Contract 0xb1f69766991b64121c472B38607063A79bbEeb2a

 
 
Txn Hash
Method
Block
From
To
Value [Txn Fee]
0x9d162130b58179680293c4ef18ee815f0fa9b6d53ffcd2d24bb64eda092b00a50x60806040312438632022-07-28 17:09:51245 days 4 hrs ago0x07883ebd6f178420f24969279bd425ab0b99f10b IN  Contract Creation0 MATIC0.021946796598 55.342522117
[ Download CSV Export 
Parent Txn Hash Block From To Value
Loading

Similar Match Source Code
Note: This contract matches the deployed ByteCode of the Source Code for Contract 0x2C9e34F2b8bf0D7C74bC30fbBAbc9dCEf9452b31

Contract Name:
ERC20RootVaultHelper

Compiler Version
v0.8.9+commit.e5eed63a

Optimization Enabled:
Yes with 200 runs

Other Settings:
default evmVersion, None license

Contract Source Code (Solidity Standard Json-Input format)

File 1 of 6 : IOracle.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.9;

interface IOracle {
    /// @notice Oracle price for tokens as a Q64.96 value.
    /// @notice Returns pricing information based on the indexes of non-zero bits in safetyIndicesSet.
    /// @notice It is possible that not all indices will have their respective prices returned.
    /// @dev The price is token1 / token0 i.e. how many weis of token1 required for 1 wei of token0.
    /// The safety indexes are:
    ///
    /// 1 - unsafe, this is typically a spot price that can be easily manipulated,
    ///
    /// 2 - 4 - more or less safe, this is typically a uniV3 oracle, where the safety is defined by the timespan of the average price
    ///
    /// 5 - safe - this is typically a chailink oracle
    /// @param token0 Reference to token0
    /// @param token1 Reference to token1
    /// @param safetyIndicesSet Bitmask of safety indices that are allowed for the return prices. For set of safety indexes = { 1 }, safetyIndicesSet = 0x2
    /// @return pricesX96 Prices that satisfy safetyIndex and tokens
    /// @return safetyIndices Safety indices for those prices
    function priceX96(
        address token0,
        address token1,
        uint256 safetyIndicesSet
    ) external view returns (uint256[] memory pricesX96, uint256[] memory safetyIndices);
}

File 2 of 6 : IERC20RootVaultHelper.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.9;

import "../oracles/IOracle.sol";

interface IERC20RootVaultHelper {
    function getTvlToken0(
        uint256[] calldata tvls,
        address[] calldata tokens,
        IOracle oracle
    ) external view returns (uint256 tvl0);
}

File 3 of 6 : CommonLibrary.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.9;

import "./external/FullMath.sol";
import "./ExceptionsLibrary.sol";

/// @notice CommonLibrary shared utilities
library CommonLibrary {
    uint256 constant DENOMINATOR = 10**9;
    uint256 constant D18 = 10**18;
    uint256 constant YEAR = 365 * 24 * 3600;
    uint256 constant Q128 = 2**128;
    uint256 constant Q96 = 2**96;
    uint256 constant Q48 = 2**48;
    uint256 constant Q160 = 2**160;
    uint256 constant UNI_FEE_DENOMINATOR = 10**6;

    /// @notice Sort uint256 using bubble sort. The sorting is done in-place.
    /// @param arr Array of uint256
    function sortUint(uint256[] memory arr) internal pure {
        uint256 l = arr.length;
        for (uint256 i = 0; i < l; ++i) {
            for (uint256 j = i + 1; j < l; ++j) {
                if (arr[i] > arr[j]) {
                    uint256 temp = arr[i];
                    arr[i] = arr[j];
                    arr[j] = temp;
                }
            }
        }
    }

    /// @notice Checks if array of addresses is sorted and all adresses are unique
    /// @param tokens A set of addresses to check
    /// @return `true` if all addresses are sorted and unique, `false` otherwise
    function isSortedAndUnique(address[] memory tokens) internal pure returns (bool) {
        if (tokens.length < 2) {
            return true;
        }
        for (uint256 i = 0; i < tokens.length - 1; ++i) {
            if (tokens[i] >= tokens[i + 1]) {
                return false;
            }
        }
        return true;
    }

    /// @notice Projects tokenAmounts onto subset or superset of tokens
    /// @dev
    /// Requires both sets of tokens to be sorted. When tokens are not sorted, it's undefined behavior.
    /// If there is a token in tokensToProject that is not part of tokens and corresponding tokenAmountsToProject > 0, reverts.
    /// Zero token amount is eqiuvalent to missing token
    function projectTokenAmounts(
        address[] memory tokens,
        address[] memory tokensToProject,
        uint256[] memory tokenAmountsToProject
    ) internal pure returns (uint256[] memory) {
        uint256[] memory res = new uint256[](tokens.length);
        uint256 t = 0;
        uint256 tp = 0;
        while ((t < tokens.length) && (tp < tokensToProject.length)) {
            if (tokens[t] < tokensToProject[tp]) {
                res[t] = 0;
                t++;
            } else if (tokens[t] > tokensToProject[tp]) {
                if (tokenAmountsToProject[tp] == 0) {
                    tp++;
                } else {
                    revert("TPS");
                }
            } else {
                res[t] = tokenAmountsToProject[tp];
                t++;
                tp++;
            }
        }
        while (t < tokens.length) {
            res[t] = 0;
            t++;
        }
        return res;
    }

    /// @notice Calculated sqrt of uint in X96 format
    /// @param xX96 input number in X96 format
    /// @return sqrt of xX96 in X96 format
    function sqrtX96(uint256 xX96) internal pure returns (uint256) {
        uint256 sqX96 = sqrt(xX96);
        return sqX96 << 48;
    }

    /// @notice Calculated sqrt of uint
    /// @param x input number
    /// @return sqrt of x
    function sqrt(uint256 x) internal pure returns (uint256) {
        if (x == 0) return 0;
        uint256 xx = x;
        uint256 r = 1;
        if (xx >= 0x100000000000000000000000000000000) {
            xx >>= 128;
            r <<= 64;
        }
        if (xx >= 0x10000000000000000) {
            xx >>= 64;
            r <<= 32;
        }
        if (xx >= 0x100000000) {
            xx >>= 32;
            r <<= 16;
        }
        if (xx >= 0x10000) {
            xx >>= 16;
            r <<= 8;
        }
        if (xx >= 0x100) {
            xx >>= 8;
            r <<= 4;
        }
        if (xx >= 0x10) {
            xx >>= 4;
            r <<= 2;
        }
        if (xx >= 0x8) {
            r <<= 1;
        }
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        uint256 r1 = x / r;
        return (r < r1 ? r : r1);
    }

    /// @notice Recovers signer address from signed message hash
    /// @param _ethSignedMessageHash signed message
    /// @param _signature contatenated ECDSA r, s, v (65 bytes)
    /// @return Recovered address if the signature is valid, address(0) otherwise
    function recoverSigner(bytes32 _ethSignedMessageHash, bytes memory _signature) internal pure returns (address) {
        (bytes32 r, bytes32 s, uint8 v) = splitSignature(_signature);

        return ecrecover(_ethSignedMessageHash, v, r, s);
    }

    /// @notice Get ECDSA r, s, v from signature
    /// @param sig signature (65 bytes)
    /// @return r ECDSA r
    /// @return s ECDSA s
    /// @return v ECDSA v
    function splitSignature(bytes memory sig)
        internal
        pure
        returns (
            bytes32 r,
            bytes32 s,
            uint8 v
        )
    {
        require(sig.length == 65, ExceptionsLibrary.INVALID_LENGTH);

        assembly {
            r := mload(add(sig, 32))
            s := mload(add(sig, 64))
            v := byte(0, mload(add(sig, 96)))
        }
    }
}

File 4 of 6 : ExceptionsLibrary.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.9;

/// @notice Exceptions stores project`s smart-contracts exceptions
library ExceptionsLibrary {
    string constant ADDRESS_ZERO = "AZ";
    string constant VALUE_ZERO = "VZ";
    string constant EMPTY_LIST = "EMPL";
    string constant NOT_FOUND = "NF";
    string constant INIT = "INIT";
    string constant DUPLICATE = "DUP";
    string constant NULL = "NULL";
    string constant TIMESTAMP = "TS";
    string constant FORBIDDEN = "FRB";
    string constant ALLOWLIST = "ALL";
    string constant LIMIT_OVERFLOW = "LIMO";
    string constant LIMIT_UNDERFLOW = "LIMU";
    string constant INVALID_VALUE = "INV";
    string constant INVARIANT = "INVA";
    string constant INVALID_TARGET = "INVTR";
    string constant INVALID_TOKEN = "INVTO";
    string constant INVALID_INTERFACE = "INVI";
    string constant INVALID_SELECTOR = "INVS";
    string constant INVALID_STATE = "INVST";
    string constant INVALID_LENGTH = "INVL";
    string constant LOCK = "LCKD";
    string constant DISABLED = "DIS";
}

File 5 of 6 : FullMath.sol
// SPDX-License-Identifier: MIT
pragma solidity =0.8.9;

/// @title Contains 512-bit math functions
/// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision
/// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits
library FullMath {
    /// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
    /// @param a The multiplicand
    /// @param b The multiplier
    /// @param denominator The divisor
    /// @return result The 256-bit result
    /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
    function mulDiv(
        uint256 a,
        uint256 b,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        // diff: original lib works under 0.7.6 with overflows enabled
        unchecked {
            // 512-bit multiply [prod1 prod0] = a * b
            // Compute the product mod 2**256 and mod 2**256 - 1
            // then use the Chinese Remainder Theorem to reconstruct
            // the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2**256 + prod0
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(a, b, not(0))
                prod0 := mul(a, b)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division
            if (prod1 == 0) {
                require(denominator > 0);
                assembly {
                    result := div(prod0, denominator)
                }
                return result;
            }

            // Make sure the result is less than 2**256.
            // Also prevents denominator == 0
            require(denominator > prod1);

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0]
            // Compute remainder using mulmod
            uint256 remainder;
            assembly {
                remainder := mulmod(a, b, denominator)
            }
            // Subtract 256 bit number from 512 bit number
            assembly {
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator
            // Compute largest power of two divisor of denominator.
            // Always >= 1.
            // diff: original uint256 twos = -denominator & denominator;
            uint256 twos = uint256(-int256(denominator)) & denominator;
            // Divide denominator by power of two
            assembly {
                denominator := div(denominator, twos)
            }

            // Divide [prod1 prod0] by the factors of two
            assembly {
                prod0 := div(prod0, twos)
            }
            // Shift in bits from prod1 into prod0. For this we need
            // to flip `twos` such that it is 2**256 / twos.
            // If twos is zero, then it becomes one
            assembly {
                twos := add(div(sub(0, twos), twos), 1)
            }
            prod0 |= prod1 * twos;

            // Invert denominator mod 2**256
            // Now that denominator is an odd number, it has an inverse
            // modulo 2**256 such that denominator * inv = 1 mod 2**256.
            // Compute the inverse by starting with a seed that is correct
            // correct for four bits. That is, denominator * inv = 1 mod 2**4
            uint256 inv = (3 * denominator) ^ 2;
            // Now use Newton-Raphson iteration to improve the precision.
            // Thanks to Hensel's lifting lemma, this also works in modular
            // arithmetic, doubling the correct bits in each step.
            inv *= 2 - denominator * inv; // inverse mod 2**8
            inv *= 2 - denominator * inv; // inverse mod 2**16
            inv *= 2 - denominator * inv; // inverse mod 2**32
            inv *= 2 - denominator * inv; // inverse mod 2**64
            inv *= 2 - denominator * inv; // inverse mod 2**128
            inv *= 2 - denominator * inv; // inverse mod 2**256

            // Because the division is now exact we can divide by multiplying
            // with the modular inverse of denominator. This will give us the
            // correct result modulo 2**256. Since the precoditions guarantee
            // that the outcome is less than 2**256, this is the final result.
            // We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inv;
            return result;
        }
    }

    /// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
    /// @param a The multiplicand
    /// @param b The multiplier
    /// @param denominator The divisor
    /// @return result The 256-bit result
    function mulDivRoundingUp(
        uint256 a,
        uint256 b,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        // diff: original lib works under 0.7.6 with overflows enabled
        unchecked {
            result = mulDiv(a, b, denominator);
            if (mulmod(a, b, denominator) > 0) {
                require(result < type(uint256).max);
                result++;
            }
        }
    }
}

File 6 of 6 : ERC20RootVaultHelper.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity 0.8.9;
import "../libraries/ExceptionsLibrary.sol";
import "../interfaces/utils/IERC20RootVaultHelper.sol";
import "../libraries/CommonLibrary.sol";
import "../libraries/external/FullMath.sol";

contract ERC20RootVaultHelper is IERC20RootVaultHelper {
    function getTvlToken0(
        uint256[] calldata tvls,
        address[] calldata tokens,
        IOracle oracle
    ) external view returns (uint256 tvl0) {
        tvl0 = tvls[0];
        for (uint256 i = 1; i < tvls.length; i++) {
            (uint256[] memory pricesX96, ) = oracle.priceX96(tokens[0], tokens[i], 0x30);
            require(pricesX96.length > 0, ExceptionsLibrary.VALUE_ZERO);
            uint256 priceX96 = 0;
            for (uint256 j = 0; j < pricesX96.length; j++) {
                priceX96 += pricesX96[j];
            }
            priceX96 /= pricesX96.length;
            tvl0 += FullMath.mulDiv(tvls[i], CommonLibrary.Q96, priceX96);
        }
    }
}

Settings
{
  "evmVersion": "istanbul",
  "libraries": {},
  "metadata": {
    "bytecodeHash": "ipfs",
    "useLiteralContent": true
  },
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "remappings": [],
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  }
}

Contract Security Audit

Contract ABI

[{"inputs":[{"internalType":"uint256[]","name":"tvls","type":"uint256[]"},{"internalType":"address[]","name":"tokens","type":"address[]"},{"internalType":"contract IOracle","name":"oracle","type":"address"}],"name":"getTvlToken0","outputs":[{"internalType":"uint256","name":"tvl0","type":"uint256"}],"stateMutability":"view","type":"function"}]

608060405234801561001057600080fd5b50610637806100206000396000f3fe608060405234801561001057600080fd5b506004361061002b5760003560e01c80634bd8911414610030575b600080fd5b61004361003e366004610375565b610055565b60405190815260200160405180910390f35b60008585600081811061006a5761006a6103f9565b9050602002013590506000600190505b85811015610253576000836001600160a01b0316636d80125b878760008181106100a6576100a66103f9565b90506020020160208101906100bb919061040f565b8888868181106100cd576100cd6103f9565b90506020020160208101906100e2919061040f565b6040516001600160e01b031960e085901b1681526001600160a01b039283166004820152911660248201526030604482015260640160006040518083038186803b15801561012f57600080fd5b505afa158015610143573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f1916820160405261016b91908101906104dd565b5090506000815111604051806040016040528060028152602001612b2d60f11b815250906101b55760405162461bcd60e51b81526004016101ac9190610541565b60405180910390fd5b506000805b82518110156101fc578281815181106101d5576101d56103f9565b6020026020010151826101e891906105ac565b9150806101f4816105c4565b9150506101ba565b50815161020990826105df565b9050610232898985818110610220576102206103f9565b90506020020135600160601b8361025d565b61023c90856105ac565b93505050808061024b906105c4565b91505061007a565b5095945050505050565b600080806000198587098587029250828110838203039150508060001415610297576000841161028c57600080fd5b50829004905061030a565b8084116102a357600080fd5b6000848688096000868103871696879004966002600389028118808a02820302808a02820302808a02820302808a02820302808a02820302808a02909103029181900381900460010186841190950394909402919094039290920491909117919091029150505b9392505050565b60008083601f84011261032357600080fd5b50813567ffffffffffffffff81111561033b57600080fd5b6020830191508360208260051b850101111561035657600080fd5b9250929050565b6001600160a01b038116811461037257600080fd5b50565b60008060008060006060868803121561038d57600080fd5b853567ffffffffffffffff808211156103a557600080fd5b6103b189838a01610311565b909750955060208801359150808211156103ca57600080fd5b506103d788828901610311565b90945092505060408601356103eb8161035d565b809150509295509295909350565b634e487b7160e01b600052603260045260246000fd5b60006020828403121561042157600080fd5b813561030a8161035d565b634e487b7160e01b600052604160045260246000fd5b600082601f83011261045357600080fd5b8151602067ffffffffffffffff808311156104705761047061042c565b8260051b604051601f19603f830116810181811084821117156104955761049561042c565b6040529384528581018301938381019250878511156104b357600080fd5b83870191505b848210156104d2578151835291830191908301906104b9565b979650505050505050565b600080604083850312156104f057600080fd5b825167ffffffffffffffff8082111561050857600080fd5b61051486838701610442565b9350602085015191508082111561052a57600080fd5b5061053785828601610442565b9150509250929050565b600060208083528351808285015260005b8181101561056e57858101830151858201604001528201610552565b81811115610580576000604083870101525b50601f01601f1916929092016040019392505050565b634e487b7160e01b600052601160045260246000fd5b600082198211156105bf576105bf610596565b500190565b60006000198214156105d8576105d8610596565b5060010190565b6000826105fc57634e487b7160e01b600052601260045260246000fd5b50049056fea264697066735822122027b7e6819b0a498a63b2f96254ac41fbbdbaa0e0810a91a6cf6643c5c178d0eb64736f6c63430008090033

Block Transaction Gas Used Reward
Age Block Fee Address BC Fee Address Voting Power Jailed Incoming
Block Uncle Number Difficulty Gas Used Reward
Loading
Loading
Make sure to use the "Vote Down" button for any spammy posts, and the "Vote Up" for interesting conversations.