POL Price: $0.714317 (+15.75%)
 

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
Add Proof630679852024-10-15 12:30:1248 days ago1728995412IN
0x8FcE51ac...99024690f
0 POL0.0025638971.70125907
Set Signer630606862024-10-15 8:11:3948 days ago1728979899IN
0x8FcE51ac...99024690f
0 POL0.0015885930.10067663
Set Signer630606832024-10-15 8:11:3348 days ago1728979893IN
0x8FcE51ac...99024690f
0 POL0.0015889830.10127878
Get Time630606792024-10-15 8:11:2548 days ago1728979885IN
0x8FcE51ac...99024690f
0 POL0.0006878930.10623891
Get Time630606782024-10-15 8:11:2348 days ago1728979883IN
0x8FcE51ac...99024690f
0 POL0.000687830.10204694
Add Proof576492052024-06-01 16:30:13184 days ago1717259413IN
0x8FcE51ac...99024690f
0 POL0.0010727430.00000003
Set Signer576483622024-06-01 15:59:49184 days ago1717257589IN
0x8FcE51ac...99024690f
0 POL0.0015829230.00000003
Set Signer576483422024-06-01 15:59:07184 days ago1717257547IN
0x8FcE51ac...99024690f
0 POL0.0015832830.00000003
Get Time576483312024-06-01 15:58:43184 days ago1717257523IN
0x8FcE51ac...99024690f
0 POL0.0006854730.00000003
Set Signer576483262024-06-01 15:58:33184 days ago1717257513IN
0x8FcE51ac...99024690f
0 POL0.0015829230.00000003
Set Signer576483212024-06-01 15:58:23184 days ago1717257503IN
0x8FcE51ac...99024690f
0 POL0.0015832830.00000003
Get Time576483192024-06-01 15:58:17184 days ago1717257497IN
0x8FcE51ac...99024690f
0 POL0.0006854730.00000004
Get Time576483172024-06-01 15:58:13184 days ago1717257493IN
0x8FcE51ac...99024690f
0 POL0.0006854730.00000004
Set Signer571875612024-05-20 14:42:48196 days ago1716216168IN
0x8FcE51ac...99024690f
0 POL0.0022231642.12458832
Get Time571875612024-05-20 14:42:48196 days ago1716216168IN
0x8FcE51ac...99024690f
0 POL0.0009463841.41923296
Add Proof570829282024-05-17 20:30:14199 days ago1715977814IN
0x8FcE51ac...99024690f
0 POL0.0010723830.00000067
Set Signer570791142024-05-17 17:59:39199 days ago1715968779IN
0x8FcE51ac...99024690f
0 POL0.0015850430.04018558
Set Signer570791142024-05-17 17:59:39199 days ago1715968779IN
0x8FcE51ac...99024690f
0 POL0.0015849230.03805496
Get Time570791142024-05-17 17:59:39199 days ago1715968779IN
0x8FcE51ac...99024690f
0 POL0.0006863230.03723702
Get Time570791142024-05-17 17:59:39199 days ago1715968779IN
0x8FcE51ac...99024690f
0 POL0.0006862230.03321573
Set Signer570787882024-05-17 17:45:27199 days ago1715967927IN
0x8FcE51ac...99024690f
0 POL0.0015878730.0938545
Get Time570787822024-05-17 17:45:13199 days ago1715967913IN
0x8FcE51ac...99024690f
0 POL0.0006876630.09609983
Set Signer570769792024-05-17 16:33:11199 days ago1715963591IN
0x8FcE51ac...99024690f
0 POL0.0017040132.28037861
Get Time570769772024-05-17 16:33:07199 days ago1715963587IN
0x8FcE51ac...99024690f
0 POL0.0007391832.35100872
Get Time570767522024-05-17 16:24:37199 days ago1715963077IN
0x8FcE51ac...99024690f
0 POL0.0009364240.98299116
View all transactions

Parent Transaction Hash Block From To
View All Internal Transactions
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
PWValidium3

Compiler Version
v0.8.17+commit.8df45f5f

Optimization Enabled:
Yes with 200 runs

Other Settings:
london EvmVersion
File 1 of 6 : pwvalidium.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.17;

import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/utils/Strings.sol";
import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";


contract PWValidium3 is Ownable {

    address public _logicProxy;
    address public _admin;
    address public _signerAdmin;

    mapping (uint8 => bytes32) public _validityProofs;
    mapping (uint8 => string) public _proofTypes;
    mapping (string => address) public _signers;

    event ProofUpdated(uint8 indexed idx, bytes32 root);
    event GetTime(uint256 callTime, uint256 mineTime);
    event SignerAdded(string indexed signer, address indexed user);

    constructor() {}

    modifier onlyAdmin() {
        require(msg.sender == _admin || msg.sender == owner(), "Only Admin");
        _;
    }

    modifier onlySignerAdmin() {
        require(msg.sender == _signerAdmin || msg.sender == owner(), "Only Signer Admin");
        _;
    }
    
    modifier onlyProxy() {
        require(msg.sender == _logicProxy || msg.sender == _admin || msg.sender == owner(), "Only Proxy");
        _;
    }

    // MARK: - Only Owner
    function setAdmin(address admin) external onlyOwner {
        _admin = admin;
    }

    function setSignerAdmin(address signerAdmin) external onlyOwner {
        _signerAdmin = signerAdmin;
    }

    // MARK: - Only Admin
    function setLogicProxy(address logicProxy) external onlyAdmin() {
        _logicProxy = logicProxy;
    }

    function setProofType(uint8 idx, string memory proofType) external onlyAdmin() {
        _proofTypes[idx] = proofType;
    }

    // MARK: - Only Signer Admin
    function setSigner(string memory pubKey, address user) external onlySignerAdmin() {
        require(_signers[pubKey] == address(0), "Signer already exists");
        _signers[pubKey] = user;
        emit SignerAdded(pubKey, user);
    }

    // MARK: - Only Logic Proxy
    function addProof(uint8 idx, bytes32 root) external onlyProxy() {
        require(!_isStringEmpty(_proofTypes[idx]), "setting invalid proof type");
        _validityProofs[idx] = root;

        emit ProofUpdated(idx, root);
    }

    // Mark: - View
    function getMerkleRoot(uint8 idx) external view returns (bytes32) {
        require(!_isStringEmpty(_proofTypes[idx]), "requesting invalid proof type");
        return _validityProofs[idx];
    }

    function getTime(uint256 callTime) external {
        uint256 mineTime = block.timestamp;
        emit GetTime(callTime, mineTime);
    }

    // Mark: - Internal
    function _isStringEmpty(string memory data) internal pure returns (bool) {
        return bytes(data).length == 0;
    }

}

File 2 of 6 : Ownable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions anymore. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby removing any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

File 3 of 6 : Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }
}

File 4 of 6 : MerkleProof.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/MerkleProof.sol)

pragma solidity ^0.8.0;

/**
 * @dev These functions deal with verification of Merkle Tree proofs.
 *
 * The tree and the proofs can be generated using our
 * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
 * You will find a quickstart guide in the readme.
 *
 * WARNING: You should avoid using leaf values that are 64 bytes long prior to
 * hashing, or use a hash function other than keccak256 for hashing leaves.
 * This is because the concatenation of a sorted pair of internal nodes in
 * the merkle tree could be reinterpreted as a leaf value.
 * OpenZeppelin's JavaScript library generates merkle trees that are safe
 * against this attack out of the box.
 */
library MerkleProof {
    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     */
    function verify(
        bytes32[] memory proof,
        bytes32 root,
        bytes32 leaf
    ) internal pure returns (bool) {
        return processProof(proof, leaf) == root;
    }

    /**
     * @dev Calldata version of {verify}
     *
     * _Available since v4.7._
     */
    function verifyCalldata(
        bytes32[] calldata proof,
        bytes32 root,
        bytes32 leaf
    ) internal pure returns (bool) {
        return processProofCalldata(proof, leaf) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leafs & pre-images are assumed to be sorted.
     *
     * _Available since v4.4._
     */
    function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = _hashPair(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Calldata version of {processProof}
     *
     * _Available since v4.7._
     */
    function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = _hashPair(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * _Available since v4.7._
     */
    function multiProofVerify(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProof(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Calldata version of {multiProofVerify}
     *
     * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * _Available since v4.7._
     */
    function multiProofVerifyCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProofCalldata(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * _Available since v4.7._
     */
    function processMultiProof(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 totalHashes = proofFlags.length;

        // Check proof validity.
        require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof");

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](totalHashes);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value for the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < totalHashes; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++];
            hashes[i] = _hashPair(a, b);
        }

        if (totalHashes > 0) {
            return hashes[totalHashes - 1];
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Calldata version of {processMultiProof}.
     *
     * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * _Available since v4.7._
     */
    function processMultiProofCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 totalHashes = proofFlags.length;

        // Check proof validity.
        require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof");

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](totalHashes);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value for the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < totalHashes; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++];
            hashes[i] = _hashPair(a, b);
        }

        if (totalHashes > 0) {
            return hashes[totalHashes - 1];
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
        return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
    }

    function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, a)
            mstore(0x20, b)
            value := keccak256(0x00, 0x40)
        }
    }
}

File 5 of 6 : Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

File 6 of 6 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1);

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator,
        Rounding rounding
    ) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10**64) {
                value /= 10**64;
                result += 64;
            }
            if (value >= 10**32) {
                value /= 10**32;
                result += 32;
            }
            if (value >= 10**16) {
                value /= 10**16;
                result += 16;
            }
            if (value >= 10**8) {
                value /= 10**8;
                result += 8;
            }
            if (value >= 10**4) {
                value /= 10**4;
                result += 4;
            }
            if (value >= 10**2) {
                value /= 10**2;
                result += 2;
            }
            if (value >= 10**1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
        }
    }
}

Settings
{
  "remappings": [
    "@openzeppelin/=lib/openzeppelin-contracts/",
    "@semanticSBT/=lib/semanticSBT/",
    "ds-test/=lib/forge-std/lib/ds-test/src/",
    "forge-std/=lib/forge-std/src/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/",
    "semanticSBT/=lib/semanticSBT/contracts/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs"
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "london",
  "viaIR": false,
  "libraries": {}
}

Contract Security Audit

Contract ABI

[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"callTime","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"mineTime","type":"uint256"}],"name":"GetTime","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint8","name":"idx","type":"uint8"},{"indexed":false,"internalType":"bytes32","name":"root","type":"bytes32"}],"name":"ProofUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"string","name":"signer","type":"string"},{"indexed":true,"internalType":"address","name":"user","type":"address"}],"name":"SignerAdded","type":"event"},{"inputs":[],"name":"_admin","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_logicProxy","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint8","name":"","type":"uint8"}],"name":"_proofTypes","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_signerAdmin","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"string","name":"","type":"string"}],"name":"_signers","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint8","name":"","type":"uint8"}],"name":"_validityProofs","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint8","name":"idx","type":"uint8"},{"internalType":"bytes32","name":"root","type":"bytes32"}],"name":"addProof","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint8","name":"idx","type":"uint8"}],"name":"getMerkleRoot","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"callTime","type":"uint256"}],"name":"getTime","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"admin","type":"address"}],"name":"setAdmin","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"logicProxy","type":"address"}],"name":"setLogicProxy","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint8","name":"idx","type":"uint8"},{"internalType":"string","name":"proofType","type":"string"}],"name":"setProofType","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"pubKey","type":"string"},{"internalType":"address","name":"user","type":"address"}],"name":"setSigner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"signerAdmin","type":"address"}],"name":"setSignerAdmin","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]

608060405234801561001057600080fd5b5061001a3361001f565b61006f565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b610dc28061007e6000396000f3fe608060405234801561001057600080fd5b506004361061010b5760003560e01c80638da5cb5b116100a2578063e323656811610071578063e323656814610234578063f2fde38b14610247578063f31db5d41461025a578063f4be1fe01461027b578063f952747b1461028e57600080fd5b80638da5cb5b146101bc5780638dfe3011146101cd578063bc6475f7146101e0578063d7968f291461020057600080fd5b8063715018a6116100de578063715018a61461017b57806373627826146101835780637cff4cb41461019657806385cc6303146101a957600080fd5b806301bc45c91461011057806336b8865c146101405780636bc5d43814610155578063704b6c0214610168575b600080fd5b600254610123906001600160a01b031681565b6040516001600160a01b0390911681526020015b60405180910390f35b61015361014e3660046109c4565b6102ae565b005b600154610123906001600160a01b031681565b6101536101763660046109c4565b6102d8565b610153610302565b6101536101913660046109e6565b610316565b600354610123906001600160a01b031681565b6101536101b73660046109c4565b610355565b6000546001600160a01b0316610123565b6101536101db366004610a10565b6103d8565b6101f36101ee366004610a3a565b61058e565b6040516101379190610a79565b61012361020e366004610b4f565b80516020818301810180516006825292820191909301209152546001600160a01b031681565b610153610242366004610b8c565b610628565b6101536102553660046109c4565b6106a5565b61026d610268366004610a3a565b61071e565b604051908152602001610137565b610153610289366004610bda565b6107a3565b61026d61029c366004610a3a565b60046020526000908152604090205481565b6102b66108fe565b600380546001600160a01b0319166001600160a01b0392909216919091179055565b6102e06108fe565b600280546001600160a01b0319166001600160a01b0392909216919091179055565b61030a6108fe565b6103146000610958565b565b604080518281524260208201819052917f04ca71cb2abcf3230927f9779d86df6de61e6d98632cfca6c65e9665bc26e157910160405180910390a15050565b6002546001600160a01b031633148061037857506000546001600160a01b031633145b6103b65760405162461bcd60e51b815260206004820152600a60248201526927b7363c9020b236b4b760b11b60448201526064015b60405180910390fd5b600180546001600160a01b0319166001600160a01b0392909216919091179055565b6001546001600160a01b03163314806103fb57506002546001600160a01b031633145b8061041057506000546001600160a01b031633145b6104495760405162461bcd60e51b815260206004820152600a6024820152694f6e6c792050726f787960b01b60448201526064016103ad565b60ff8216600090815260056020526040902080546104ee919061046b90610c28565b80601f016020809104026020016040519081016040528092919081815260200182805461049790610c28565b80156104e45780601f106104b9576101008083540402835291602001916104e4565b820191906000526020600020905b8154815290600101906020018083116104c757829003601f168201915b5050505050511590565b1561053b5760405162461bcd60e51b815260206004820152601a60248201527f73657474696e6720696e76616c69642070726f6f66207479706500000000000060448201526064016103ad565b60ff821660008181526004602052604090819020839055517fada63a861865fe23f6625cd1aee5148d0dff232140711e4921d6769f3b27233f906105829084815260200190565b60405180910390a25050565b600560205260009081526040902080546105a790610c28565b80601f01602080910402602001604051908101604052809291908181526020018280546105d390610c28565b80156106205780601f106105f557610100808354040283529160200191610620565b820191906000526020600020905b81548152906001019060200180831161060357829003601f168201915b505050505081565b6002546001600160a01b031633148061064b57506000546001600160a01b031633145b6106845760405162461bcd60e51b815260206004820152600a60248201526927b7363c9020b236b4b760b11b60448201526064016103ad565b60ff821660009081526005602052604090206106a08282610cb0565b505050565b6106ad6108fe565b6001600160a01b0381166107125760405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201526564647265737360d01b60648201526084016103ad565b61071b81610958565b50565b60ff811660009081526005602052604081208054610740919061046b90610c28565b1561078d5760405162461bcd60e51b815260206004820152601d60248201527f72657175657374696e6720696e76616c69642070726f6f66207479706500000060448201526064016103ad565b5060ff1660009081526004602052604090205490565b6003546001600160a01b03163314806107c657506000546001600160a01b031633145b6108065760405162461bcd60e51b815260206004820152601160248201527027b7363c9029b4b3b732b91020b236b4b760791b60448201526064016103ad565b60006001600160a01b03166006836040516108219190610d70565b908152604051908190036020019020546001600160a01b03161461087f5760405162461bcd60e51b81526020600482015260156024820152745369676e657220616c72656164792065786973747360581b60448201526064016103ad565b806006836040516108909190610d70565b90815260405190819003602001812080546001600160a01b039384166001600160a01b0319909116179055908216906108ca908490610d70565b604051908190038120907f04fff30102674d24609f79fbdcf2a451f98fda0408b631957f646f2fc9ae76f990600090a35050565b6000546001600160a01b031633146103145760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e657260448201526064016103ad565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b80356001600160a01b03811681146109bf57600080fd5b919050565b6000602082840312156109d657600080fd5b6109df826109a8565b9392505050565b6000602082840312156109f857600080fd5b5035919050565b803560ff811681146109bf57600080fd5b60008060408385031215610a2357600080fd5b610a2c836109ff565b946020939093013593505050565b600060208284031215610a4c57600080fd5b6109df826109ff565b60005b83811015610a70578181015183820152602001610a58565b50506000910152565b6020815260008251806020840152610a98816040850160208701610a55565b601f01601f19169190910160400192915050565b634e487b7160e01b600052604160045260246000fd5b600082601f830112610ad357600080fd5b813567ffffffffffffffff80821115610aee57610aee610aac565b604051601f8301601f19908116603f01168101908282118183101715610b1657610b16610aac565b81604052838152866020858801011115610b2f57600080fd5b836020870160208301376000602085830101528094505050505092915050565b600060208284031215610b6157600080fd5b813567ffffffffffffffff811115610b7857600080fd5b610b8484828501610ac2565b949350505050565b60008060408385031215610b9f57600080fd5b610ba8836109ff565b9150602083013567ffffffffffffffff811115610bc457600080fd5b610bd085828601610ac2565b9150509250929050565b60008060408385031215610bed57600080fd5b823567ffffffffffffffff811115610c0457600080fd5b610c1085828601610ac2565b925050610c1f602084016109a8565b90509250929050565b600181811c90821680610c3c57607f821691505b602082108103610c5c57634e487b7160e01b600052602260045260246000fd5b50919050565b601f8211156106a057600081815260208120601f850160051c81016020861015610c895750805b601f850160051c820191505b81811015610ca857828155600101610c95565b505050505050565b815167ffffffffffffffff811115610cca57610cca610aac565b610cde81610cd88454610c28565b84610c62565b602080601f831160018114610d135760008415610cfb5750858301515b600019600386901b1c1916600185901b178555610ca8565b600085815260208120601f198616915b82811015610d4257888601518255948401946001909101908401610d23565b5085821015610d605787850151600019600388901b60f8161c191681555b5050505050600190811b01905550565b60008251610d82818460208701610a55565b919091019291505056fea2646970667358221220d78f16eade33399d7b5c20274652ed0ed63ed65bfcb97cac65b6e8edc9c1a7e564736f6c63430008110033

Deployed Bytecode

0x608060405234801561001057600080fd5b506004361061010b5760003560e01c80638da5cb5b116100a2578063e323656811610071578063e323656814610234578063f2fde38b14610247578063f31db5d41461025a578063f4be1fe01461027b578063f952747b1461028e57600080fd5b80638da5cb5b146101bc5780638dfe3011146101cd578063bc6475f7146101e0578063d7968f291461020057600080fd5b8063715018a6116100de578063715018a61461017b57806373627826146101835780637cff4cb41461019657806385cc6303146101a957600080fd5b806301bc45c91461011057806336b8865c146101405780636bc5d43814610155578063704b6c0214610168575b600080fd5b600254610123906001600160a01b031681565b6040516001600160a01b0390911681526020015b60405180910390f35b61015361014e3660046109c4565b6102ae565b005b600154610123906001600160a01b031681565b6101536101763660046109c4565b6102d8565b610153610302565b6101536101913660046109e6565b610316565b600354610123906001600160a01b031681565b6101536101b73660046109c4565b610355565b6000546001600160a01b0316610123565b6101536101db366004610a10565b6103d8565b6101f36101ee366004610a3a565b61058e565b6040516101379190610a79565b61012361020e366004610b4f565b80516020818301810180516006825292820191909301209152546001600160a01b031681565b610153610242366004610b8c565b610628565b6101536102553660046109c4565b6106a5565b61026d610268366004610a3a565b61071e565b604051908152602001610137565b610153610289366004610bda565b6107a3565b61026d61029c366004610a3a565b60046020526000908152604090205481565b6102b66108fe565b600380546001600160a01b0319166001600160a01b0392909216919091179055565b6102e06108fe565b600280546001600160a01b0319166001600160a01b0392909216919091179055565b61030a6108fe565b6103146000610958565b565b604080518281524260208201819052917f04ca71cb2abcf3230927f9779d86df6de61e6d98632cfca6c65e9665bc26e157910160405180910390a15050565b6002546001600160a01b031633148061037857506000546001600160a01b031633145b6103b65760405162461bcd60e51b815260206004820152600a60248201526927b7363c9020b236b4b760b11b60448201526064015b60405180910390fd5b600180546001600160a01b0319166001600160a01b0392909216919091179055565b6001546001600160a01b03163314806103fb57506002546001600160a01b031633145b8061041057506000546001600160a01b031633145b6104495760405162461bcd60e51b815260206004820152600a6024820152694f6e6c792050726f787960b01b60448201526064016103ad565b60ff8216600090815260056020526040902080546104ee919061046b90610c28565b80601f016020809104026020016040519081016040528092919081815260200182805461049790610c28565b80156104e45780601f106104b9576101008083540402835291602001916104e4565b820191906000526020600020905b8154815290600101906020018083116104c757829003601f168201915b5050505050511590565b1561053b5760405162461bcd60e51b815260206004820152601a60248201527f73657474696e6720696e76616c69642070726f6f66207479706500000000000060448201526064016103ad565b60ff821660008181526004602052604090819020839055517fada63a861865fe23f6625cd1aee5148d0dff232140711e4921d6769f3b27233f906105829084815260200190565b60405180910390a25050565b600560205260009081526040902080546105a790610c28565b80601f01602080910402602001604051908101604052809291908181526020018280546105d390610c28565b80156106205780601f106105f557610100808354040283529160200191610620565b820191906000526020600020905b81548152906001019060200180831161060357829003601f168201915b505050505081565b6002546001600160a01b031633148061064b57506000546001600160a01b031633145b6106845760405162461bcd60e51b815260206004820152600a60248201526927b7363c9020b236b4b760b11b60448201526064016103ad565b60ff821660009081526005602052604090206106a08282610cb0565b505050565b6106ad6108fe565b6001600160a01b0381166107125760405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201526564647265737360d01b60648201526084016103ad565b61071b81610958565b50565b60ff811660009081526005602052604081208054610740919061046b90610c28565b1561078d5760405162461bcd60e51b815260206004820152601d60248201527f72657175657374696e6720696e76616c69642070726f6f66207479706500000060448201526064016103ad565b5060ff1660009081526004602052604090205490565b6003546001600160a01b03163314806107c657506000546001600160a01b031633145b6108065760405162461bcd60e51b815260206004820152601160248201527027b7363c9029b4b3b732b91020b236b4b760791b60448201526064016103ad565b60006001600160a01b03166006836040516108219190610d70565b908152604051908190036020019020546001600160a01b03161461087f5760405162461bcd60e51b81526020600482015260156024820152745369676e657220616c72656164792065786973747360581b60448201526064016103ad565b806006836040516108909190610d70565b90815260405190819003602001812080546001600160a01b039384166001600160a01b0319909116179055908216906108ca908490610d70565b604051908190038120907f04fff30102674d24609f79fbdcf2a451f98fda0408b631957f646f2fc9ae76f990600090a35050565b6000546001600160a01b031633146103145760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e657260448201526064016103ad565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b80356001600160a01b03811681146109bf57600080fd5b919050565b6000602082840312156109d657600080fd5b6109df826109a8565b9392505050565b6000602082840312156109f857600080fd5b5035919050565b803560ff811681146109bf57600080fd5b60008060408385031215610a2357600080fd5b610a2c836109ff565b946020939093013593505050565b600060208284031215610a4c57600080fd5b6109df826109ff565b60005b83811015610a70578181015183820152602001610a58565b50506000910152565b6020815260008251806020840152610a98816040850160208701610a55565b601f01601f19169190910160400192915050565b634e487b7160e01b600052604160045260246000fd5b600082601f830112610ad357600080fd5b813567ffffffffffffffff80821115610aee57610aee610aac565b604051601f8301601f19908116603f01168101908282118183101715610b1657610b16610aac565b81604052838152866020858801011115610b2f57600080fd5b836020870160208301376000602085830101528094505050505092915050565b600060208284031215610b6157600080fd5b813567ffffffffffffffff811115610b7857600080fd5b610b8484828501610ac2565b949350505050565b60008060408385031215610b9f57600080fd5b610ba8836109ff565b9150602083013567ffffffffffffffff811115610bc457600080fd5b610bd085828601610ac2565b9150509250929050565b60008060408385031215610bed57600080fd5b823567ffffffffffffffff811115610c0457600080fd5b610c1085828601610ac2565b925050610c1f602084016109a8565b90509250929050565b600181811c90821680610c3c57607f821691505b602082108103610c5c57634e487b7160e01b600052602260045260246000fd5b50919050565b601f8211156106a057600081815260208120601f850160051c81016020861015610c895750805b601f850160051c820191505b81811015610ca857828155600101610c95565b505050505050565b815167ffffffffffffffff811115610cca57610cca610aac565b610cde81610cd88454610c28565b84610c62565b602080601f831160018114610d135760008415610cfb5750858301515b600019600386901b1c1916600185901b178555610ca8565b600085815260208120601f198616915b82811015610d4257888601518255948401946001909101908401610d23565b5085821015610d605787850151600019600388901b60f8161c191681555b5050505050600190811b01905550565b60008251610d82818460208701610a55565b919091019291505056fea2646970667358221220d78f16eade33399d7b5c20274652ed0ed63ed65bfcb97cac65b6e8edc9c1a7e564736f6c63430008110033

Block Transaction Gas Used Reward
view all blocks produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.