Contract 0x9Ff5276efce6c611DA32B6EFf47Ca4cCB5714B33

 
 
Txn Hash
Method
Block
From
To
Value [Txn Fee]
0x02fb3876d36c3b05bfcd03ff4ae40afd03529688f0de218fd4dfe7f2380d3bdb0x60a06040312438202022-07-28 17:08:21245 days 4 hrs ago0x07883ebd6f178420f24969279bd425ab0b99f10b IN  Create: UniV2Oracle0 MATIC0.026838285925 56.080519396
[ Download CSV Export 
Parent Txn Hash Block From To Value
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
UniV2Oracle

Compiler Version
v0.8.9+commit.e5eed63a

Optimization Enabled:
Yes with 200 runs

Other Settings:
default evmVersion, None license

Contract Source Code (Solidity Standard Json-Input format)

File 1 of 12 : ERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.0 (utils/introspection/ERC165.sol)

pragma solidity ^0.8.0;

import "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 *
 * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}

File 2 of 12 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.0 (utils/introspection/IERC165.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

File 3 of 12 : IUniswapV2Factory.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.9;

interface IUniswapV2Factory {
    function getPair(address token0, address token1) external view returns (address);
}

File 4 of 12 : IUniswapV2Pair.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.9;

interface IUniswapV2Pair {
    function getReserves()
        external
        view
        returns (
            uint112 reserve0,
            uint112 reserve1,
            uint32 blockTimestampLast
        );

    function swap(
        uint256 amount0Out,
        uint256 amount1Out,
        address to,
        bytes calldata data
    ) external;
}

File 5 of 12 : IOracle.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.9;

interface IOracle {
    /// @notice Oracle price for tokens as a Q64.96 value.
    /// @notice Returns pricing information based on the indexes of non-zero bits in safetyIndicesSet.
    /// @notice It is possible that not all indices will have their respective prices returned.
    /// @dev The price is token1 / token0 i.e. how many weis of token1 required for 1 wei of token0.
    /// The safety indexes are:
    ///
    /// 1 - unsafe, this is typically a spot price that can be easily manipulated,
    ///
    /// 2 - 4 - more or less safe, this is typically a uniV3 oracle, where the safety is defined by the timespan of the average price
    ///
    /// 5 - safe - this is typically a chailink oracle
    /// @param token0 Reference to token0
    /// @param token1 Reference to token1
    /// @param safetyIndicesSet Bitmask of safety indices that are allowed for the return prices. For set of safety indexes = { 1 }, safetyIndicesSet = 0x2
    /// @return pricesX96 Prices that satisfy safetyIndex and tokens
    /// @return safetyIndices Safety indices for those prices
    function priceX96(
        address token0,
        address token1,
        uint256 safetyIndicesSet
    ) external view returns (uint256[] memory pricesX96, uint256[] memory safetyIndices);
}

File 6 of 12 : IUniV2Oracle.sol
// SPDX-License-Identifier: BSL-1.1
pragma solidity 0.8.9;

import "../external/univ2/IUniswapV2Factory.sol";
import "./IOracle.sol";

interface IUniV2Oracle is IOracle {
    /// @notice Reference to UniV2 factory
    function factory() external returns (IUniswapV2Factory);

    /// @notice Index of safety bit
    function safetyIndex() external view returns (uint8);
}

File 7 of 12 : IContractMeta.sol
// SPDX-License-Identifier: BSL-1.1
pragma solidity 0.8.9;

interface IContractMeta {
    function contractName() external view returns (string memory);
    function contractNameBytes() external view returns (bytes32);

    function contractVersion() external view returns (string memory);
    function contractVersionBytes() external view returns (bytes32);
}

File 8 of 12 : CommonLibrary.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.9;

import "./external/FullMath.sol";
import "./ExceptionsLibrary.sol";

/// @notice CommonLibrary shared utilities
library CommonLibrary {
    uint256 constant DENOMINATOR = 10**9;
    uint256 constant D18 = 10**18;
    uint256 constant YEAR = 365 * 24 * 3600;
    uint256 constant Q128 = 2**128;
    uint256 constant Q96 = 2**96;
    uint256 constant Q48 = 2**48;
    uint256 constant Q160 = 2**160;
    uint256 constant UNI_FEE_DENOMINATOR = 10**6;

    /// @notice Sort uint256 using bubble sort. The sorting is done in-place.
    /// @param arr Array of uint256
    function sortUint(uint256[] memory arr) internal pure {
        uint256 l = arr.length;
        for (uint256 i = 0; i < l; ++i) {
            for (uint256 j = i + 1; j < l; ++j) {
                if (arr[i] > arr[j]) {
                    uint256 temp = arr[i];
                    arr[i] = arr[j];
                    arr[j] = temp;
                }
            }
        }
    }

    /// @notice Checks if array of addresses is sorted and all adresses are unique
    /// @param tokens A set of addresses to check
    /// @return `true` if all addresses are sorted and unique, `false` otherwise
    function isSortedAndUnique(address[] memory tokens) internal pure returns (bool) {
        if (tokens.length < 2) {
            return true;
        }
        for (uint256 i = 0; i < tokens.length - 1; ++i) {
            if (tokens[i] >= tokens[i + 1]) {
                return false;
            }
        }
        return true;
    }

    /// @notice Projects tokenAmounts onto subset or superset of tokens
    /// @dev
    /// Requires both sets of tokens to be sorted. When tokens are not sorted, it's undefined behavior.
    /// If there is a token in tokensToProject that is not part of tokens and corresponding tokenAmountsToProject > 0, reverts.
    /// Zero token amount is eqiuvalent to missing token
    function projectTokenAmounts(
        address[] memory tokens,
        address[] memory tokensToProject,
        uint256[] memory tokenAmountsToProject
    ) internal pure returns (uint256[] memory) {
        uint256[] memory res = new uint256[](tokens.length);
        uint256 t = 0;
        uint256 tp = 0;
        while ((t < tokens.length) && (tp < tokensToProject.length)) {
            if (tokens[t] < tokensToProject[tp]) {
                res[t] = 0;
                t++;
            } else if (tokens[t] > tokensToProject[tp]) {
                if (tokenAmountsToProject[tp] == 0) {
                    tp++;
                } else {
                    revert("TPS");
                }
            } else {
                res[t] = tokenAmountsToProject[tp];
                t++;
                tp++;
            }
        }
        while (t < tokens.length) {
            res[t] = 0;
            t++;
        }
        return res;
    }

    /// @notice Calculated sqrt of uint in X96 format
    /// @param xX96 input number in X96 format
    /// @return sqrt of xX96 in X96 format
    function sqrtX96(uint256 xX96) internal pure returns (uint256) {
        uint256 sqX96 = sqrt(xX96);
        return sqX96 << 48;
    }

    /// @notice Calculated sqrt of uint
    /// @param x input number
    /// @return sqrt of x
    function sqrt(uint256 x) internal pure returns (uint256) {
        if (x == 0) return 0;
        uint256 xx = x;
        uint256 r = 1;
        if (xx >= 0x100000000000000000000000000000000) {
            xx >>= 128;
            r <<= 64;
        }
        if (xx >= 0x10000000000000000) {
            xx >>= 64;
            r <<= 32;
        }
        if (xx >= 0x100000000) {
            xx >>= 32;
            r <<= 16;
        }
        if (xx >= 0x10000) {
            xx >>= 16;
            r <<= 8;
        }
        if (xx >= 0x100) {
            xx >>= 8;
            r <<= 4;
        }
        if (xx >= 0x10) {
            xx >>= 4;
            r <<= 2;
        }
        if (xx >= 0x8) {
            r <<= 1;
        }
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        uint256 r1 = x / r;
        return (r < r1 ? r : r1);
    }

    /// @notice Recovers signer address from signed message hash
    /// @param _ethSignedMessageHash signed message
    /// @param _signature contatenated ECDSA r, s, v (65 bytes)
    /// @return Recovered address if the signature is valid, address(0) otherwise
    function recoverSigner(bytes32 _ethSignedMessageHash, bytes memory _signature) internal pure returns (address) {
        (bytes32 r, bytes32 s, uint8 v) = splitSignature(_signature);

        return ecrecover(_ethSignedMessageHash, v, r, s);
    }

    /// @notice Get ECDSA r, s, v from signature
    /// @param sig signature (65 bytes)
    /// @return r ECDSA r
    /// @return s ECDSA s
    /// @return v ECDSA v
    function splitSignature(bytes memory sig)
        internal
        pure
        returns (
            bytes32 r,
            bytes32 s,
            uint8 v
        )
    {
        require(sig.length == 65, ExceptionsLibrary.INVALID_LENGTH);

        assembly {
            r := mload(add(sig, 32))
            s := mload(add(sig, 64))
            v := byte(0, mload(add(sig, 96)))
        }
    }
}

File 9 of 12 : ExceptionsLibrary.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.9;

/// @notice Exceptions stores project`s smart-contracts exceptions
library ExceptionsLibrary {
    string constant ADDRESS_ZERO = "AZ";
    string constant VALUE_ZERO = "VZ";
    string constant EMPTY_LIST = "EMPL";
    string constant NOT_FOUND = "NF";
    string constant INIT = "INIT";
    string constant DUPLICATE = "DUP";
    string constant NULL = "NULL";
    string constant TIMESTAMP = "TS";
    string constant FORBIDDEN = "FRB";
    string constant ALLOWLIST = "ALL";
    string constant LIMIT_OVERFLOW = "LIMO";
    string constant LIMIT_UNDERFLOW = "LIMU";
    string constant INVALID_VALUE = "INV";
    string constant INVARIANT = "INVA";
    string constant INVALID_TARGET = "INVTR";
    string constant INVALID_TOKEN = "INVTO";
    string constant INVALID_INTERFACE = "INVI";
    string constant INVALID_SELECTOR = "INVS";
    string constant INVALID_STATE = "INVST";
    string constant INVALID_LENGTH = "INVL";
    string constant LOCK = "LCKD";
    string constant DISABLED = "DIS";
}

File 10 of 12 : FullMath.sol
// SPDX-License-Identifier: MIT
pragma solidity =0.8.9;

/// @title Contains 512-bit math functions
/// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision
/// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits
library FullMath {
    /// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
    /// @param a The multiplicand
    /// @param b The multiplier
    /// @param denominator The divisor
    /// @return result The 256-bit result
    /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
    function mulDiv(
        uint256 a,
        uint256 b,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        // diff: original lib works under 0.7.6 with overflows enabled
        unchecked {
            // 512-bit multiply [prod1 prod0] = a * b
            // Compute the product mod 2**256 and mod 2**256 - 1
            // then use the Chinese Remainder Theorem to reconstruct
            // the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2**256 + prod0
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(a, b, not(0))
                prod0 := mul(a, b)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division
            if (prod1 == 0) {
                require(denominator > 0);
                assembly {
                    result := div(prod0, denominator)
                }
                return result;
            }

            // Make sure the result is less than 2**256.
            // Also prevents denominator == 0
            require(denominator > prod1);

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0]
            // Compute remainder using mulmod
            uint256 remainder;
            assembly {
                remainder := mulmod(a, b, denominator)
            }
            // Subtract 256 bit number from 512 bit number
            assembly {
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator
            // Compute largest power of two divisor of denominator.
            // Always >= 1.
            // diff: original uint256 twos = -denominator & denominator;
            uint256 twos = uint256(-int256(denominator)) & denominator;
            // Divide denominator by power of two
            assembly {
                denominator := div(denominator, twos)
            }

            // Divide [prod1 prod0] by the factors of two
            assembly {
                prod0 := div(prod0, twos)
            }
            // Shift in bits from prod1 into prod0. For this we need
            // to flip `twos` such that it is 2**256 / twos.
            // If twos is zero, then it becomes one
            assembly {
                twos := add(div(sub(0, twos), twos), 1)
            }
            prod0 |= prod1 * twos;

            // Invert denominator mod 2**256
            // Now that denominator is an odd number, it has an inverse
            // modulo 2**256 such that denominator * inv = 1 mod 2**256.
            // Compute the inverse by starting with a seed that is correct
            // correct for four bits. That is, denominator * inv = 1 mod 2**4
            uint256 inv = (3 * denominator) ^ 2;
            // Now use Newton-Raphson iteration to improve the precision.
            // Thanks to Hensel's lifting lemma, this also works in modular
            // arithmetic, doubling the correct bits in each step.
            inv *= 2 - denominator * inv; // inverse mod 2**8
            inv *= 2 - denominator * inv; // inverse mod 2**16
            inv *= 2 - denominator * inv; // inverse mod 2**32
            inv *= 2 - denominator * inv; // inverse mod 2**64
            inv *= 2 - denominator * inv; // inverse mod 2**128
            inv *= 2 - denominator * inv; // inverse mod 2**256

            // Because the division is now exact we can divide by multiplying
            // with the modular inverse of denominator. This will give us the
            // correct result modulo 2**256. Since the precoditions guarantee
            // that the outcome is less than 2**256, this is the final result.
            // We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inv;
            return result;
        }
    }

    /// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
    /// @param a The multiplicand
    /// @param b The multiplier
    /// @param denominator The divisor
    /// @return result The 256-bit result
    function mulDivRoundingUp(
        uint256 a,
        uint256 b,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        // diff: original lib works under 0.7.6 with overflows enabled
        unchecked {
            result = mulDiv(a, b, denominator);
            if (mulmod(a, b, denominator) > 0) {
                require(result < type(uint256).max);
                result++;
            }
        }
    }
}

File 11 of 12 : UniV2Oracle.sol
// SPDX-License-Identifier: BSL-1.1
pragma solidity 0.8.9;

import "@openzeppelin/contracts/utils/introspection/ERC165.sol";
import "../interfaces/external/univ2/IUniswapV2Pair.sol";
import "../interfaces/external/univ2/IUniswapV2Factory.sol";
import "../interfaces/oracles/IUniV2Oracle.sol";
import "../libraries/CommonLibrary.sol";
import "../utils/ContractMeta.sol";

contract UniV2Oracle is ContractMeta, IUniV2Oracle, ERC165 {
    /// @inheritdoc IUniV2Oracle
    IUniswapV2Factory public immutable factory;
    /// @inheritdoc IUniV2Oracle
    uint8 public constant safetyIndex = 1;

    constructor(IUniswapV2Factory factory_) {
        factory = factory_;
    }

    // -------------------------  EXTERNAL, VIEW  ------------------------------

    /// @inheritdoc IOracle
    function priceX96(
        address token0,
        address token1,
        uint256 safetyIndicesSet
    ) external view returns (uint256[] memory pricesX96, uint256[] memory safetyIndices) {
        bool isSwapped = false;
        if (token0 > token1) {
            (token0, token1) = (token1, token0);
            isSwapped = true;
        }
        if (((safetyIndicesSet >> safetyIndex) & 1) != 1) {
            return (pricesX96, safetyIndices);
        }
        IUniswapV2Pair pool = IUniswapV2Pair(factory.getPair(token0, token1));
        if (address(pool) == address(0)) {
            return (pricesX96, safetyIndices);
        }
        (uint112 reserve0, uint112 reserve1, ) = pool.getReserves();
        pricesX96 = new uint256[](1);
        safetyIndices = new uint256[](1);
        if (isSwapped) {
            pricesX96[0] = FullMath.mulDiv(reserve0, CommonLibrary.Q96, reserve1);
        } else {
            pricesX96[0] = FullMath.mulDiv(reserve1, CommonLibrary.Q96, reserve0);
        }
        safetyIndices[0] = safetyIndex;
    }

    /// @inheritdoc IERC165
    function supportsInterface(bytes4 interfaceId) public view override returns (bool) {
        return super.supportsInterface(interfaceId) || type(IUniV2Oracle).interfaceId == interfaceId;
    }

    // -------------------  INTERNAL, VIEW  -------------------

    function _contractName() internal pure override returns (bytes32) {
        return bytes32("UniV2Oracle");
    }

    function _contractVersion() internal pure override returns (bytes32) {
        return bytes32("1.0.0");
    }
}

File 12 of 12 : ContractMeta.sol
// SPDX-License-Identifier: BSL-1.1
pragma solidity 0.8.9;

import "../interfaces/utils/IContractMeta.sol";

abstract contract ContractMeta is IContractMeta {
    // -------------------  EXTERNAL, VIEW  -------------------

    function contractName() external pure returns (string memory) {
        return _bytes32ToString(_contractName());
    }

    function contractNameBytes() external pure returns (bytes32) {
        return _contractName();
    }

    function contractVersion() external pure returns (string memory) {
        return _bytes32ToString(_contractVersion());
    }

    function contractVersionBytes() external pure returns (bytes32) {
        return _contractVersion();
    }

    // -------------------  INTERNAL, VIEW  -------------------

    function _contractName() internal pure virtual returns (bytes32);

    function _contractVersion() internal pure virtual returns (bytes32);

    function _bytes32ToString(bytes32 b) internal pure returns (string memory s) {
        s = new string(32);
        uint256 len = 32;
        for (uint256 i = 0; i < 32; ++i) {
            if (uint8(b[i]) == 0) {
                len = i;
                break;
            }
        }
        assembly {
            mstore(s, len)
            mstore(add(s, 0x20), b)
        }
    }
}

Settings
{
  "evmVersion": "istanbul",
  "libraries": {},
  "metadata": {
    "bytecodeHash": "ipfs",
    "useLiteralContent": true
  },
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "remappings": [],
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  }
}

Contract Security Audit

Contract ABI

[{"inputs":[{"internalType":"contract IUniswapV2Factory","name":"factory_","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"contractName","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"contractNameBytes","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"contractVersion","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"contractVersionBytes","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"factory","outputs":[{"internalType":"contract IUniswapV2Factory","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token0","type":"address"},{"internalType":"address","name":"token1","type":"address"},{"internalType":"uint256","name":"safetyIndicesSet","type":"uint256"}],"name":"priceX96","outputs":[{"internalType":"uint256[]","name":"pricesX96","type":"uint256[]"},{"internalType":"uint256[]","name":"safetyIndices","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"safetyIndex","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"}]

60a060405234801561001057600080fd5b5060405161083d38038061083d83398101604081905261002f91610040565b6001600160a01b0316608052610070565b60006020828403121561005257600080fd5b81516001600160a01b038116811461006957600080fd5b9392505050565b6080516107ab61009260003960008181610124015261021601526107ab6000f3fe608060405234801561001057600080fd5b50600436106100885760003560e01c806375d0c0dc1161005b57806375d0c0dc14610102578063a0a8e46014610117578063c45a01551461011f578063e312650b1461015e57600080fd5b806301ffc9a71461008d57806306a46239146100b55780630e3e80ac146100cd5780636d80125b146100e1575b600080fd5b6100a061009b36600461056c565b610178565b60405190151581526020015b60405180910390f35b640312e302e360dc1b5b6040519081526020016100ac565b6a556e6956324f7261636c6560a81b6100bf565b6100f46100ef3660046105ae565b6101b4565b6040516100ac92919061062a565b61010a610420565b6040516100ac9190610658565b61010a610439565b6101467f000000000000000000000000000000000000000000000000000000000000000081565b6040516001600160a01b0390911681526020016100ac565b610166600181565b60405160ff90911681526020016100ac565b60006301ffc9a760e01b6001600160e01b0319831614806101a957506313a4322f60e11b6001600160e01b03198316145b92915050565b905090565b6060806000846001600160a01b0316866001600160a01b031611156101da575092939260015b600184811c8116146101ec5750610418565b60405163e6a4390560e01b81526001600160a01b03878116600483015286811660248301526000917f00000000000000000000000000000000000000000000000000000000000000009091169063e6a439059060440160206040518083038186803b15801561025a57600080fd5b505afa15801561026e573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061029291906106ad565b90506001600160a01b0381166102a9575050610418565b600080826001600160a01b0316630902f1ac6040518163ffffffff1660e01b815260040160606040518083038186803b1580156102e557600080fd5b505afa1580156102f9573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061031d91906106e6565b5060408051600180825281830190925292945090925060208083019080368337505060408051600180825281830190925292985090506020808301908036833701905050945083156103ae5761038a826001600160701b0316600160601b836001600160701b031661044c565b8660008151811061039d5761039d610736565b6020026020010181815250506103ef565b6103cf816001600160701b0316600160601b846001600160701b031661044c565b866000815181106103e2576103e2610736565b6020026020010181815250505b600160ff168560008151811061040757610407610736565b602002602001018181525050505050505b935093915050565b60606101af6a556e6956324f7261636c6560a81b610500565b60606101af640312e302e360dc1b610500565b600080806000198587098587029250828110838203039150508060001415610486576000841161047b57600080fd5b5082900490506104f9565b80841161049257600080fd5b6000848688096000868103871696879004966002600389028118808a02820302808a02820302808a02820302808a02820302808a02820302808a02909103029181900381900460010186841190950394909402919094039290920491909117919091029150505b9392505050565b604080516020808252818301909252606091602082018180368337019050509050602060005b602081101561055e5783816020811061054157610541610736565b1a61054e5780915061055e565b6105578161074c565b9050610526565b508152602081019190915290565b60006020828403121561057e57600080fd5b81356001600160e01b0319811681146104f957600080fd5b6001600160a01b03811681146105ab57600080fd5b50565b6000806000606084860312156105c357600080fd5b83356105ce81610596565b925060208401356105de81610596565b929592945050506040919091013590565b600081518084526020808501945080840160005b8381101561061f57815187529582019590820190600101610603565b509495945050505050565b60408152600061063d60408301856105ef565b828103602084015261064f81856105ef565b95945050505050565b600060208083528351808285015260005b8181101561068557858101830151858201604001528201610669565b81811115610697576000604083870101525b50601f01601f1916929092016040019392505050565b6000602082840312156106bf57600080fd5b81516104f981610596565b80516001600160701b03811681146106e157600080fd5b919050565b6000806000606084860312156106fb57600080fd5b610704846106ca565b9250610712602085016106ca565b9150604084015163ffffffff8116811461072b57600080fd5b809150509250925092565b634e487b7160e01b600052603260045260246000fd5b600060001982141561076e57634e487b7160e01b600052601160045260246000fd5b506001019056fea26469706673582212209702ba196acdd04f16ddf43791d272e707cc8267530222f0f7e0eb529b3f191e64736f6c63430008090033000000000000000000000000c35dadb65012ec5796536bd9864ed8773abc74c4

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

000000000000000000000000c35dadb65012ec5796536bd9864ed8773abc74c4

-----Decoded View---------------
Arg [0] : factory_ (address): 0xc35dadb65012ec5796536bd9864ed8773abc74c4

-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 000000000000000000000000c35dadb65012ec5796536bd9864ed8773abc74c4


Block Transaction Gas Used Reward
Age Block Fee Address BC Fee Address Voting Power Jailed Incoming
Block Uncle Number Difficulty Gas Used Reward
Loading
Loading
Make sure to use the "Vote Down" button for any spammy posts, and the "Vote Up" for interesting conversations.