POL Price: $0.671332 (-3.46%)
Gas: 39 GWei
 

Overview

POL Balance

Polygon PoS Chain LogoPolygon PoS Chain LogoPolygon PoS Chain Logo0 POL

POL Value

$0.00

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To

There are no matching entries

Please try again later

Latest 25 internal transactions (View All)

Parent Transaction Hash Block From To
469552392023-08-31 0:06:58466 days ago1693440418
0x6549349c...b57509411
0 POL
469552392023-08-31 0:06:58466 days ago1693440418
0x6549349c...b57509411
0 POL
469552332023-08-31 0:06:46466 days ago1693440406
0x6549349c...b57509411
0 POL
469552332023-08-31 0:06:46466 days ago1693440406
0x6549349c...b57509411
0 POL
469552262023-08-31 0:06:30466 days ago1693440390
0x6549349c...b57509411
0 POL
469552262023-08-31 0:06:30466 days ago1693440390
0x6549349c...b57509411
0 POL
469552212023-08-31 0:06:20466 days ago1693440380
0x6549349c...b57509411
0 POL
469552212023-08-31 0:06:20466 days ago1693440380
0x6549349c...b57509411
0 POL
469552152023-08-31 0:06:06466 days ago1693440366
0x6549349c...b57509411
0 POL
469552132023-08-31 0:06:02466 days ago1693440362
0x6549349c...b57509411
0 POL
469552092023-08-31 0:05:54466 days ago1693440354
0x6549349c...b57509411
0 POL
469552072023-08-31 0:05:50466 days ago1693440350
0x6549349c...b57509411
0 POL
469552032023-08-31 0:05:42466 days ago1693440342
0x6549349c...b57509411
0 POL
469552012023-08-31 0:05:38466 days ago1693440338
0x6549349c...b57509411
0 POL
469551972023-08-31 0:05:28466 days ago1693440328
0x6549349c...b57509411
0 POL
469551952023-08-31 0:05:24466 days ago1693440324
0x6549349c...b57509411
0 POL
469551912023-08-31 0:05:16466 days ago1693440316
0x6549349c...b57509411
0 POL
469551902023-08-31 0:05:14466 days ago1693440314
0x6549349c...b57509411
0 POL
469551842023-08-31 0:05:02466 days ago1693440302
0x6549349c...b57509411
0 POL
469551842023-08-31 0:05:02466 days ago1693440302
0x6549349c...b57509411
0 POL
469551802023-08-31 0:04:52466 days ago1693440292
0x6549349c...b57509411
0 POL
469551782023-08-31 0:04:48466 days ago1693440288
0x6549349c...b57509411
0 POL
469551742023-08-31 0:04:40466 days ago1693440280
0x6549349c...b57509411
0 POL
469551722023-08-31 0:04:36466 days ago1693440276
0x6549349c...b57509411
0 POL
469551682023-08-31 0:04:28466 days ago1693440268
0x6549349c...b57509411
0 POL
View All Internal Transactions
Loading...
Loading

Similar Match Source Code
This contract matches the deployed Bytecode of the Source Code for Contract 0xd87216e5...D9c7Ad86C
The constructor portion of the code might be different and could alter the actual behaviour of the contract

Contract Name:
MultiECDSAValidator

Compiler Version
v0.8.19+commit.7dd6d404

Optimization Enabled:
Yes with 200 runs

Other Settings:
default evmVersion
File 1 of 10 : MultiECDSAValidator.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import "./IValidator.sol";
import "openzeppelin-contracts/contracts/utils/cryptography/EIP712.sol";
import "src/utils/KernelHelper.sol";
import "src/interfaces/IAddressBook.sol";

contract MultiECDSAValidator is IKernelValidator {
    event OwnerAdded(address indexed kernel, address indexed owner);
    event OwnerRemoved(address indexed kernel, address indexed owner);

    mapping(address owner => mapping(address kernel => bool) hello) public isOwner;

    function disable(bytes calldata _data) external override {
        address[] memory owners = abi.decode(_data, (address[]));
        for (uint256 i = 0; i < owners.length; i++) {
            isOwner[owners[i]][msg.sender] = false;
            emit OwnerRemoved(msg.sender, owners[i]);
        }
    }

    function enable(bytes calldata _data) external override {
        address addressBook = address(bytes20(_data));
        address[] memory owners = IAddressBook(addressBook).getOwners();
        for (uint256 i = 0; i < owners.length; i++) {
            isOwner[owners[i]][msg.sender] = true;
            emit OwnerAdded(msg.sender, owners[i]);
        }
    }

    function validateUserOp(UserOperation calldata _userOp, bytes32 _userOpHash, uint256)
        external
        view
        override
        returns (uint256 validationData)
    {
        address signer = ECDSA.recover(_userOpHash, _userOp.signature);
        if (isOwner[signer][msg.sender]) {
            return 0;
        }

        bytes32 hash = ECDSA.toEthSignedMessageHash(_userOpHash);
        signer = ECDSA.recover(hash, _userOp.signature);
        if (!isOwner[signer][msg.sender]) {
            return SIG_VALIDATION_FAILED;
        }
        return 0;
    }

    function validateSignature(bytes32 hash, bytes calldata signature) public view override returns (uint256) {
        address signer = ECDSA.recover(hash, signature);
        if(isOwner[signer][msg.sender]) {
            return 0;
        }
        bytes32 ethHash = ECDSA.toEthSignedMessageHash(hash);
        signer = ECDSA.recover(ethHash, signature);
        if (!isOwner[signer][msg.sender]) {
            return SIG_VALIDATION_FAILED;
        }
        return 0;
    }
}

File 2 of 10 : IValidator.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import "account-abstraction/interfaces/UserOperation.sol";

interface IKernelValidator {
    function enable(bytes calldata _data) external;

    function disable(bytes calldata _data) external;

    function validateUserOp(UserOperation calldata userOp, bytes32 userOpHash, uint256 missingFunds)
        external
        returns (uint256);

    function validateSignature(bytes32 hash, bytes calldata signature) external view returns (uint256);
}

// 3 modes
// 1. default mode, use preset validator for the kernel
// 2. enable mode, enable a new validator for given action and use it for current userOp
// 3. sudo mode, use default plugin for current userOp

File 3 of 10 : EIP712.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/EIP712.sol)

pragma solidity ^0.8.0;

import "./ECDSA.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,
 * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding
 * they need in their contracts using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * _Available since v3.4._
 */
abstract contract EIP712 {
    /* solhint-disable var-name-mixedcase */
    // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
    // invalidate the cached domain separator if the chain id changes.
    bytes32 private immutable _CACHED_DOMAIN_SEPARATOR;
    uint256 private immutable _CACHED_CHAIN_ID;
    address private immutable _CACHED_THIS;

    bytes32 private immutable _HASHED_NAME;
    bytes32 private immutable _HASHED_VERSION;
    bytes32 private immutable _TYPE_HASH;

    /* solhint-enable var-name-mixedcase */

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    constructor(string memory name, string memory version) {
        bytes32 hashedName = keccak256(bytes(name));
        bytes32 hashedVersion = keccak256(bytes(version));
        bytes32 typeHash = keccak256(
            "EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"
        );
        _HASHED_NAME = hashedName;
        _HASHED_VERSION = hashedVersion;
        _CACHED_CHAIN_ID = block.chainid;
        _CACHED_DOMAIN_SEPARATOR = _buildDomainSeparator(typeHash, hashedName, hashedVersion);
        _CACHED_THIS = address(this);
        _TYPE_HASH = typeHash;
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        if (address(this) == _CACHED_THIS && block.chainid == _CACHED_CHAIN_ID) {
            return _CACHED_DOMAIN_SEPARATOR;
        } else {
            return _buildDomainSeparator(_TYPE_HASH, _HASHED_NAME, _HASHED_VERSION);
        }
    }

    function _buildDomainSeparator(
        bytes32 typeHash,
        bytes32 nameHash,
        bytes32 versionHash
    ) private view returns (bytes32) {
        return keccak256(abi.encode(typeHash, nameHash, versionHash, block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return ECDSA.toTypedDataHash(_domainSeparatorV4(), structHash);
    }
}

File 4 of 10 : KernelHelper.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

uint256 constant SIG_VALIDATION_FAILED = 1;

function _intersectValidationData(uint256 a, uint256 b) pure returns (uint256 validationData) {
    if (uint160(a) != uint160(b)) {
        return SIG_VALIDATION_FAILED;
    }
    uint48 validAfterA = uint48(a >> (160 + 48));
    uint48 validUntilA = uint48(a >> 160);
    if(validUntilA == 0) {
        validUntilA = type(uint48).max;
    }
    uint48 validAfterB = uint48(b >> (160 + 48));
    uint48 validUntilB = uint48(b >> 160);
    if(validUntilB == 0) {
        validUntilB = type(uint48).max;
    }

    if (validAfterA < validAfterB) validAfterA = validAfterB;
    if (validUntilA > validUntilB) validUntilA = validUntilB;
    validationData = uint256(uint160(a)) | (uint256(validUntilA) << 160) | (uint256(validAfterA) << (48 + 160));
}

File 5 of 10 : IAddressBook.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.18;

interface IAddressBook {
    function getOwners() external view returns(address[] memory);
}

File 6 of 10 : UserOperation.sol
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.12;

/* solhint-disable no-inline-assembly */

import {calldataKeccak} from "../core/Helpers.sol";

/**
 * User Operation struct
 * @param sender the sender account of this request.
     * @param nonce unique value the sender uses to verify it is not a replay.
     * @param initCode if set, the account contract will be created by this constructor/
     * @param callData the method call to execute on this account.
     * @param callGasLimit the gas limit passed to the callData method call.
     * @param verificationGasLimit gas used for validateUserOp and validatePaymasterUserOp.
     * @param preVerificationGas gas not calculated by the handleOps method, but added to the gas paid. Covers batch overhead.
     * @param maxFeePerGas same as EIP-1559 gas parameter.
     * @param maxPriorityFeePerGas same as EIP-1559 gas parameter.
     * @param paymasterAndData if set, this field holds the paymaster address and paymaster-specific data. the paymaster will pay for the transaction instead of the sender.
     * @param signature sender-verified signature over the entire request, the EntryPoint address and the chain ID.
     */
    struct UserOperation {

        address sender;
        uint256 nonce;
        bytes initCode;
        bytes callData;
        uint256 callGasLimit;
        uint256 verificationGasLimit;
        uint256 preVerificationGas;
        uint256 maxFeePerGas;
        uint256 maxPriorityFeePerGas;
        bytes paymasterAndData;
        bytes signature;
    }

/**
 * Utility functions helpful when working with UserOperation structs.
 */
library UserOperationLib {

    function getSender(UserOperation calldata userOp) internal pure returns (address) {
        address data;
        //read sender from userOp, which is first userOp member (saves 800 gas...)
        assembly {data := calldataload(userOp)}
        return address(uint160(data));
    }

    //relayer/block builder might submit the TX with higher priorityFee, but the user should not
    // pay above what he signed for.
    function gasPrice(UserOperation calldata userOp) internal view returns (uint256) {
    unchecked {
        uint256 maxFeePerGas = userOp.maxFeePerGas;
        uint256 maxPriorityFeePerGas = userOp.maxPriorityFeePerGas;
        if (maxFeePerGas == maxPriorityFeePerGas) {
            //legacy mode (for networks that don't support basefee opcode)
            return maxFeePerGas;
        }
        return min(maxFeePerGas, maxPriorityFeePerGas + block.basefee);
    }
    }

    function pack(UserOperation calldata userOp) internal pure returns (bytes memory ret) {
        address sender = getSender(userOp);
        uint256 nonce = userOp.nonce;
        bytes32 hashInitCode = calldataKeccak(userOp.initCode);
        bytes32 hashCallData = calldataKeccak(userOp.callData);
        uint256 callGasLimit = userOp.callGasLimit;
        uint256 verificationGasLimit = userOp.verificationGasLimit;
        uint256 preVerificationGas = userOp.preVerificationGas;
        uint256 maxFeePerGas = userOp.maxFeePerGas;
        uint256 maxPriorityFeePerGas = userOp.maxPriorityFeePerGas;
        bytes32 hashPaymasterAndData = calldataKeccak(userOp.paymasterAndData);

        return abi.encode(
            sender, nonce,
            hashInitCode, hashCallData,
            callGasLimit, verificationGasLimit, preVerificationGas,
            maxFeePerGas, maxPriorityFeePerGas,
            hashPaymasterAndData
        );
    }

    function hash(UserOperation calldata userOp) internal pure returns (bytes32) {
        return keccak256(pack(userOp));
    }

    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }
}

File 7 of 10 : ECDSA.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.0;

import "../Strings.sol";

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS,
        InvalidSignatureV // Deprecated in v4.8
    }

    function _throwError(RecoverError error) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert("ECDSA: invalid signature");
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert("ECDSA: invalid signature length");
        } else if (error == RecoverError.InvalidSignatureS) {
            revert("ECDSA: invalid signature 's' value");
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature` or error string. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength);
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, signature);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     *
     * _Available since v4.3._
     */
    function tryRecover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address, RecoverError) {
        bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
        uint8 v = uint8((uint256(vs) >> 255) + 27);
        return tryRecover(hash, v, r, s);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     *
     * _Available since v4.2._
     */
    function recover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, r, vs);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     *
     * _Available since v4.3._
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address, RecoverError) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature);
        }

        return (signer, RecoverError.NoError);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from a `hash`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) {
        // 32 is the length in bytes of hash,
        // enforced by the type signature above
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash));
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from `s`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
    }

    /**
     * @dev Returns an Ethereum Signed Typed Data, created from a
     * `domainSeparator` and a `structHash`. This produces hash corresponding
     * to the one signed with the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
     * JSON-RPC method as part of EIP-712.
     *
     * See {recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash));
    }
}

File 8 of 10 : Helpers.sol
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.12;

/* solhint-disable no-inline-assembly */

/**
 * returned data from validateUserOp.
 * validateUserOp returns a uint256, with is created by `_packedValidationData` and parsed by `_parseValidationData`
 * @param aggregator - address(0) - the account validated the signature by itself.
 *              address(1) - the account failed to validate the signature.
 *              otherwise - this is an address of a signature aggregator that must be used to validate the signature.
 * @param validAfter - this UserOp is valid only after this timestamp.
 * @param validaUntil - this UserOp is valid only up to this timestamp.
 */
    struct ValidationData {
        address aggregator;
        uint48 validAfter;
        uint48 validUntil;
    }

//extract sigFailed, validAfter, validUntil.
// also convert zero validUntil to type(uint48).max
    function _parseValidationData(uint validationData) pure returns (ValidationData memory data) {
        address aggregator = address(uint160(validationData));
        uint48 validUntil = uint48(validationData >> 160);
        if (validUntil == 0) {
            validUntil = type(uint48).max;
        }
        uint48 validAfter = uint48(validationData >> (48 + 160));
        return ValidationData(aggregator, validAfter, validUntil);
    }

// intersect account and paymaster ranges.
    function _intersectTimeRange(uint256 validationData, uint256 paymasterValidationData) pure returns (ValidationData memory) {
        ValidationData memory accountValidationData = _parseValidationData(validationData);
        ValidationData memory pmValidationData = _parseValidationData(paymasterValidationData);
        address aggregator = accountValidationData.aggregator;
        if (aggregator == address(0)) {
            aggregator = pmValidationData.aggregator;
        }
        uint48 validAfter = accountValidationData.validAfter;
        uint48 validUntil = accountValidationData.validUntil;
        uint48 pmValidAfter = pmValidationData.validAfter;
        uint48 pmValidUntil = pmValidationData.validUntil;

        if (validAfter < pmValidAfter) validAfter = pmValidAfter;
        if (validUntil > pmValidUntil) validUntil = pmValidUntil;
        return ValidationData(aggregator, validAfter, validUntil);
    }

/**
 * helper to pack the return value for validateUserOp
 * @param data - the ValidationData to pack
 */
    function _packValidationData(ValidationData memory data) pure returns (uint256) {
        return uint160(data.aggregator) | (uint256(data.validUntil) << 160) | (uint256(data.validAfter) << (160 + 48));
    }

/**
 * helper to pack the return value for validateUserOp, when not using an aggregator
 * @param sigFailed - true for signature failure, false for success
 * @param validUntil last timestamp this UserOperation is valid (or zero for infinite)
 * @param validAfter first timestamp this UserOperation is valid
 */
    function _packValidationData(bool sigFailed, uint48 validUntil, uint48 validAfter) pure returns (uint256) {
        return (sigFailed ? 1 : 0) | (uint256(validUntil) << 160) | (uint256(validAfter) << (160 + 48));
    }

/**
 * keccak function over calldata.
 * @dev copy calldata into memory, do keccak and drop allocated memory. Strangely, this is more efficient than letting solidity do it.
 */
    function calldataKeccak(bytes calldata data) pure returns (bytes32 ret) {
        assembly {
            let mem := mload(0x40)
            let len := data.length
            calldatacopy(mem, data.offset, len)
            ret := keccak256(mem, len)
        }
    }

File 9 of 10 : Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }
}

File 10 of 10 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1);

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator,
        Rounding rounding
    ) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10**64) {
                value /= 10**64;
                result += 64;
            }
            if (value >= 10**32) {
                value /= 10**32;
                result += 32;
            }
            if (value >= 10**16) {
                value /= 10**16;
                result += 16;
            }
            if (value >= 10**8) {
                value /= 10**8;
                result += 8;
            }
            if (value >= 10**4) {
                value /= 10**4;
                result += 4;
            }
            if (value >= 10**2) {
                value /= 10**2;
                result += 2;
            }
            if (value >= 10**1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
        }
    }
}

Settings
{
  "remappings": [
    "@openzeppelin/=lib/openzeppelin-contracts/",
    "account-abstraction/=lib/account-abstraction/contracts/",
    "ds-test/=lib/forge-std/lib/ds-test/src/",
    "forge-std/=lib/forge-std/src/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "metadata": {
    "bytecodeHash": "none",
    "appendCBOR": false
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "paris",
  "libraries": {}
}

Contract Security Audit

Contract ABI

[{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"kernel","type":"address"},{"indexed":true,"internalType":"address","name":"owner","type":"address"}],"name":"OwnerAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"kernel","type":"address"},{"indexed":true,"internalType":"address","name":"owner","type":"address"}],"name":"OwnerRemoved","type":"event"},{"inputs":[{"internalType":"bytes","name":"_data","type":"bytes"}],"name":"disable","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes","name":"_data","type":"bytes"}],"name":"enable","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"kernel","type":"address"}],"name":"isOwner","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"hash","type":"bytes32"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"validateSignature","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"bytes","name":"initCode","type":"bytes"},{"internalType":"bytes","name":"callData","type":"bytes"},{"internalType":"uint256","name":"callGasLimit","type":"uint256"},{"internalType":"uint256","name":"verificationGasLimit","type":"uint256"},{"internalType":"uint256","name":"preVerificationGas","type":"uint256"},{"internalType":"uint256","name":"maxFeePerGas","type":"uint256"},{"internalType":"uint256","name":"maxPriorityFeePerGas","type":"uint256"},{"internalType":"bytes","name":"paymasterAndData","type":"bytes"},{"internalType":"bytes","name":"signature","type":"bytes"}],"internalType":"struct UserOperation","name":"_userOp","type":"tuple"},{"internalType":"bytes32","name":"_userOpHash","type":"bytes32"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"validateUserOp","outputs":[{"internalType":"uint256","name":"validationData","type":"uint256"}],"stateMutability":"view","type":"function"}]

Deployed Bytecode

0x608060405234801561001057600080fd5b50600436106100575760003560e01c80630c9595561461005c578063333daf92146100715780633a871cdd146100975780637ddc02d4146100aa5780638fc925aa146100e5575b600080fd5b61006f61006a3660046107f3565b6100f8565b005b61008461007f366004610835565b610249565b6040519081526020015b60405180910390f35b6100846100a5366004610881565b610355565b6100d56100b83660046108ea565b600060208181529281526040808220909352908152205460ff1681565b604051901515815260200161008e565b61006f6100f33660046107f3565b6103fa565b60006101048284610923565b60601c90506000816001600160a01b031663a0e67e2b6040518163ffffffff1660e01b8152600401600060405180830381865afa158015610149573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f1916820160405261017191908101906109c3565b905060005b815181101561024257600160008084848151811061019657610196610a62565b6020908102919091018101516001600160a01b0316825281810192909252604090810160009081203382529092529020805460ff191691151591909117905581518290829081106101e9576101e9610a62565b60200260200101516001600160a01b0316336001600160a01b03167fc82bdbbf677a2462f2a7e22e4ba9abd209496b69cd7b868b3b1d28f76e09a40a60405160405180910390a38061023a81610a78565b915050610176565b5050505050565b60008061028c8585858080601f0160208091040260200160405190810160405280939291908181526020018383808284376000920191909152506104df92505050565b6001600160a01b03811660009081526020818152604080832033845290915290205490915060ff16156102c357600091505061034e565b60006102ce86610503565b90506103108186868080601f0160208091040260200160405190810160405280939291908181526020018383808284376000920191909152506104df92505050565b6001600160a01b03811660009081526020818152604080832033845290915290205490925060ff166103475760019250505061034e565b6000925050505b9392505050565b6000806103a48461036a610140880188610a9f565b8080601f0160208091040260200160405190810160405280939291908181526020018383808284376000920191909152506104df92505050565b6001600160a01b03811660009081526020818152604080832033845290915290205490915060ff16156103db57600091505061034e565b60006103e685610503565b90506103108161036a610140890189610a9f565b600061040882840184610ae6565b905060005b81518110156104d957600080600084848151811061042d5761042d610a62565b6020908102919091018101516001600160a01b0316825281810192909252604090810160009081203382529092529020805460ff1916911515919091179055815182908290811061048057610480610a62565b60200260200101516001600160a01b0316336001600160a01b03167fe594d081b4382713733fe631966432c9cea5199afb2db5c3c1931f9f9300367960405160405180910390a3806104d181610a78565b91505061040d565b50505050565b60008060006104ee8585610556565b915091506104fb8161059b565b509392505050565b6040517f19457468657265756d205369676e6564204d6573736167653a0a3332000000006020820152603c8101829052600090605c01604051602081830303815290604052805190602001209050919050565b600080825160410361058c5760208301516040840151606085015160001a610580878285856106ed565b94509450505050610594565b506000905060025b9250929050565b60008160048111156105af576105af610b75565b036105b75750565b60018160048111156105cb576105cb610b75565b0361061d5760405162461bcd60e51b815260206004820152601860248201527f45434453413a20696e76616c6964207369676e6174757265000000000000000060448201526064015b60405180910390fd5b600281600481111561063157610631610b75565b0361067e5760405162461bcd60e51b815260206004820152601f60248201527f45434453413a20696e76616c6964207369676e6174757265206c656e677468006044820152606401610614565b600381600481111561069257610692610b75565b036106ea5760405162461bcd60e51b815260206004820152602260248201527f45434453413a20696e76616c6964207369676e6174757265202773272076616c604482015261756560f01b6064820152608401610614565b50565b6000807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a083111561072457506000905060036107a8565b6040805160008082526020820180845289905260ff881692820192909252606081018690526080810185905260019060a0016020604051602081039080840390855afa158015610778573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b0381166107a1576000600192509250506107a8565b9150600090505b94509492505050565b60008083601f8401126107c357600080fd5b50813567ffffffffffffffff8111156107db57600080fd5b60208301915083602082850101111561059457600080fd5b6000806020838503121561080657600080fd5b823567ffffffffffffffff81111561081d57600080fd5b610829858286016107b1565b90969095509350505050565b60008060006040848603121561084a57600080fd5b83359250602084013567ffffffffffffffff81111561086857600080fd5b610874868287016107b1565b9497909650939450505050565b60008060006060848603121561089657600080fd5b833567ffffffffffffffff8111156108ad57600080fd5b840161016081870312156108c057600080fd5b95602085013595506040909401359392505050565b6001600160a01b03811681146106ea57600080fd5b600080604083850312156108fd57600080fd5b8235610908816108d5565b91506020830135610918816108d5565b809150509250929050565b6bffffffffffffffffffffffff1981358181169160148510156109505780818660140360031b1b83161692505b505092915050565b634e487b7160e01b600052604160045260246000fd5b604051601f8201601f1916810167ffffffffffffffff8111828210171561099757610997610958565b604052919050565b600067ffffffffffffffff8211156109b9576109b9610958565b5060051b60200190565b600060208083850312156109d657600080fd5b825167ffffffffffffffff8111156109ed57600080fd5b8301601f810185136109fe57600080fd5b8051610a11610a0c8261099f565b61096e565b81815260059190911b82018301908381019087831115610a3057600080fd5b928401925b82841015610a57578351610a48816108d5565b82529284019290840190610a35565b979650505050505050565b634e487b7160e01b600052603260045260246000fd5b600060018201610a9857634e487b7160e01b600052601160045260246000fd5b5060010190565b6000808335601e19843603018112610ab657600080fd5b83018035915067ffffffffffffffff821115610ad157600080fd5b60200191503681900382131561059457600080fd5b60006020808385031215610af957600080fd5b823567ffffffffffffffff811115610b1057600080fd5b8301601f81018513610b2157600080fd5b8035610b2f610a0c8261099f565b81815260059190911b82018301908381019087831115610b4e57600080fd5b928401925b82841015610a57578335610b66816108d5565b82529284019290840190610b53565b634e487b7160e01b600052602160045260246000fd

Block Transaction Gas Used Reward
view all blocks produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.