POL Price: $0.369986 (-0.83%)
 

Overview

POL Balance

Polygon PoS Chain LogoPolygon PoS Chain LogoPolygon PoS Chain Logo0 POL

POL Value

$0.00

Token Holdings

Sponsored

Transaction Hash
Method
Block
From
To
Set Rate Mantiss...150503732021-05-28 22:53:481223 days ago1622242428IN
0x3e8b9901...ca2B9A295
0 POL0.000046871
0x60806040116068592021-03-04 19:49:101308 days ago1614887350IN
 Create: Reserve
0 POL0.000418751.0404

Parent Transaction Hash Block From To
View All Internal Transactions
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
Reserve

Compiler Version
v0.6.12+commit.27d51765

Optimization Enabled:
Yes with 200 runs

Other Settings:
default evmVersion
File 1 of 12 : Reserve.sol
// SPDX-License-Identifier: GPL-3.0

pragma solidity >=0.5.0 <0.7.0;

import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";

import "./ReserveInterface.sol";
import "../prize-pool/PrizePoolInterface.sol";

/// @title Interface that allows a user to draw an address using an index
contract Reserve is OwnableUpgradeable, ReserveInterface {

  event ReserveRateMantissaSet(uint256 rateMantissa);

  uint256 public rateMantissa;

  constructor () public {
    __Ownable_init();
  }

  function setRateMantissa(
    uint256 _rateMantissa
  )
    external
    onlyOwner
  {
    rateMantissa = _rateMantissa;

    emit ReserveRateMantissaSet(rateMantissa);
  }

  function withdrawReserve(address prizePool, address to) external onlyOwner returns (uint256) {
    return PrizePoolInterface(prizePool).withdrawReserve(to);
  }

  function reserveRateMantissa(address) external view override returns (uint256) {
    return rateMantissa;
  }
}

File 2 of 12 : OwnableUpgradeable.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

import "../utils/ContextUpgradeable.sol";
import "../proxy/Initializable.sol";
/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    function __Ownable_init() internal initializer {
        __Context_init_unchained();
        __Ownable_init_unchained();
    }

    function __Ownable_init_unchained() internal initializer {
        address msgSender = _msgSender();
        _owner = msgSender;
        emit OwnershipTransferred(address(0), msgSender);
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
        _;
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions anymore. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby removing any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        emit OwnershipTransferred(_owner, address(0));
        _owner = address(0);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        emit OwnershipTransferred(_owner, newOwner);
        _owner = newOwner;
    }
    uint256[49] private __gap;
}

File 3 of 12 : ReserveInterface.sol
// SPDX-License-Identifier: GPL-3.0

pragma solidity >=0.5.0 <0.7.0;

/// @title Interface that allows a user to draw an address using an index
interface ReserveInterface {
  function reserveRateMantissa(address prizePool) external view returns (uint256);
}

File 4 of 12 : PrizePoolInterface.sol
// SPDX-License-Identifier: GPL-3.0

pragma solidity >=0.6.0 <0.7.0;

import "../token/TokenListenerInterface.sol";
import "../token/ControlledTokenInterface.sol";

/// @title Escrows assets and deposits them into a yield source.  Exposes interest to Prize Strategy.  Users deposit and withdraw from this contract to participate in Prize Pool.
/// @notice Accounting is managed using Controlled Tokens, whose mint and burn functions can only be called by this contract.
/// @dev Must be inherited to provide specific yield-bearing asset control, such as Compound cTokens
interface PrizePoolInterface {

  /// @notice Deposit assets into the Prize Pool in exchange for tokens
  /// @param to The address receiving the newly minted tokens
  /// @param amount The amount of assets to deposit
  /// @param controlledToken The address of the type of token the user is minting
  /// @param referrer The referrer of the deposit
  function depositTo(
    address to,
    uint256 amount,
    address controlledToken,
    address referrer
  )
    external;

  /// @notice Withdraw assets from the Prize Pool instantly.  A fairness fee may be charged for an early exit.
  /// @param from The address to redeem tokens from.
  /// @param amount The amount of tokens to redeem for assets.
  /// @param controlledToken The address of the token to redeem (i.e. ticket or sponsorship)
  /// @param maximumExitFee The maximum exit fee the caller is willing to pay.  This should be pre-calculated by the calculateExitFee() fxn.
  /// @return The actual exit fee paid
  function withdrawInstantlyFrom(
    address from,
    uint256 amount,
    address controlledToken,
    uint256 maximumExitFee
  ) external returns (uint256);

  /// @notice Withdraw assets from the Prize Pool by placing them into the timelock.
  /// The timelock is used to ensure that the tickets have contributed their fair share of the prize.
  /// @dev Note that if the user has previously timelocked funds then this contract will try to sweep them.
  /// If the existing timelocked funds are still locked, then the incoming
  /// balance is added to their existing balance and the new timelock unlock timestamp will overwrite the old one.
  /// @param from The address to withdraw from
  /// @param amount The amount to withdraw
  /// @param controlledToken The type of token being withdrawn
  /// @return The timestamp from which the funds can be swept
  function withdrawWithTimelockFrom(
    address from,
    uint256 amount,
    address controlledToken
  ) external returns (uint256);

  function withdrawReserve(address to) external returns (uint256);

  /// @notice Returns the balance that is available to award.
  /// @dev captureAwardBalance() should be called first
  /// @return The total amount of assets to be awarded for the current prize
  function awardBalance() external view returns (uint256);

  /// @notice Captures any available interest as award balance.
  /// @dev This function also captures the reserve fees.
  /// @return The total amount of assets to be awarded for the current prize
  function captureAwardBalance() external returns (uint256);

  /// @notice Called by the prize strategy to award prizes.
  /// @dev The amount awarded must be less than the awardBalance()
  /// @param to The address of the winner that receives the award
  /// @param amount The amount of assets to be awarded
  /// @param controlledToken The address of the asset token being awarded
  function award(
    address to,
    uint256 amount,
    address controlledToken
  )
    external;

  /// @notice Called by the Prize-Strategy to transfer out external ERC20 tokens
  /// @dev Used to transfer out tokens held by the Prize Pool.  Could be liquidated, or anything.
  /// @param to The address of the winner that receives the award
  /// @param amount The amount of external assets to be awarded
  /// @param externalToken The address of the external asset token being awarded
  function transferExternalERC20(
    address to,
    address externalToken,
    uint256 amount
  )
    external;

  /// @notice Called by the Prize-Strategy to award external ERC20 prizes
  /// @dev Used to award any arbitrary tokens held by the Prize Pool
  /// @param to The address of the winner that receives the award
  /// @param amount The amount of external assets to be awarded
  /// @param externalToken The address of the external asset token being awarded
  function awardExternalERC20(
    address to,
    address externalToken,
    uint256 amount
  )
    external;

  /// @notice Called by the prize strategy to award external ERC721 prizes
  /// @dev Used to award any arbitrary NFTs held by the Prize Pool
  /// @param to The address of the winner that receives the award
  /// @param externalToken The address of the external NFT token being awarded
  /// @param tokenIds An array of NFT Token IDs to be transferred
  function awardExternalERC721(
    address to,
    address externalToken,
    uint256[] calldata tokenIds
  )
    external;

  /// @notice Sweep all timelocked balances and transfer unlocked assets to owner accounts
  /// @param users An array of account addresses to sweep balances for
  /// @return The total amount of assets swept from the Prize Pool
  function sweepTimelockBalances(
    address[] calldata users
  )
    external
    returns (uint256);

  /// @notice Calculates a timelocked withdrawal duration and credit consumption.
  /// @param from The user who is withdrawing
  /// @param amount The amount the user is withdrawing
  /// @param controlledToken The type of collateral the user is withdrawing (i.e. ticket or sponsorship)
  /// @return durationSeconds The duration of the timelock in seconds
  function calculateTimelockDuration(
    address from,
    address controlledToken,
    uint256 amount
  )
    external
    returns (
      uint256 durationSeconds,
      uint256 burnedCredit
    );

  /// @notice Calculates the early exit fee for the given amount
  /// @param from The user who is withdrawing
  /// @param controlledToken The type of collateral being withdrawn
  /// @param amount The amount of collateral to be withdrawn
  /// @return exitFee The exit fee
  /// @return burnedCredit The user's credit that was burned
  function calculateEarlyExitFee(
    address from,
    address controlledToken,
    uint256 amount
  )
    external
    returns (
      uint256 exitFee,
      uint256 burnedCredit
    );

  /// @notice Estimates the amount of time it will take for a given amount of funds to accrue the given amount of credit.
  /// @param _principal The principal amount on which interest is accruing
  /// @param _interest The amount of interest that must accrue
  /// @return durationSeconds The duration of time it will take to accrue the given amount of interest, in seconds.
  function estimateCreditAccrualTime(
    address _controlledToken,
    uint256 _principal,
    uint256 _interest
  )
    external
    view
    returns (uint256 durationSeconds);

  /// @notice Returns the credit balance for a given user.  Not that this includes both minted credit and pending credit.
  /// @param user The user whose credit balance should be returned
  /// @return The balance of the users credit
  function balanceOfCredit(address user, address controlledToken) external returns (uint256);

  /// @notice Sets the rate at which credit accrues per second.  The credit rate is a fixed point 18 number (like Ether).
  /// @param _controlledToken The controlled token for whom to set the credit plan
  /// @param _creditRateMantissa The credit rate to set.  Is a fixed point 18 decimal (like Ether).
  /// @param _creditLimitMantissa The credit limit to set.  Is a fixed point 18 decimal (like Ether).
  function setCreditPlanOf(
    address _controlledToken,
    uint128 _creditRateMantissa,
    uint128 _creditLimitMantissa
  )
    external;

  /// @notice Returns the credit rate of a controlled token
  /// @param controlledToken The controlled token to retrieve the credit rates for
  /// @return creditLimitMantissa The credit limit fraction.  This number is used to calculate both the credit limit and early exit fee.
  /// @return creditRateMantissa The credit rate. This is the amount of tokens that accrue per second.
  function creditPlanOf(
    address controlledToken
  )
    external
    view
    returns (
      uint128 creditLimitMantissa,
      uint128 creditRateMantissa
    );

  /// @notice Allows the Governor to set a cap on the amount of liquidity that he pool can hold
  /// @param _liquidityCap The new liquidity cap for the prize pool
  function setLiquidityCap(uint256 _liquidityCap) external;

  /// @notice Sets the prize strategy of the prize pool.  Only callable by the owner.
  /// @param _prizeStrategy The new prize strategy.  Must implement TokenListenerInterface
  function setPrizeStrategy(TokenListenerInterface _prizeStrategy) external;

  /// @dev Returns the address of the underlying ERC20 asset
  /// @return The address of the asset
  function token() external view returns (address);

  /// @notice An array of the Tokens controlled by the Prize Pool (ie. Tickets, Sponsorship)
  /// @return An array of controlled token addresses
  function tokens() external view returns (address[] memory);

  /// @notice The timestamp at which an account's timelocked balance will be made available to sweep
  /// @param user The address of an account with timelocked assets
  /// @return The timestamp at which the locked assets will be made available
  function timelockBalanceAvailableAt(address user) external view returns (uint256);

  /// @notice The balance of timelocked assets for an account
  /// @param user The address of an account with timelocked assets
  /// @return The amount of assets that have been timelocked
  function timelockBalanceOf(address user) external view returns (uint256);

  /// @notice The total of all controlled tokens and timelock.
  /// @return The current total of all tokens and timelock.
  function accountedBalance() external view returns (uint256);
}

File 5 of 12 : ContextUpgradeable.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;
import "../proxy/Initializable.sol";

/*
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with GSN meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract ContextUpgradeable is Initializable {
    function __Context_init() internal initializer {
        __Context_init_unchained();
    }

    function __Context_init_unchained() internal initializer {
    }
    function _msgSender() internal view virtual returns (address payable) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes memory) {
        this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
        return msg.data;
    }
    uint256[50] private __gap;
}

File 6 of 12 : Initializable.sol
// SPDX-License-Identifier: MIT

// solhint-disable-next-line compiler-version
pragma solidity >=0.4.24 <0.8.0;

import "../utils/AddressUpgradeable.sol";

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since a proxied contract can't have a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {UpgradeableProxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 */
abstract contract Initializable {

    /**
     * @dev Indicates that the contract has been initialized.
     */
    bool private _initialized;

    /**
     * @dev Indicates that the contract is in the process of being initialized.
     */
    bool private _initializing;

    /**
     * @dev Modifier to protect an initializer function from being invoked twice.
     */
    modifier initializer() {
        require(_initializing || _isConstructor() || !_initialized, "Initializable: contract is already initialized");

        bool isTopLevelCall = !_initializing;
        if (isTopLevelCall) {
            _initializing = true;
            _initialized = true;
        }

        _;

        if (isTopLevelCall) {
            _initializing = false;
        }
    }

    /// @dev Returns true if and only if the function is running in the constructor
    function _isConstructor() private view returns (bool) {
        return !AddressUpgradeable.isContract(address(this));
    }
}

File 7 of 12 : AddressUpgradeable.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.2 <0.8.0;

/**
 * @dev Collection of functions related to the address type
 */
library AddressUpgradeable {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize, which returns 0 for contracts in
        // construction, since the code is only stored at the end of the
        // constructor execution.

        uint256 size;
        // solhint-disable-next-line no-inline-assembly
        assembly { size := extcodesize(account) }
        return size > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
        (bool success, ) = recipient.call{ value: amount }("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain`call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
      return functionCall(target, data, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        require(isContract(target), "Address: call to non-contract");

        // solhint-disable-next-line avoid-low-level-calls
        (bool success, bytes memory returndata) = target.call{ value: value }(data);
        return _verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
        require(isContract(target), "Address: static call to non-contract");

        // solhint-disable-next-line avoid-low-level-calls
        (bool success, bytes memory returndata) = target.staticcall(data);
        return _verifyCallResult(success, returndata, errorMessage);
    }

    function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
        if (success) {
            return returndata;
        } else {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly

                // solhint-disable-next-line no-inline-assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
}

File 8 of 12 : TokenListenerInterface.sol
// SPDX-License-Identifier: GPL-3.0

pragma solidity >=0.5.0 <0.7.0;

import "@openzeppelin/contracts-upgradeable/introspection/IERC165Upgradeable.sol";

/// @title An interface that allows a contract to listen to token mint, transfer and burn events.
interface TokenListenerInterface is IERC165Upgradeable {
  /// @notice Called when tokens are minted.
  /// @param to The address of the receiver of the minted tokens.
  /// @param amount The amount of tokens being minted
  /// @param controlledToken The address of the token that is being minted
  /// @param referrer The address that referred the minting.
  function beforeTokenMint(address to, uint256 amount, address controlledToken, address referrer) external;

  /// @notice Called when tokens are transferred or burned.
  /// @param from The address of the sender of the token transfer
  /// @param to The address of the receiver of the token transfer.  Will be the zero address if burning.
  /// @param amount The amount of tokens transferred
  /// @param controlledToken The address of the token that was transferred
  function beforeTokenTransfer(address from, address to, uint256 amount, address controlledToken) external;
}

File 9 of 12 : ControlledTokenInterface.sol
// SPDX-License-Identifier: GPL-3.0

pragma solidity >=0.6.0 <0.7.0;

import "@openzeppelin/contracts-upgradeable/token/ERC20/IERC20Upgradeable.sol";

import "./TokenControllerInterface.sol";

/// @title Controlled ERC20 Token
/// @notice ERC20 Tokens with a controller for minting & burning
interface ControlledTokenInterface is IERC20Upgradeable {

  /// @notice Interface to the contract responsible for controlling mint/burn
  function controller() external view returns (TokenControllerInterface);

  /// @notice Allows the controller to mint tokens for a user account
  /// @dev May be overridden to provide more granular control over minting
  /// @param _user Address of the receiver of the minted tokens
  /// @param _amount Amount of tokens to mint
  function controllerMint(address _user, uint256 _amount) external;

  /// @notice Allows the controller to burn tokens from a user account
  /// @dev May be overridden to provide more granular control over burning
  /// @param _user Address of the holder account to burn tokens from
  /// @param _amount Amount of tokens to burn
  function controllerBurn(address _user, uint256 _amount) external;

  /// @notice Allows an operator via the controller to burn tokens on behalf of a user account
  /// @dev May be overridden to provide more granular control over operator-burning
  /// @param _operator Address of the operator performing the burn action via the controller contract
  /// @param _user Address of the holder account to burn tokens from
  /// @param _amount Amount of tokens to burn
  function controllerBurnFrom(address _operator, address _user, uint256 _amount) external;
}

File 10 of 12 : IERC165Upgradeable.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165Upgradeable {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

File 11 of 12 : IERC20Upgradeable.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20Upgradeable {
    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `recipient`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `sender` to `recipient` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);
}

File 12 of 12 : TokenControllerInterface.sol
// SPDX-License-Identifier: GPL-3.0

pragma solidity >=0.5.0 <0.7.0;

/// @title Controlled ERC20 Token Interface
/// @notice Required interface for Controlled ERC20 Tokens linked to a Prize Pool
/// @dev Defines the spec required to be implemented by a Controlled ERC20 Token
interface TokenControllerInterface {

  /// @dev Controller hook to provide notifications & rule validations on token transfers to the controller.
  /// This includes minting and burning.
  /// @param from Address of the account sending the tokens (address(0x0) on minting)
  /// @param to Address of the account receiving the tokens (address(0x0) on burning)
  /// @param amount Amount of tokens being transferred
  function beforeTokenTransfer(address from, address to, uint256 amount) external;
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "evmVersion": "istanbul",
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "abi"
      ]
    }
  },
  "metadata": {
    "useLiteralContent": true
  },
  "libraries": {}
}

Contract Security Audit

Contract ABI

[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"rateMantissa","type":"uint256"}],"name":"ReserveRateMantissaSet","type":"event"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rateMantissa","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"reserveRateMantissa","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_rateMantissa","type":"uint256"}],"name":"setRateMantissa","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"prizePool","type":"address"},{"internalType":"address","name":"to","type":"address"}],"name":"withdrawReserve","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"}]

608060405234801561001057600080fd5b5061001961001e565b61028e565b600054610100900460ff168061003757506100376100d0565b80610045575060005460ff16155b6100805760405162461bcd60e51b815260040180806020018281038252602e8152602001806107d2602e913960400191505060405180910390fd5b600054610100900460ff161580156100ab576000805460ff1961ff0019909116610100171660011790555b6100b36100eb565b6100bb61018b565b80156100cd576000805461ff00191690555b50565b60006100e53061028460201b6104af1760201c565b15905090565b600054610100900460ff168061010457506101046100d0565b80610112575060005460ff16155b61014d5760405162461bcd60e51b815260040180806020018281038252602e8152602001806107d2602e913960400191505060405180910390fd5b600054610100900460ff161580156100bb576000805460ff1961ff00199091166101001716600117905580156100cd576000805461ff001916905550565b600054610100900460ff16806101a457506101a46100d0565b806101b2575060005460ff16155b6101ed5760405162461bcd60e51b815260040180806020018281038252602e8152602001806107d2602e913960400191505060405180910390fd5b600054610100900460ff16158015610218576000805460ff1961ff0019909116610100171660011790555b600061022261028a565b603380546001600160a01b0319166001600160a01b038316908117909155604051919250906000907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0908290a35080156100cd576000805461ff001916905550565b3b151590565b3390565b6105358061029d6000396000f3fe608060405234801561001057600080fd5b506004361061007d5760003560e01c8063715018a61161005b578063715018a6146100f057806381b659d2146100fa5780638da5cb5b14610117578063f2fde38b1461013b5761007d565b8063010dfa58146100825780633e0b06db146100ba57806361853b42146100c2575b600080fd5b6100a86004803603602081101561009857600080fd5b50356001600160a01b0316610161565b60408051918252519081900360200190f35b6100a8610168565b6100a8600480360360408110156100d857600080fd5b506001600160a01b038135811691602001351661016e565b6100f8610254565b005b6100f86004803603602081101561011057600080fd5b5035610300565b61011f61039d565b604080516001600160a01b039092168252519081900360200190f35b6100f86004803603602081101561015157600080fd5b50356001600160a01b03166103ac565b5060655490565b60655481565b60006101786104b5565b6001600160a01b031661018961039d565b6001600160a01b0316146101d2576040805162461bcd60e51b815260206004820181905260248201526000805160206104e0833981519152604482015290519081900360640190fd5b826001600160a01b03166352a387ab836040518263ffffffff1660e01b815260040180826001600160a01b03168152602001915050602060405180830381600087803b15801561022157600080fd5b505af1158015610235573d6000803e3d6000fd5b505050506040513d602081101561024b57600080fd5b50519392505050565b61025c6104b5565b6001600160a01b031661026d61039d565b6001600160a01b0316146102b6576040805162461bcd60e51b815260206004820181905260248201526000805160206104e0833981519152604482015290519081900360640190fd5b6033546040516000916001600160a01b0316907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0908390a3603380546001600160a01b0319169055565b6103086104b5565b6001600160a01b031661031961039d565b6001600160a01b031614610362576040805162461bcd60e51b815260206004820181905260248201526000805160206104e0833981519152604482015290519081900360640190fd5b60658190556040805182815290517f596f4db485f9f39633eefcb1b04b10114fc6bc60e5feff327e5b2cace874129f9181900360200190a150565b6033546001600160a01b031690565b6103b46104b5565b6001600160a01b03166103c561039d565b6001600160a01b03161461040e576040805162461bcd60e51b815260206004820181905260248201526000805160206104e0833981519152604482015290519081900360640190fd5b6001600160a01b0381166104535760405162461bcd60e51b81526004018080602001828103825260268152602001806104ba6026913960400191505060405180910390fd5b6033546040516001600160a01b038084169216907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e090600090a3603380546001600160a01b0319166001600160a01b0392909216919091179055565b3b151590565b339056fe4f776e61626c653a206e6577206f776e657220697320746865207a65726f20616464726573734f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e6572a2646970667358221220dfb61d005c107e1cfa17cd7dc8daa7ef98abbd82563d9c442697edcee69d83e264736f6c634300060c0033496e697469616c697a61626c653a20636f6e747261637420697320616c726561647920696e697469616c697a6564

Deployed Bytecode

0x608060405234801561001057600080fd5b506004361061007d5760003560e01c8063715018a61161005b578063715018a6146100f057806381b659d2146100fa5780638da5cb5b14610117578063f2fde38b1461013b5761007d565b8063010dfa58146100825780633e0b06db146100ba57806361853b42146100c2575b600080fd5b6100a86004803603602081101561009857600080fd5b50356001600160a01b0316610161565b60408051918252519081900360200190f35b6100a8610168565b6100a8600480360360408110156100d857600080fd5b506001600160a01b038135811691602001351661016e565b6100f8610254565b005b6100f86004803603602081101561011057600080fd5b5035610300565b61011f61039d565b604080516001600160a01b039092168252519081900360200190f35b6100f86004803603602081101561015157600080fd5b50356001600160a01b03166103ac565b5060655490565b60655481565b60006101786104b5565b6001600160a01b031661018961039d565b6001600160a01b0316146101d2576040805162461bcd60e51b815260206004820181905260248201526000805160206104e0833981519152604482015290519081900360640190fd5b826001600160a01b03166352a387ab836040518263ffffffff1660e01b815260040180826001600160a01b03168152602001915050602060405180830381600087803b15801561022157600080fd5b505af1158015610235573d6000803e3d6000fd5b505050506040513d602081101561024b57600080fd5b50519392505050565b61025c6104b5565b6001600160a01b031661026d61039d565b6001600160a01b0316146102b6576040805162461bcd60e51b815260206004820181905260248201526000805160206104e0833981519152604482015290519081900360640190fd5b6033546040516000916001600160a01b0316907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0908390a3603380546001600160a01b0319169055565b6103086104b5565b6001600160a01b031661031961039d565b6001600160a01b031614610362576040805162461bcd60e51b815260206004820181905260248201526000805160206104e0833981519152604482015290519081900360640190fd5b60658190556040805182815290517f596f4db485f9f39633eefcb1b04b10114fc6bc60e5feff327e5b2cace874129f9181900360200190a150565b6033546001600160a01b031690565b6103b46104b5565b6001600160a01b03166103c561039d565b6001600160a01b03161461040e576040805162461bcd60e51b815260206004820181905260248201526000805160206104e0833981519152604482015290519081900360640190fd5b6001600160a01b0381166104535760405162461bcd60e51b81526004018080602001828103825260268152602001806104ba6026913960400191505060405180910390fd5b6033546040516001600160a01b038084169216907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e090600090a3603380546001600160a01b0319166001600160a01b0392909216919091179055565b3b151590565b339056fe4f776e61626c653a206e6577206f776e657220697320746865207a65726f20616464726573734f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e6572a2646970667358221220dfb61d005c107e1cfa17cd7dc8daa7ef98abbd82563d9c442697edcee69d83e264736f6c634300060c0033

Block Transaction Gas Used Reward
view all blocks produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.