c6102e05161030051610320516103405161036051610380516103a0516103c05161475462000f786000398061124b528061221a52508061120852806121b95250806111c5528061215852508061118252806120f752508061113f52806120965250806110fc52806120355250806110b95280611fd45250806110685280611f735250806121df52508061217e52508061211d5250806120bc52508061205b525080611ffa525080611f99525080611f385280612b73525080610fcd5250806107b5525080610ae15250806114f15250806114cd525080610cf352508061174a52508061178c52508061176b525080610abd525080610a4752506147546000f3fe608060405234801561001057600080fd5b50600436106102265760003560e01c80636daccffa1161012a57806395d89b41116100bd578063aaabadc51161008c578063d5c096c411610071578063d5c096c41461046f578063dd62ed3e14610482578063eb0f24d61461049557610226565b8063aaabadc514610454578063d505accf1461045c57610226565b806395d89b41146104135780639d2c110c1461041b578063a457c2d71461042e578063a9059cbb1461044157610226565b8063851c1bb3116100f9578063851c1bb3146103d057806387ec6817146103e3578063893d20e8146103f65780638d928af81461040b57610226565b80636daccffa1461037257806370a082311461038957806374f3b0091461039c5780637ecebe00146103bd57610226565b8063313ce567116101bd578063395093511161018c57806355c676281161017157806355c67628146103415780636028bfd414610349578063679aefce1461036a57610226565b8063395093511461031b57806350dd6ed91461032e57610226565b8063313ce567146102e35780633644e515146102f857806338e9922e1461030057806338fff2d01461031357610226565b806318160ddd116101f957806318160ddd1461029e5780631c0de051146102a657806323b872dd146102bd5780632f1a0bc9146102d057610226565b806301ec954a1461022b57806306fdde0314610254578063095ea7b31461026957806316c38b3c14610289575b600080fd5b61023e6102393660046142d9565b61049d565b60405161024b9190614566565b60405180910390f35b61025c6104fc565b60405161024b919061463c565b61027c610277366004613f52565b6105b1565b60405161024b9190614543565b61029c610297366004614049565b6105c8565b005b61023e6105dc565b6102ae6105e2565b60405161024b9392919061454e565b61027c6102cb366004613e9d565b61060b565b61029c6102de3660046143ae565b61069f565b6102eb610782565b60405161024b9190614699565b61023e61078b565b61029c61030e366004614396565b61079a565b61023e6107b3565b61027c610329366004613f52565b6107d7565b61029c61033c366004614180565b610812565b61023e610830565b61035c610357366004614081565b610836565b60405161024b92919061464f565b61023e61086d565b61037a61094b565b60405161024b93929190614668565b61023e610397366004613e49565b610966565b6103af6103aa366004614081565b610985565b60405161024b92919061451e565b61023e6103cb366004613e49565b610a28565b61023e6103de366004614124565b610a43565b61035c6103f1366004614081565b610a95565b6103fe610abb565b60405161024b919061450a565b6103fe610adf565b61025c610b03565b61023e61042936600461434a565b610b82565b61027c61043c366004613f52565b610c69565b61027c61044f366004613f52565b610ca7565b6103fe610cb4565b61029c61046a366004613edd565b610cbe565b6103af61047d366004614081565b610e07565b61023e610490366004613e65565b610f2c565b61029c610f57565b60006104b183836104ac610fcb565b610fef565b60606104bb61100c565b90506000865160018111156104cc57fe5b146104e3576104de8686868685611289565b6104f0565b6104f08686868685611300565b9150505b949350505050565b60038054604080516020601f60027fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156105a65780601f1061057b576101008083540402835291602001916105a6565b820191906000526020600020905b81548152906001019060200180831161058957829003601f168201915b505050505090505b90565b60006105be338484611364565b5060015b92915050565b6105d06113cc565b6105d981611412565b50565b60025490565b60008060006105ef6114ae565b1592506105fa6114cb565b91506106046114ef565b9050909192565b6000806106188533610f2c565b905061063c336001600160a01b03871614806106345750838210155b61019e611513565b610647858585611521565b336001600160a01b0386161480159061068057507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8114155b15610692576106928533858403611364565b60019150505b9392505050565b6106a76113cc565b6106b7600183101561012c611513565b6106c861138883111561012d611513565b60006106d48242610fb1565b90506106e86201518082101561013d611513565b6000806106f3611601565b91509150610704811561013e611513565b6000610712866103e8610f8d565b905060008382116107415761073c61072d6201518086610f8d565b6107378488610f8d565b611675565b61075b565b61075b6107516201518084610f8d565b6107378688610f8d565b905061076d600282111561013f611513565b610779848342896116a8565b50505050505050565b60055460ff1690565b6000610795611746565b905090565b6107a26113cc565b6107aa6117e3565b6105d9816117f8565b7f000000000000000000000000000000000000000000000000000000000000000090565b3360008181526001602090815260408083206001600160a01b038716845290915281205490916105be91859061080d9086611856565b611364565b61081a6113cc565b6108226117e3565b61082c8282611868565b5050565b60085490565b6000606061084c8651610847610fcb565b611980565b6108618989898989898961198d611a31611a92565b97509795505050505050565b60006060610879610adf565b6001600160a01b031663f94d466861088f6107b3565b6040518263ffffffff1660e01b81526004016108ab9190614566565b60006040518083038186803b1580156108c357600080fd5b505afa1580156108d7573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f191682016040526108ff9190810190613f7d565b50915050600061090d611601565b5090506109218261091c61100c565b611c22565b600061092f82846000611c83565b905061094361093c6105dc565b8290611e1f565b935050505090565b6000806000610958611601565b90949093506103e892509050565b6001600160a01b0381166000908152602081905260409020545b919050565b606080886109af610994610adf565b6001600160a01b0316336001600160a01b03161460cd611513565b6109c46109ba6107b3565b82146101f4611513565b60606109ce61100c565b90506109da8882611c22565b60006060806109ef8e8e8e8e8e8e8a8f61198d565b9250925092506109ff8d84611e70565b610a098285611a31565b610a138185611a31565b909550935050505b5097509795505050505050565b6001600160a01b031660009081526006602052604090205490565b60007f000000000000000000000000000000000000000000000000000000000000000082604051602001610a78929190614494565b604051602081830303815290604052805190602001209050919050565b60006060610aa68651610847610fcb565b61086189898989898989611e7a611ed3611a92565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b60048054604080516020601f60027fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156105a65780601f1061057b576101008083540402835291602001916105a6565b600080610b928560200151611f34565b90506000610ba38660400151611f34565b9050600086516001811115610bb457fe5b1415610c1a57610bc78660600151612249565b6060870152610bd6858361226d565b9450610be2848261226d565b9350610bf286606001518361226d565b60608701526000610c04878787612279565b9050610c1081836122bd565b9350505050610698565b610c24858361226d565b9450610c30848261226d565b9350610c4086606001518261226d565b60608701526000610c528787876122c9565b9050610c5e81846122f8565b9050610c1081612304565b600080610c763385610f2c565b9050808310610c9057610c8b33856000611364565b610c9d565b610c9d3385858403611364565b5060019392505050565b60006105be338484611521565b600061079561232d565b610ccc8442111560d1611513565b6001600160a01b0387166000908152600660209081526040808320549051909291610d23917f0000000000000000000000000000000000000000000000000000000000000000918c918c918c9188918d910161458e565b6040516020818303038152906040528051906020012090506000610d46826123a7565b9050600060018288888860405160008152602001604052604051610d6d949392919061461e565b6020604051602081039080840390855afa158015610d8f573d6000803e3d6000fd5b5050604051601f1901519150610dd190506001600160a01b03821615801590610dc957508b6001600160a01b0316826001600160a01b0316145b6101f8611513565b6001600160a01b038b166000908152600660205260409020600185019055610dfa8b8b8b611364565b5050505050505050505050565b60608088610e16610994610adf565b610e216109ba6107b3565b6060610e2b61100c565b9050610e356105dc565b610edc5760006060610e4a8d8d8d868b6123c3565b91509150610e5f620f424083101560cc611513565b610e6d6000620f4240612452565b610e7c8b620f42408403612452565b610e868184611ed3565b80610e8f610fcb565b67ffffffffffffffff81118015610ea557600080fd5b50604051908082528060200260200182016040528015610ecf578160200160208202803683370190505b5095509550505050610a1b565b610ee68882611c22565b6000606080610efb8e8e8e8e8e8e8a8f611e7a565b925092509250610f0b8c84612452565b610f158285611ed3565b610f1f8185611a31565b9095509350610a1b915050565b6001600160a01b03918216600090815260016020908152604080832093909416825291909152205490565b610f5f6113cc565b600080610f6a611601565b91509150610f7a81610140611513565b61082c8261245c565b8061082c81612497565b6000828202610698841580610faa575083858381610fa757fe5b04145b6003611513565b6000610fc1838311156001611513565b50900390565b1b90565b7f000000000000000000000000000000000000000000000000000000000000000090565b611007818410801561100057508183105b6064611513565b505050565b60606000611018610fcb565b905060608167ffffffffffffffff8111801561103357600080fd5b5060405190808252806020026020018201604052801561105d578160200160208202803683370190505b50905081156110a5577f00000000000000000000000000000000000000000000000000000000000000008160008151811061109457fe5b6020026020010181815250506110ae565b91506105ae9050565b60018211156110a5577f0000000000000000000000000000000000000000000000000000000000000000816001815181106110e557fe5b60200260200101818152505060028211156110a5577f00000000000000000000000000000000000000000000000000000000000000008160028151811061112857fe5b60200260200101818152505060038211156110a5577f00000000000000000000000000000000000000000000000000000000000000008160038151811061116b57fe5b60200260200101818152505060048211156110a5577f0000000000000000000000000000000000000000000000000000000000000000816004815181106111ae57fe5b60200260200101818152505060058211156110a5577f0000000000000000000000000000000000000000000000000000000000000000816005815181106111f157fe5b60200260200101818152505060068211156110a5577f00000000000000000000000000000000000000000000000000000000000000008160068151811061123457fe5b60200260200101818152505060078211156110a5577f00000000000000000000000000000000000000000000000000000000000000008160078151811061127757fe5b60200260200101818152505091505090565b60006112958583611c22565b6112b686606001518385815181106112a957fe5b602002602001015161226d565b606087015260006112c987878787612510565b90506112e8818487815181106112db57fe5b60200260200101516122f8565b90506112f381612304565b9150505b95945050505050565b600061130f8660600151612249565b606087015261131e8583611c22565b61133286606001518386815181106112a957fe5b606087015260006113458787878761253a565b90506112f38184868151811061135757fe5b60200260200101516122bd565b6001600160a01b0380841660008181526001602090815260408083209487168084529490915290819020849055517f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925906113bf908590614566565b60405180910390a3505050565b60006113fb6000357fffffffff0000000000000000000000000000000000000000000000000000000016610a43565b90506105d961140a8233612564565b610191611513565b80156114325761142d6114236114cb565b4210610193611513565b611447565b61144761143d6114ef565b42106101a9611513565b600780547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00168215151790556040517f9e3a5e37224532dea67b89face185703738a228a6e8a23dee546960180d3be64906114a3908390614543565b60405180910390a150565b60006114b86114ef565b42118061079557505060075460ff161590565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b8161082c5761082c81612654565b6115386001600160a01b0384161515610198611513565b61154f6001600160a01b0383161515610199611513565b61155a838383611007565b6001600160a01b03831660009081526020819052604090205461158090826101a06126c1565b6001600160a01b0380851660009081526020819052604080822093909355908416815220546115af9082611856565b6001600160a01b0380841660008181526020819052604090819020939093559151908516907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef906113bf908590614566565b6000806000806000806116126126d7565b93509350935093508042101561166557600194508383111561164957818103824203858503028161163f57fe5b0484019550611660565b818103824203848603028161165a57fe5b04840395505b61166d565b600094508295505b505050509091565b60006116848215156004611513565b82611691575060006105c2565b81600184038161169d57fe5b0460010190506105c2565b6116bd8167ffffffffffffffff1660c0610fc7565b6116d28367ffffffffffffffff166080610fc7565b6116e78567ffffffffffffffff166040610fc7565b6116fc8767ffffffffffffffff166000610fc7565b1717176009556040517f1835882ee7a34ac194f717a35e09bb1d24c82a3b9d854ab6c9749525b714cdf29061173890869086908690869061467e565b60405180910390a150505050565b60007f00000000000000000000000000000000000000000000000000000000000000007f00000000000000000000000000000000000000000000000000000000000000007f00000000000000000000000000000000000000000000000000000000000000006117b361272e565b306040516020016117c89594939291906145c2565b60405160208183030381529060405280519060200120905090565b6117f66117ee6114ae565b610192611513565b565b61180b64e8d4a5100082101560cb611513565b61182167016345785d8a000082111560ca611513565b60088190556040517fa9ba3ffe0b6c366b81232caab38605a0699ad5398d6cce76f91ee809e322dafc906114a3908390614566565b60008282016106988482101583611513565b60006118726107b3565b9050600061187e610adf565b6001600160a01b031663b05f8e4883866040518363ffffffff1660e01b81526004016118ab929190614607565b60806040518083038186803b1580156118c357600080fd5b505afa1580156118d7573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906118fb91906143cf565b6040517f18e736d40000000000000000000000000000000000000000000000000000000081529094506001600160a01b03851693506318e736d492506119489150859087906004016145ee565b600060405180830381600087803b15801561196257600080fd5b505af1158015611976573d6000803e3d6000fd5b5050505050505050565b61082c8183146067611513565b600060608061199a6114ae565b156119bd576119a98887612732565b90506119b88882610fb161281f565b611a09565b6119c5610fcb565b67ffffffffffffffff811180156119db57600080fd5b50604051908082528060200260200182016040528015611a05578160200160208202803683370190505b5090505b611a1488868661288a565b9093509150611a2388836128f6565b985098509895505050505050565b60005b611a3c610fcb565b81101561100757611a73838281518110611a5257fe5b6020026020010151838381518110611a6657fe5b6020026020010151611e1f565b838281518110611a7f57fe5b6020908102919091010152600101611a34565b333014611b81576000306001600160a01b0316600036604051611ab69291906144c4565b6000604051808303816000865af19150503d8060008114611af3576040519150601f19603f3d011682016040523d82523d6000602084013e611af8565b606091505b505090508060008114611b0757fe5b60046000803e6000517fffffffff00000000000000000000000000000000000000000000000000000000167f43adbafb000000000000000000000000000000000000000000000000000000008114611b63573d6000803e3d6000fd5b506020600460003e604060205260243d03602460403e601c3d016000f35b6060611b8b61100c565b9050611b978782611c22565b60006060611baf8c8c8c8c8c8c898d8d63ffffffff16565b5091509150611bc281848663ffffffff16565b8051601f1982018390526343adbafb7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc08301526020027fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffdc82016044820181fd5b60005b611c2d610fcb565b81101561100757611c64838281518110611c4357fe5b6020026020010151838381518110611c5757fe5b6020026020010151612925565b838281518110611c7057fe5b6020908102919091010152600101611c25565b81516000908190815b81811015611cc457611cba868281518110611ca357fe5b60200260200101518461185690919063ffffffff16565b9250600101611c8c565b5081611cd557600092505050610698565b600082878302825b60ff811015611e07576000858a600081518110611cf657fe5b60200260200101510290506000600190505b86811015611d4a57611d40611d39611d33848e8581518110611d2657fe5b6020026020010151610f8d565b89610f8d565b868c612951565b9150600101611d08565b50839450611dbd611d8c611d73611d6a611d64878c610f8d565b85610f8d565b6103e88d612951565b611d86611d808a89610f8d565b88610f8d565b90611856565b611db7611daa611da06103e8880386610f8d565b6103e88e15612951565b611d868a60010189610f8d565b8b612951565b935084841115611de557600185850311611de05783975050505050505050610698565b611dfe565b600184860311611dfe5783975050505050505050610698565b50600101611cdd565b50611e13610142612654565b50505050509392505050565b6000611e2e8215156004611513565b82611e3b575060006105c2565b670de0b6b3a764000083810290611e5e90858381611e5557fe5b04146005611513565b828181611e6757fe5b049150506105c2565b61082c8282612971565b6000606080611e876117e3565b6060611e938988612732565b9050611ea28982610fb161281f565b60006060611eb18b8989612a2d565b91509150611ebf8b82612a86565b909d909c50909a5098505050505050505050565b60005b611ede610fcb565b81101561100757611f15838281518110611ef457fe5b6020026020010151838381518110611f0857fe5b6020026020010151612a93565b838281518110611f2157fe5b6020908102919091010152600101611ed6565b60007f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b03161415611f9757507f0000000000000000000000000000000000000000000000000000000000000000610980565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b03161415611ff857507f0000000000000000000000000000000000000000000000000000000000000000610980565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b0316141561205957507f0000000000000000000000000000000000000000000000000000000000000000610980565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b031614156120ba57507f0000000000000000000000000000000000000000000000000000000000000000610980565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b0316141561211b57507f0000000000000000000000000000000000000000000000000000000000000000610980565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b0316141561217c57507f0000000000000000000000000000000000000000000000000000000000000000610980565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b031614156121dd57507f0000000000000000000000000000000000000000000000000000000000000000610980565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b0316141561223e57507f0000000000000000000000000000000000000000000000000000000000000000610980565b610980610135612654565b60008061226160085484612ae190919063ffffffff16565b90506106988382610fb1565b60006106988383612925565b6000612290612286610fcb565b60021460d2611513565b60606000806122a0878787612b3b565b9250925092506122b28784848461253a565b979650505050505050565b60006106988383611e1f565b60006122d6612286610fcb565b60606000806122e6878787612b3b565b9250925092506122b287848484612510565b60006106988383612a93565b60006105c2612326600854670de0b6b3a7640000610fb190919063ffffffff16565b8390612a93565b6000612337610adf565b6001600160a01b031663aaabadc56040518163ffffffff1660e01b815260040160206040518083038186803b15801561236f57600080fd5b505afa158015612383573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906107959190614164565b60006123b1611746565b82604051602001610a789291906144d4565b600060606123cf6117e3565b60006123da84612c28565b90506123f560008260028111156123ed57fe5b1460ce611513565b606061240085612c3e565b905061240f8151610847610fcb565b6124198187611c22565b6000612423611601565b509050600061243482846001611c83565b9050806124418184612c54565b9b929a509198505050505050505050565b61082c8282612c5f565b612468818242426116a8565b7fa0d01593e47e69d07e0ccd87bece09411e07dd1ed40ca8f2e7af2976542a0233816040516114a39190614566565b6002815110156124a6576105d9565b6000816000815181106124b557fe5b602002602001015190506000600190505b82518110156110075760008382815181106124dd57fe5b60200260200101519050612506816001600160a01b0316846001600160a01b0316106065611513565b91506001016124c6565b600061251a6117e3565b6000612524611601565b50905060006122b2828787878b60600151612ced565b60006125446117e3565b600061254e611601565b50905060006122b2828787878b60600151612db1565b600073ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1b612583610abb565b6001600160a01b03161415801561259e575061259e83612e59565b156125c6576125ab610abb565b6001600160a01b0316336001600160a01b03161490506105c2565b6125ce61232d565b6001600160a01b0316639be2a8848484306040518463ffffffff1660e01b81526004016125fd9392919061456f565b60206040518083038186803b15801561261557600080fd5b505afa158015612629573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061264d9190614065565b90506105c2565b7f08c379a0000000000000000000000000000000000000000000000000000000006000908152602060045260076024526642414c23000030600a808404818106603090810160081b95839006959095019082900491820690940160101b939093010160c81b604452606490fd5b60006126d08484111583611513565b5050900390565b6000806000806126f36000600954612ec790919063ffffffff16565b600954909450612704906040612ec7565b600954909350612715906080612ec7565b6009549092506127269060c0612ec7565b905090919293565b4690565b60608061273d610fcb565b67ffffffffffffffff8111801561275357600080fd5b5060405190808252806020026020018201604052801561277d578160200160208202803683370190505b5090508261278c5790506105c2565b6000808560008151811061279c57fe5b602002602001015190506000600190505b6127b5610fcb565b8110156127ec5760008782815181106127ca57fe5b60200260200101519050828111156127e3578193508092505b506001016127ad565b506127fe600b5487600a548589612ed5565b83838151811061280a57fe5b60209081029190910101525090949350505050565b60005b61282a610fcb565b8110156128845761286584828151811061284057fe5b602002602001015184838151811061285457fe5b60200260200101518463ffffffff16565b84828151811061287157fe5b6020908102919091010152600101612822565b50505050565b60006060600061289984612c28565b905060008160028111156128a957fe5b14156128c3576128b98685612f49565b92509250506128ee565b60018160028111156128d157fe5b14156128e1576128b9868561300f565b6128b9868686613041565b505b935093915050565b6129038282610fb161281f565b600061290d611601565b50905061100761291f82856001611c83565b82612c54565b600082820261293f841580610faa575083858381610fa757fe5b670de0b6b3a764000090049392505050565b6000816129675761296284846130b8565b6104f4565b6104f48484611675565b6129886001600160a01b038316151561019b611513565b61299482600083611007565b6001600160a01b0382166000908152602081905260409020546129ba90826101a16126c1565b6001600160a01b0383166000908152602081905260409020556002546129e090826130d8565b6002556040516000906001600160a01b038416907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef90612a21908590614566565b60405180910390a35050565b600060606000612a3c84612c28565b90506001816002811115612a4c57fe5b1415612a5d576128b98686866130e6565b6002816002811115612a6b57fe5b1415612a7b576128b9868561314b565b6128ec610136612654565b612903828261185661281f565b6000612aa28215156004611513565b82612aaf575060006105c2565b670de0b6b3a764000083810290612ac990858381611e5557fe5b826001820381612ad557fe5b046001019150506105c2565b6000828202612afb841580610faa575083858381610fa757fe5b80612b0a5760009150506105c2565b670de0b6b3a76400007fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8201612ad5565b6040805160028082526060828101909352600091829181602001602082028036833701905050925085602001516001600160a01b03167f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03161415612be25760009150600190508483600081518110612bb757fe5b6020026020010181815250508383600181518110612bd157fe5b602002602001018181525050612c1f565b60009050600191508383600081518110612bf857fe5b6020026020010181815250508483600181518110612c1257fe5b6020026020010181815250505b93509350939050565b6000818060200190518101906105c291906141ce565b6060818060200190518101906106989190614294565b600a91909155600b55565b612c6b60008383611007565b600254612c789082611856565b6002556001600160a01b038216600090815260208190526040902054612c9e9082611856565b6001600160a01b0383166000818152602081905260408082209390935591519091907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef90612a21908590614566565b600080612cfc87876001611c83565b9050612d2483878681518110612d0e57fe5b6020026020010151610fb190919063ffffffff16565b868581518110612d3057fe5b6020026020010181815250506000612d4a888884896131db565b905083878681518110612d5957fe5b602002602001015101878681518110612d6e57fe5b602002602001018181525050612da56001611d86898981518110612d8e57fe5b602002602001015184610fb190919063ffffffff16565b98975050505050505050565b600080612dc087876001611c83565b9050612de883878781518110612dd257fe5b602002602001015161185690919063ffffffff16565b868681518110612df457fe5b6020026020010181815250506000612e0e888884886131db565b905083878781518110612e1d57fe5b602002602001015103878781518110612e3257fe5b602002602001018181525050612da56001612e53838a8981518110612d0e57fe5b90610fb1565b6000612e847f2f1a0bc900000000000000000000000000000000000000000000000000000000610a43565b821480612eb85750612eb57feb0f24d600000000000000000000000000000000000000000000000000000000610a43565b82145b806105c257506105c28261338b565b1c67ffffffffffffffff1690565b600080612ee4878787876131db565b905080868581518110612ef357fe5b602002602001015111612f0a5760009150506112f7565b600081878681518110612f1957fe5b6020026020010151039050612da5670de0b6b3a7640000612f43868461292590919063ffffffff16565b90611e1f565b60006060612f556117e3565b600080612f61856133ef565b91509150612f79612f70610fcb565b82106064611513565b6060612f83610fcb565b67ffffffffffffffff81118015612f9957600080fd5b50604051908082528060200260200182016040528015612fc3578160200160208202803683370190505b5090506000612fd0611601565b509050612fea81898587612fe26105dc565b600854613411565b828481518110612ff657fe5b6020908102919091010152509196919550909350505050565b60006060600061301e8461352d565b90506060613034868361302f6105dc565b613543565b9196919550909350505050565b6000606061304d6117e3565b6060600061305a856135f5565b9150915061306b8251610847610fcb565b6130758287611c22565b600061307f611601565b509050600061309a828a866130926105dc565b60085461360d565b90506130aa8382111560cf611513565b989297509195505050505050565b60006130c78215156004611513565b8183816130d057fe5b049392505050565b6000610698838360016126c1565b600060608060006130f6856135f5565b9150915061310c613105610fcb565b8351611980565b6131168287611c22565b6000613120611601565b509050600061313b828a866131336105dc565b6008546138a3565b90506130aa8382101560d0611513565b6000606060008061315b856133ef565b9150915061316a612f70610fcb565b6060613174610fcb565b67ffffffffffffffff8111801561318a57600080fd5b506040519080825280602002602001820160405280156131b4578160200160208202803683370190505b50905060006131c1611601565b509050612fea818985876131d36105dc565b600854613b32565b6000808451860290506000856000815181106131f357fe5b60200260200101519050600086518760008151811061320e57fe5b60200260200101510290506000600190505b87518110156132675761324c61324661323f848b8581518110611d2657fe5b8a51610f8d565b886130b8565b915061325d888281518110611ca357fe5b9250600101613220565b5086858151811061327457fe5b602002602001015182039150600061328c8788610f8d565b905060006132b86132ac6132a4846107378988610f8d565b6103e8610f8d565b8a8981518110611d2657fe5b905060006132d36132cc6132a48b896130b8565b8690611856565b90506000806132ef6132e58686611856565b6107378d86611856565b905060005b60ff81101561336f5781925061332461331186611d868586610f8d565b6107378e612e5388611d86886002610f8d565b91508282111561334d57600183830311613348575097506104f49650505050505050565b613367565b600182840311613367575097506104f49650505050505050565b6001016132f4565b5061337b610142612654565b5050505050505050949350505050565b60006133b67f38e9922e00000000000000000000000000000000000000000000000000000000610a43565b8214806105c257506133e77f50dd6ed900000000000000000000000000000000000000000000000000000000610a43565b909114919050565b60008082806020019051810190613406919061425e565b909590945092505050565b60008061342088886001611c83565b905060006134428261343c87613436818b610fb1565b90612a93565b90612ae1565b905060006134528a8a848b6131db565b90506000613466828b8b81518110612d0e57fe5b90506000805b8b518110156134a55761349b8c828151811061348457fe5b60200260200101518361185690919063ffffffff16565b915060010161346c565b5060006134ce828d8d815181106134b857fe5b6020026020010151611e1f90919063ffffffff16565b905060006134db82613c0f565b905060006134e98583612ae1565b905060006134f78683610fb1565b905061351861351183670de0b6b3a76400008e9003612925565b8290611856565b99505050505050505050509695505050505050565b6000818060200190518101906106989190614231565b606060006135518484611e1f565b90506060855167ffffffffffffffff8111801561356d57600080fd5b50604051908082528060200260200182016040528015613597578160200160208202803683370190505b50905060005b86518110156135eb576135cc838883815181106135b657fe5b602002602001015161292590919063ffffffff16565b8282815181106135d857fe5b602090810291909101015260010161359d565b5095945050505050565b606060008280602001905181019061340691906141ea565b600080805b86518110156136345761362a87828151811061348457fe5b9150600101613612565b506060855167ffffffffffffffff8111801561364f57600080fd5b50604051908082528060200260200182016040528015613679578160200160208202803683370190505b5090506000805b88518110156137405760006136b1858b848151811061369b57fe5b6020026020010151612a9390919063ffffffff16565b90506136ed8a83815181106136c257fe5b60200260200101516134368b85815181106136d957fe5b60200260200101518d8681518110612d0e57fe5b8483815181106136f957fe5b60200260200101818152505061373561372e8286858151811061371857fe5b6020026020010151612ae190919063ffffffff16565b8490611856565b925050600101613680565b506060885167ffffffffffffffff8111801561375b57600080fd5b50604051908082528060200260200182016040528015613785578160200160208202803683370190505b50905060005b89518110156138505760008482815181106137a257fe5b60200260200101518411156138095760006137cb6137bf86613c0f565b8d85815181106135b657fe5b905060006137df828d8681518110612d0e57fe5b90506138006137f982670de0b6b3a76400008d9003612a93565b8390611856565b92505050613820565b89828151811061381557fe5b602002602001015190505b613830818c8481518110612d0e57fe5b83838151811061383c57fe5b60209081029190910101525060010161378b565b50600061385f8b8b6001611c83565b9050600061386f8c846000611c83565b9050600061387d8284611e1f565b905061389261388b82613c0f565b8b90612ae1565b9d9c50505050505050505050505050565b600080805b86518110156138ca576138c087828151811061348457fe5b91506001016138a8565b506060855167ffffffffffffffff811180156138e557600080fd5b5060405190808252806020026020018201604052801561390f578160200160208202803683370190505b5090506000805b88518110156139a3576000613931858b84815181106134b857fe5b905061396d8a838151811061394257fe5b6020026020010151612f438b858151811061395957fe5b60200260200101518d8681518110612dd257fe5b84838151811061397957fe5b60200260200101818152505061399861372e828685815181106135b657fe5b925050600101613916565b506060885167ffffffffffffffff811180156139be57600080fd5b506040519080825280602002602001820160405280156139e8578160200160208202803683370190505b50905060005b8951811015613aa957600083858381518110613a0657fe5b60200260200101511115613a62576000613a2b6137bf86670de0b6b3a7640000610fb1565b90506000613a3f828d8681518110612d0e57fe5b9050613a596137f982670de0b6b3a76400008d9003612925565b92505050613a79565b898281518110613a6e57fe5b602002602001015190505b613a89818c8481518110612dd257fe5b838381518110613a9557fe5b6020908102919091010152506001016139ee565b506000613ab88b8b6001611c83565b90506000613ac88c846000611c83565b90506000613ad68284611e1f565b9050670de0b6b3a7640000811115613b2257613b148a7ffffffffffffffffffffffffffffffffffffffffffffffffff21f494c589c00008301612925565b9750505050505050506112f7565b60009750505050505050506112f7565b600080613b4188886001611c83565b90506000613b578261343c87613436818b611856565b90506000613b678a8a848b6131db565b90506000613b918a8a81518110613b7a57fe5b602002602001015183610fb190919063ffffffff16565b90506000805b8b51811015613bb957613baf8c828151811061348457fe5b9150600101613b97565b506000613bcc828d8d815181106134b857fe5b90506000613bd982613c0f565b90506000613be78583612ae1565b90506000613bf58683610fb1565b905061351861351183670de0b6b3a76400008e9003612a93565b6000670de0b6b3a76400008210613c275760006105c2565b50670de0b6b3a76400000390565b80356105c2816146ee565b600082601f830112613c50578081fd5b8135613c63613c5e826146ce565b6146a7565b818152915060208083019084810181840286018201871015613c8457600080fd5b60005b84811015613ca357813584529282019290820190600101613c87565b505050505092915050565b600082601f830112613cbe578081fd5b8151613ccc613c5e826146ce565b818152915060208083019084810181840286018201871015613ced57600080fd5b60005b84811015613ca357815184529282019290820190600101613cf0565b600082601f830112613d1c578081fd5b813567ffffffffffffffff811115613d32578182fd5b613d456020601f19601f840116016146a7565b9150808252836020828501011115613d5c57600080fd5b8060208401602084013760009082016020015292915050565b8035600281106105c257600080fd5b6000610120808385031215613d97578182fd5b613da0816146a7565b915050613dad8383613d75565b8152613dbc8360208401613c35565b6020820152613dce8360408401613c35565b6040820152606082013560608201526080820135608082015260a082013560a0820152613dfe8360c08401613c35565b60c0820152613e108360e08401613c35565b60e08201526101008083013567ffffffffffffffff811115613e3157600080fd5b613e3d85828601613d0c565b82840152505092915050565b600060208284031215613e5a578081fd5b8135610698816146ee565b60008060408385031215613e77578081fd5b8235613e82816146ee565b91506020830135613e92816146ee565b809150509250929050565b600080600060608486031215613eb1578081fd5b8335613ebc816146ee565b92506020840135613ecc816146ee565b929592945050506040919091013590565b600080600080600080600060e0888a031215613ef7578283fd5b8735613f02816146ee565b96506020880135613f12816146ee565b95506040880135945060608801359350608088013560ff81168114613f35578384fd5b9699959850939692959460a0840135945060c09093013592915050565b60008060408385031215613f64578182fd5b8235613f6f816146ee565b946020939093013593505050565b600080600060608486031215613f91578081fd5b835167ffffffffffffffff80821115613fa8578283fd5b818601915086601f830112613fbb578283fd5b8151613fc9613c5e826146ce565b80828252602080830192508086018b828387028901011115613fe9578788fd5b8796505b84871015614014578051614000816146ee565b845260019690960195928101928101613fed565b50890151909750935050508082111561402b578283fd5b5061403886828701613cae565b925050604084015190509250925092565b60006020828403121561405a578081fd5b813561069881614703565b600060208284031215614076578081fd5b815161069881614703565b600080600080600080600060e0888a03121561409b578081fd5b8735965060208801356140ad816146ee565b955060408801356140bd816146ee565b9450606088013567ffffffffffffffff808211156140d9578283fd5b6140e58b838c01613c40565b955060808a0135945060a08a0135935060c08a0135915080821115614108578283fd5b506141158a828b01613d0c565b91505092959891949750929550565b600060208284031215614135578081fd5b81357fffffffff0000000000000000000000000000000000000000000000000000000081168114610698578182fd5b600060208284031215614175578081fd5b8151610698816146ee565b60008060408385031215614192578182fd5b823561419d816146ee565b9150602083013567ffffffffffffffff8111156141b8578182fd5b6141c485828601613d0c565b9150509250929050565b6000602082840312156141df578081fd5b815161069881614711565b6000806000606084860312156141fe578081fd5b835161420981614711565b602085015190935067ffffffffffffffff811115614225578182fd5b61403886828701613cae565b60008060408385031215614243578182fd5b825161424e81614711565b6020939093015192949293505050565b600080600060608486031215614272578081fd5b835161427d81614711565b602085015160409095015190969495509392505050565b600080604083850312156142a6578182fd5b82516142b181614711565b602084015190925067ffffffffffffffff8111156142cd578182fd5b6141c485828601613cae565b600080600080608085870312156142ee578182fd5b843567ffffffffffffffff80821115614305578384fd5b61431188838901613d84565b95506020870135915080821115614326578384fd5b5061433387828801613c40565b949794965050505060408301359260600135919050565b60008060006060848603121561435e578081fd5b833567ffffffffffffffff811115614374578182fd5b61438086828701613d84565b9660208601359650604090950135949350505050565b6000602082840312156143a7578081fd5b5035919050565b600080604083850312156143c0578182fd5b50508035926020909101359150565b600080600080608085870312156143e4578182fd5b8451935060208501519250604085015191506060850151614404816146ee565b939692955090935050565b6000815180845260208085019450808401835b8381101561443e57815187529582019590820190600101614422565b509495945050505050565b60008151808452815b8181101561446e57602081850181015186830182015201614452565b8181111561447f5782602083870101525b50601f01601f19169290920160200192915050565b9182527fffffffff0000000000000000000000000000000000000000000000000000000016602082015260240190565b6000828483379101908152919050565b7f190100000000000000000000000000000000000000000000000000000000000081526002810192909252602282015260420190565b6001600160a01b0391909116815260200190565b600060408252614531604083018561440f565b82810360208401526112f7818561440f565b901515815260200190565b92151583526020830191909152604082015260600190565b90815260200190565b9283526001600160a01b03918216602084015216604082015260600190565b9586526001600160a01b0394851660208701529290931660408501526060840152608083019190915260a082015260c00190565b9485526020850193909352604084019190915260608301526001600160a01b0316608082015260a00190565b6000838252604060208301526104f46040830184614449565b9182526001600160a01b0316602082015260400190565b93845260ff9290921660208401526040830152606082015260800190565b6000602082526106986020830184614449565b6000838252604060208301526104f4604083018461440f565b9283529015156020830152604082015260600190565b93845260208401929092526040830152606082015260800190565b60ff91909116815260200190565b60405181810167ffffffffffffffff811182821017156146c657600080fd5b604052919050565b600067ffffffffffffffff8211156146e4578081fd5b5060209081020190565b6001600160a01b03811681146105d957600080fd5b80151581146105d957600080fd5b600381106105d957600080fdfea264697066735822122074699730ea8aa4fa00d2702d985bebe2cf30c6abf09e7ee52a1750d232c882ff64736f6c63430007010033a26469706673582212207cbe8f85ba368fdc5070617b2e445e9210e8ccfb093bd1e3452a817f143214c064736f6c63430007010033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c8
-----Decoded View---------------
Arg [0] : vault (address): 0xBA12222222228d8Ba445958a75a0704d566BF2C8
-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c8
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 35 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.