Overview
POL Balance
POL Value
$0.00More Info
Private Name Tags
ContractCreator
Loading...
Loading
This contract may be a proxy contract. Click on More Options and select Is this a proxy? to confirm and enable the "Read as Proxy" & "Write as Proxy" tabs.
Contract Name:
ProportionalLiquidity
Compiler Version
v0.8.21+commit.d9974bed
Optimization Enabled:
Yes with 200 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity ^0.8.13; import "@openzeppelin/contracts/utils/math/SafeMath.sol"; import "./Assimilators.sol"; import "./Storage.sol"; import "./lib/UnsafeMath64x64.sol"; import "./lib/ABDKMath64x64.sol"; import "./CurveMath.sol"; import "./Structs.sol"; import "./interfaces/IAssimilator.sol"; import "./interfaces/ICurve.sol"; library ProportionalLiquidity { using ABDKMath64x64 for uint256; using ABDKMath64x64 for int128; using UnsafeMath64x64 for int128; using SafeMath for uint256; event Transfer(address indexed from, address indexed to, uint256 value); int128 public constant ONE = 0x10000000000000000; int128 public constant ONE_WEI = 0x12; function proportionalDeposit(Storage.Curve storage curve, DepositData memory depositData) external returns (uint256 curves_, uint256[] memory) { int128 __deposit = depositData.deposits.divu(1e18); uint256 _length = curve.assets.length; uint256[] memory deposits_ = new uint256[](_length); (int128 _oGLiq, int128[] memory _oBals) = getGrossLiquidityAndBalancesForDeposit(curve); // No liquidity, oracle sets the ratio if (_oGLiq == 0) { for (uint256 i = 0; i < _length; i++) { // Variable here to avoid stack-too-deep errors int128 _d = __deposit.mul(curve.weights[i]); deposits_[i] = Assimilators.intakeNumeraire(curve.assets[i].addr, _d.add(ONE_WEI)); } } else { // We already have an existing pool ratio // which must be respected int128 _multiplier = __deposit.div(_oGLiq); uint256 _baseWeight = curve.weights[0].mulu(1e18); uint256 _quoteWeight = curve.weights[1].mulu(1e18); for (uint256 i = 0; i < _length; i++) { IntakeNumLpRatioInfo memory info; info.minBase = depositData.minBase; info.maxBase = depositData.maxBase; info.baseAmt = depositData.baseAmt; info.minQuote = depositData.minQuote; info.quoteAmt = depositData.quoteAmt; info.maxQuote = depositData.maxQuote; info.token0 = depositData.token0; deposits_[i] = Assimilators.intakeNumeraireLPRatio(curve.assets[i].addr, info); } } curves_ = depositData.deposits; require(curves_ > 0, "Proportional Liquidity/can't mint negative amount"); mint(curve, msg.sender, curves_); return (curves_, deposits_); } function viewProportionalDeposit(Storage.Curve storage curve, uint256 _deposit) external view returns (uint256 curves_, uint256[] memory) { int128 __deposit = _deposit.divu(1e18); uint256 _length = curve.assets.length; (int128 _oGLiq, int128[] memory _oBals) = getGrossLiquidityAndBalancesForDeposit(curve); uint256[] memory deposits_ = new uint256[](_length); // No liquidity if (_oGLiq == 0) { for (uint256 i = 0; i < _length; i++) { deposits_[i] = Assimilators.viewRawAmount(curve.assets[i].addr, __deposit.mul(curve.weights[i]).add(ONE_WEI)); } } else { // We already have an existing pool ratio // this must be respected int128 _multiplier = __deposit.div(_oGLiq); uint256 _baseWeight = curve.weights[0].mulu(1e18); uint256 _quoteWeight = curve.weights[1].mulu(1e18); // Deposits into the pool is determined by existing LP ratio for (uint256 i = 0; i < _length; i++) { deposits_[i] = Assimilators.viewRawAmountLPRatio( curve.assets[i].addr, _baseWeight, _quoteWeight, _oBals[i].mul(_multiplier).add(ONE_WEI) ); } } int128 _totalShells = curve.totalSupply.divu(1e18); int128 _newShells = __deposit; if (_totalShells > 0) { _newShells = __deposit.mul(_totalShells); _newShells = _newShells.div(_oGLiq); } curves_ = _newShells.mulu(1e18); return (curves_, deposits_); } function proportionalWithdraw(Storage.Curve storage curve, uint256 _withdrawal, bool _toETH) external returns (uint256[] memory) { uint256 _length = curve.assets.length; (, int128[] memory _oBals) = getGrossLiquidityAndBalances(curve); uint256[] memory withdrawals_ = new uint256[](_length); int128 _totalShells = curve.totalSupply.divu(1e18); int128 __withdrawal = _withdrawal.divu(1e18); int128 _multiplier = __withdrawal.div(_totalShells); for (uint256 i = 0; i < _length; i++) { if ( _toETH && ( IAssimilator(curve.assets[i].addr).underlyingToken() == IAssimilator(curve.assets[i].addr).getWeth() ) ) { withdrawals_[i] = Assimilators.outputNumeraire(curve.assets[i].addr, msg.sender, _oBals[i].mul(_multiplier), true); } else { withdrawals_[i] = Assimilators.outputNumeraire(curve.assets[i].addr, msg.sender, _oBals[i].mul(_multiplier), false); } } burn(curve, msg.sender, _withdrawal); return withdrawals_; } function viewProportionalWithdraw(Storage.Curve storage curve, uint256 _withdrawal) external view returns (uint256[] memory) { uint256 _length = curve.assets.length; (, int128[] memory _oBals) = getGrossLiquidityAndBalances(curve); uint256[] memory withdrawals_ = new uint256[](_length); int128 _multiplier = _withdrawal.divu(1e18).div(curve.totalSupply.divu(1e18)); for (uint256 i = 0; i < _length; i++) { withdrawals_[i] = Assimilators.viewRawAmount(curve.assets[i].addr, _oBals[i].mul(_multiplier)); } return withdrawals_; } function getGrossLiquidityAndBalancesForDeposit(Storage.Curve storage curve) internal view returns (int128 grossLiquidity_, int128[] memory) { uint256 _length = curve.assets.length; int128[] memory balances_ = new int128[](_length); uint256 _baseWeight = curve.weights[0].mulu(1e18); uint256 _quoteWeight = curve.weights[1].mulu(1e18); for (uint256 i = 0; i < _length; i++) { int128 _bal = Assimilators.viewNumeraireBalanceLPRatio(_baseWeight, _quoteWeight, curve.assets[i].addr); balances_[i] = _bal; grossLiquidity_ += _bal; } return (grossLiquidity_, balances_); } function getGrossLiquidityAndBalances(Storage.Curve storage curve) internal view returns (int128 grossLiquidity_, int128[] memory) { uint256 _length = curve.assets.length; int128[] memory balances_ = new int128[](_length); for (uint256 i = 0; i < _length; i++) { int128 _bal = Assimilators.viewNumeraireBalance(curve.assets[i].addr); balances_[i] = _bal; grossLiquidity_ += _bal; } return (grossLiquidity_, balances_); } function burn(Storage.Curve storage curve, address account, uint256 amount) private { curve.balances[account] = burnSub(curve.balances[account], amount); curve.totalSupply = burnSub(curve.totalSupply, amount); emit Transfer(msg.sender, address(0), amount); } function mint(Storage.Curve storage curve, address account, uint256 amount) private { // uint256 minLock = 1e6; uint256 minLock = 1e15; if (curve.totalSupply == 0) { require(amount > minLock, "Proportional Liquidity/amount too small!"); uint256 toMintAmt = amount - minLock; // mint to lp provider curve.totalSupply = mintAdd(curve.totalSupply, toMintAmt); curve.balances[account] = mintAdd(curve.balances[account], toMintAmt); emit Transfer(address(0), msg.sender, toMintAmt); // mint to 0 address curve.totalSupply = mintAdd(curve.totalSupply, minLock); curve.balances[address(0)] = mintAdd(curve.balances[address(0)], minLock); emit Transfer(address(this), address(0), minLock); } else { curve.totalSupply = mintAdd(curve.totalSupply, amount); curve.balances[account] = mintAdd(curve.balances[account], amount); emit Transfer(address(0), msg.sender, amount); } } function mintAdd(uint256 x, uint256 y) private pure returns (uint256 z) { require((z = x + y) >= x, "Curve/mint-overflow"); } function burnSub(uint256 x, uint256 y) private pure returns (uint256 z) { require((z = x - y) <= x, "Curve/burn-underflow"); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (utils/math/SafeMath.sol) pragma solidity ^0.8.0; // CAUTION // This version of SafeMath should only be used with Solidity 0.8 or later, // because it relies on the compiler's built in overflow checks. /** * @dev Wrappers over Solidity's arithmetic operations. * * NOTE: `SafeMath` is generally not needed starting with Solidity 0.8, since the compiler * now has built in overflow checking. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { return a + b; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return a - b; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { return a * b; } /** * @dev Returns the integer division of two unsigned integers, reverting on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return a % b; } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {trySub}. * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { unchecked { require(b <= a, errorMessage); return a - b; } } /** * @dev Returns the integer division of two unsigned integers, reverting with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { unchecked { require(b > 0, errorMessage); return a / b; } } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting with custom message when dividing by zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryMod}. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { unchecked { require(b > 0, errorMessage); return a % b; } } }
// SPDX-License-Identifier: MIT // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.8.13; import "@openzeppelin/contracts/utils/Address.sol"; import "./interfaces/IAssimilator.sol"; import "./lib/ABDKMath64x64.sol"; import "./Structs.sol"; library Assimilators { using ABDKMath64x64 for int128; using Address for address; IAssimilator public constant iAsmltr = IAssimilator(address(0)); function delegate(address _callee, bytes memory _data) internal returns (bytes memory) { require(_callee.isContract(), "Assimilators/callee-is-not-a-contract"); // solhint-disable-next-line (bool _success, bytes memory returnData_) = _callee.delegatecall(_data); // solhint-disable-next-line assembly { if eq(_success, 0) { revert(add(returnData_, 0x20), returndatasize()) } } return returnData_; } function getRate(address _assim) internal view returns (uint256 amount_) { amount_ = IAssimilator(_assim).getRate(); } function viewRawAmount(address _assim, int128 _amt) internal view returns (uint256 amount_) { amount_ = IAssimilator(_assim).viewRawAmount(_amt); } function viewRawAmountLPRatio(address _assim, uint256 _baseWeight, uint256 _quoteWeight, int128 _amount) internal view returns (uint256 amount_) { amount_ = IAssimilator(_assim).viewRawAmountLPRatio(_baseWeight, _quoteWeight, address(this), _amount); } function viewNumeraireAmount(address _assim, uint256 _amt) internal view returns (int128 amt_) { amt_ = IAssimilator(_assim).viewNumeraireAmount(_amt); } function viewNumeraireAmountAndBalance(address _assim, uint256 _amt) internal view returns (int128 amt_, int128 bal_) { (amt_, bal_) = IAssimilator(_assim).viewNumeraireAmountAndBalance(address(this), _amt); } function viewNumeraireBalance(address _assim) internal view returns (int128 bal_) { bal_ = IAssimilator(_assim).viewNumeraireBalance(address(this)); } function viewNumeraireBalanceLPRatio(uint256 _baseWeight, uint256 _quoteWeight, address _assim) internal view returns (int128 bal_) { bal_ = IAssimilator(_assim).viewNumeraireBalanceLPRatio(_baseWeight, _quoteWeight, address(this)); } function intakeRaw(address _assim, uint256 _amt) internal returns (int128 amt_) { bytes memory data = abi.encodeWithSelector(iAsmltr.intakeRaw.selector, _amt); amt_ = abi.decode(delegate(_assim, data), (int128)); } function intakeRawAndGetBalance(address _assim, uint256 _amt) internal returns (int128 amt_, int128 bal_) { bytes memory data = abi.encodeWithSelector(iAsmltr.intakeRawAndGetBalance.selector, _amt); (amt_, bal_) = abi.decode(delegate(_assim, data), (int128, int128)); } function intakeNumeraire(address _assim, int128 _amt) internal returns (uint256 amt_) { bytes memory data = abi.encodeWithSelector(iAsmltr.intakeNumeraire.selector, _amt); amt_ = abi.decode(delegate(_assim, data), (uint256)); } function intakeNumeraireLPRatio(address _assim, IntakeNumLpRatioInfo memory info) internal returns (uint256 amt_) { bytes memory data = abi.encodeWithSelector( iAsmltr.intakeNumeraireLPRatio.selector, info.minBase, info.maxBase, info.baseAmt, info.minQuote, info.maxQuote, info.quoteAmt, info.token0 ); amt_ = abi.decode(delegate(_assim, data), (uint256)); } function outputRaw(address _assim, address _dst, uint256 _amt) internal returns (int128 amt_) { bytes memory data = abi.encodeWithSelector(iAsmltr.outputRaw.selector, _dst, _amt); amt_ = abi.decode(delegate(_assim, data), (int128)); amt_ = amt_.neg(); } function outputRawAndGetBalance(address _assim, address _dst, uint256 _amt) internal returns (int128 amt_, int128 bal_) { bytes memory data = abi.encodeWithSelector(iAsmltr.outputRawAndGetBalance.selector, _dst, _amt); (amt_, bal_) = abi.decode(delegate(_assim, data), (int128, int128)); amt_ = amt_.neg(); } function outputNumeraire(address _assim, address _dst, int128 _amt, bool _toETH) internal returns (uint256 amt_) { bytes memory data = abi.encodeWithSelector(iAsmltr.outputNumeraire.selector, _dst, _amt.abs(), _toETH); amt_ = abi.decode(delegate(_assim, data), (uint256)); } function transferFee(address _assim, int128 _amt, address _treasury) internal { bytes memory data = abi.encodeWithSelector(iAsmltr.transferFee.selector, _amt, _treasury); delegate(_assim, data); } }
// SPDX-License-Identifier: MIT // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.8.13; import "./interfaces/IOracle.sol"; import "./Assimilators.sol"; contract Storage { struct Curve { // Curve parameters int128 alpha; int128 beta; int128 delta; int128 epsilon; int128 lambda; int128[] weights; // Assets and their assimilators Assimilator[] assets; mapping(address => Assimilator) assimilators; // Oracles to determine the price // Note that 0'th index should always be USDC 1e18 // Oracle's pricing should be denominated in Currency/USDC mapping(address => IOracle) oracles; // ERC20 Interface uint256 totalSupply; mapping(address => uint256) balances; mapping(address => mapping(address => uint256)) allowances; } struct Assimilator { address addr; uint8 ix; } // Curve parameters Curve public curve; // Ownable address public owner; string public name; string public symbol; uint8 public constant decimals = 18; address[] public derivatives; address[] public numeraires; address[] public reserves; // Curve operational state bool public frozen = false; bool public emergency = false; bool public notEntered = true; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.13; library UnsafeMath64x64 { /** * Calculate x * y rounding down. * * @param x signed 64.64-bit fixed point number * @param y signed 64.64-bit fixed point number * @return signed 64.64-bit fixed point number */ function us_mul(int128 x, int128 y) internal pure returns (int128) { int256 result = int256(x) * y >> 64; return int128(result); } /** * Calculate x / y rounding towards zero. Revert on overflow or when y is * zero. * * @param x signed 64.64-bit fixed point number * @param y signed 64.64-bit fixed point number * @return signed 64.64-bit fixed point number */ function us_div(int128 x, int128 y) internal pure returns (int128) { int256 result = (int256(x) << 64) / y; return int128(result); } }
// SPDX-License-Identifier: BSD-4-Clause /* * ABDK Math 64.64 Smart Contract Library. Copyright © 2019 by ABDK Consulting. * Author: Mikhail Vladimirov <[email protected]> */ pragma solidity ^0.8.13; /** * Smart contract library of mathematical functions operating with signed * 64.64-bit fixed point numbers. Signed 64.64-bit fixed point number is * basically a simple fraction whose numerator is signed 128-bit integer and * denominator is 2^64. As long as denominator is always the same, there is no * need to store it, thus in Solidity signed 64.64-bit fixed point numbers are * represented by int128 type holding only the numerator. */ library ABDKMath64x64 { /* * Minimum value signed 64.64-bit fixed point number may have. */ int128 private constant MIN_64x64 = -0x80000000000000000000000000000000; /* * Maximum value signed 64.64-bit fixed point number may have. */ int128 private constant MAX_64x64 = 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; /** * Convert signed 256-bit integer number into signed 64.64-bit fixed point * number. Revert on overflow. * * @param x signed 256-bit integer number * @return signed 64.64-bit fixed point number */ function fromInt(int256 x) internal pure returns (int128) { unchecked { require(x >= -0x8000000000000000 && x <= 0x7FFFFFFFFFFFFFFF); return int128(x << 64); } } /** * Convert signed 64.64 fixed point number into signed 64-bit integer number * rounding down. * * @param x signed 64.64-bit fixed point number * @return signed 64-bit integer number */ function toInt(int128 x) internal pure returns (int64) { unchecked { return int64(x >> 64); } } /** * Convert unsigned 256-bit integer number into signed 64.64-bit fixed point * number. Revert on overflow. * * @param x unsigned 256-bit integer number * @return signed 64.64-bit fixed point number */ function fromUInt(uint256 x) internal pure returns (int128) { unchecked { require(x <= 0x7FFFFFFFFFFFFFFF); return int128(int256(x << 64)); } } /** * Convert signed 64.64 fixed point number into unsigned 64-bit integer * number rounding down. Revert on underflow. * * @param x signed 64.64-bit fixed point number * @return unsigned 64-bit integer number */ function toUInt(int128 x) internal pure returns (uint64) { unchecked { require(x >= 0); return uint64(uint128(x >> 64)); } } /** * Convert signed 128.128 fixed point number into signed 64.64-bit fixed point * number rounding down. Revert on overflow. * * @param x signed 128.128-bin fixed point number * @return signed 64.64-bit fixed point number */ function from128x128(int256 x) internal pure returns (int128) { unchecked { int256 result = x >> 64; require(result >= MIN_64x64 && result <= MAX_64x64); return int128(result); } } /** * Convert signed 64.64 fixed point number into signed 128.128 fixed point * number. * * @param x signed 64.64-bit fixed point number * @return signed 128.128 fixed point number */ function to128x128(int128 x) internal pure returns (int256) { unchecked { return int256(x) << 64; } } /** * Calculate x + y. Revert on overflow. * * @param x signed 64.64-bit fixed point number * @param y signed 64.64-bit fixed point number * @return signed 64.64-bit fixed point number */ function add(int128 x, int128 y) internal pure returns (int128) { unchecked { int256 result = int256(x) + y; require(result >= MIN_64x64 && result <= MAX_64x64); return int128(result); } } /** * Calculate x - y. Revert on overflow. * * @param x signed 64.64-bit fixed point number * @param y signed 64.64-bit fixed point number * @return signed 64.64-bit fixed point number */ function sub(int128 x, int128 y) internal pure returns (int128) { unchecked { int256 result = int256(x) - y; require(result >= MIN_64x64 && result <= MAX_64x64); return int128(result); } } /** * Calculate x * y rounding down. Revert on overflow. * * @param x signed 64.64-bit fixed point number * @param y signed 64.64-bit fixed point number * @return signed 64.64-bit fixed point number */ function mul(int128 x, int128 y) internal pure returns (int128) { unchecked { int256 result = int256(x) * y >> 64; require(result >= MIN_64x64 && result <= MAX_64x64); return int128(result); } } /** * Calculate x * y rounding towards zero, where x is signed 64.64 fixed point * number and y is signed 256-bit integer number. Revert on overflow. * * @param x signed 64.64 fixed point number * @param y signed 256-bit integer number * @return signed 256-bit integer number */ function muli(int128 x, int256 y) internal pure returns (int256) { unchecked { if (x == MIN_64x64) { require( y >= -0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF && y <= 0x1000000000000000000000000000000000000000000000000 ); return -y << 63; } else { bool negativeResult = false; if (x < 0) { x = -x; negativeResult = true; } if (y < 0) { y = -y; // We rely on overflow behavior here negativeResult = !negativeResult; } uint256 absoluteResult = mulu(x, uint256(y)); if (negativeResult) { require(absoluteResult <= 0x8000000000000000000000000000000000000000000000000000000000000000); return -int256(absoluteResult); // We rely on overflow behavior here } else { require(absoluteResult <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); return int256(absoluteResult); } } } } /** * Calculate x * y rounding down, where x is signed 64.64 fixed point number * and y is unsigned 256-bit integer number. Revert on overflow. * * @param x signed 64.64 fixed point number * @param y unsigned 256-bit integer number * @return unsigned 256-bit integer number */ function mulu(int128 x, uint256 y) internal pure returns (uint256) { unchecked { if (y == 0) return 0; require(x >= 0); uint256 lo = (uint256(int256(x)) * (y & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)) >> 64; uint256 hi = uint256(int256(x)) * (y >> 128); require(hi <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); hi <<= 64; require(hi <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF - lo); return hi + lo; } } /** * Calculate x / y rounding towards zero. Revert on overflow or when y is * zero. * * @param x signed 64.64-bit fixed point number * @param y signed 64.64-bit fixed point number * @return signed 64.64-bit fixed point number */ function div(int128 x, int128 y) internal pure returns (int128) { unchecked { require(y != 0); int256 result = (int256(x) << 64) / y; require(result >= MIN_64x64 && result <= MAX_64x64); return int128(result); } } /** * Calculate x / y rounding towards zero, where x and y are signed 256-bit * integer numbers. Revert on overflow or when y is zero. * * @param x signed 256-bit integer number * @param y signed 256-bit integer number * @return signed 64.64-bit fixed point number */ function divi(int256 x, int256 y) internal pure returns (int128) { unchecked { require(y != 0); bool negativeResult = false; if (x < 0) { x = -x; // We rely on overflow behavior here negativeResult = true; } if (y < 0) { y = -y; // We rely on overflow behavior here negativeResult = !negativeResult; } uint128 absoluteResult = divuu(uint256(x), uint256(y)); if (negativeResult) { require(absoluteResult <= 0x80000000000000000000000000000000); return -int128(absoluteResult); // We rely on overflow behavior here } else { require(absoluteResult <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); return int128(absoluteResult); // We rely on overflow behavior here } } } /** * Calculate x / y rounding towards zero, where x and y are unsigned 256-bit * integer numbers. Revert on overflow or when y is zero. * * @param x unsigned 256-bit integer number * @param y unsigned 256-bit integer number * @return signed 64.64-bit fixed point number */ function divu(uint256 x, uint256 y) internal pure returns (int128) { unchecked { require(y != 0); uint128 result = divuu(x, y); require(result <= uint128(MAX_64x64)); return int128(result); } } /** * Calculate -x. Revert on overflow. * * @param x signed 64.64-bit fixed point number * @return signed 64.64-bit fixed point number */ function neg(int128 x) internal pure returns (int128) { unchecked { require(x != MIN_64x64); return -x; } } /** * Calculate |x|. Revert on overflow. * * @param x signed 64.64-bit fixed point number * @return signed 64.64-bit fixed point number */ function abs(int128 x) internal pure returns (int128) { unchecked { require(x != MIN_64x64); return x < 0 ? -x : x; } } /** * Calculate 1 / x rounding towards zero. Revert on overflow or when x is * zero. * * @param x signed 64.64-bit fixed point number * @return signed 64.64-bit fixed point number */ function inv(int128 x) internal pure returns (int128) { unchecked { require(x != 0); int256 result = int256(0x100000000000000000000000000000000) / x; require(result >= MIN_64x64 && result <= MAX_64x64); return int128(result); } } /** * Calculate arithmetics average of x and y, i.e. (x + y) / 2 rounding down. * * @param x signed 64.64-bit fixed point number * @param y signed 64.64-bit fixed point number * @return signed 64.64-bit fixed point number */ function avg(int128 x, int128 y) internal pure returns (int128) { unchecked { return int128((int256(x) + int256(y)) >> 1); } } /** * Calculate geometric average of x and y, i.e. sqrt (x * y) rounding down. * Revert on overflow or in case x * y is negative. * * @param x signed 64.64-bit fixed point number * @param y signed 64.64-bit fixed point number * @return signed 64.64-bit fixed point number */ function gavg(int128 x, int128 y) internal pure returns (int128) { unchecked { int256 m = int256(x) * int256(y); require(m >= 0); require(m < 0x4000000000000000000000000000000000000000000000000000000000000000); return int128(sqrtu(uint256(m))); } } /** * Calculate x^y assuming 0^0 is 1, where x is signed 64.64 fixed point number * and y is unsigned 256-bit integer number. Revert on overflow. * * @param x signed 64.64-bit fixed point number * @param y uint256 value * @return signed 64.64-bit fixed point number */ function pow(int128 x, uint256 y) internal pure returns (int128) { unchecked { bool negative = x < 0 && y & 1 == 1; uint256 absX = uint128(x < 0 ? -x : x); uint256 absResult; absResult = 0x100000000000000000000000000000000; if (absX <= 0x10000000000000000) { absX <<= 63; while (y != 0) { if (y & 0x1 != 0) { absResult = absResult * absX >> 127; } absX = absX * absX >> 127; if (y & 0x2 != 0) { absResult = absResult * absX >> 127; } absX = absX * absX >> 127; if (y & 0x4 != 0) { absResult = absResult * absX >> 127; } absX = absX * absX >> 127; if (y & 0x8 != 0) { absResult = absResult * absX >> 127; } absX = absX * absX >> 127; y >>= 4; } absResult >>= 64; } else { uint256 absXShift = 63; if (absX < 0x1000000000000000000000000) { absX <<= 32; absXShift -= 32; } if (absX < 0x10000000000000000000000000000) { absX <<= 16; absXShift -= 16; } if (absX < 0x1000000000000000000000000000000) { absX <<= 8; absXShift -= 8; } if (absX < 0x10000000000000000000000000000000) { absX <<= 4; absXShift -= 4; } if (absX < 0x40000000000000000000000000000000) { absX <<= 2; absXShift -= 2; } if (absX < 0x80000000000000000000000000000000) { absX <<= 1; absXShift -= 1; } uint256 resultShift = 0; while (y != 0) { require(absXShift < 64); if (y & 0x1 != 0) { absResult = absResult * absX >> 127; resultShift += absXShift; if (absResult > 0x100000000000000000000000000000000) { absResult >>= 1; resultShift += 1; } } absX = absX * absX >> 127; absXShift <<= 1; if (absX >= 0x100000000000000000000000000000000) { absX >>= 1; absXShift += 1; } y >>= 1; } require(resultShift < 64); absResult >>= 64 - resultShift; } int256 result = negative ? -int256(absResult) : int256(absResult); require(result >= MIN_64x64 && result <= MAX_64x64); return int128(result); } } /** * Calculate sqrt (x) rounding down. Revert if x < 0. * * @param x signed 64.64-bit fixed point number * @return signed 64.64-bit fixed point number */ function sqrt(int128 x) internal pure returns (int128) { unchecked { require(x >= 0); return int128(sqrtu(uint256(int256(x)) << 64)); } } /** * Calculate binary logarithm of x. Revert if x <= 0. * * @param x signed 64.64-bit fixed point number * @return signed 64.64-bit fixed point number */ function log_2(int128 x) internal pure returns (int128) { unchecked { require(x > 0); int256 msb = 0; int256 xc = x; if (xc >= 0x10000000000000000) { xc >>= 64; msb += 64; } if (xc >= 0x100000000) { xc >>= 32; msb += 32; } if (xc >= 0x10000) { xc >>= 16; msb += 16; } if (xc >= 0x100) { xc >>= 8; msb += 8; } if (xc >= 0x10) { xc >>= 4; msb += 4; } if (xc >= 0x4) { xc >>= 2; msb += 2; } if (xc >= 0x2) msb += 1; // No need to shift xc anymore int256 result = msb - 64 << 64; uint256 ux = uint256(int256(x)) << uint256(127 - msb); for (int256 bit = 0x8000000000000000; bit > 0; bit >>= 1) { ux *= ux; uint256 b = ux >> 255; ux >>= 127 + b; result += bit * int256(b); } return int128(result); } } /** * Calculate natural logarithm of x. Revert if x <= 0. * * @param x signed 64.64-bit fixed point number * @return signed 64.64-bit fixed point number */ function ln(int128 x) internal pure returns (int128) { unchecked { require(x > 0); return int128(int256(uint256(int256(log_2(x))) * 0xB17217F7D1CF79ABC9E3B39803F2F6AF >> 128)); } } /** * Calculate binary exponent of x. Revert on overflow. * * @param x signed 64.64-bit fixed point number * @return signed 64.64-bit fixed point number */ function exp_2(int128 x) internal pure returns (int128) { unchecked { require(x < 0x400000000000000000); // Overflow if (x < -0x400000000000000000) return 0; // Underflow uint256 result = 0x80000000000000000000000000000000; if (x & 0x8000000000000000 > 0) { result = result * 0x16A09E667F3BCC908B2FB1366EA957D3E >> 128; } if (x & 0x4000000000000000 > 0) { result = result * 0x1306FE0A31B7152DE8D5A46305C85EDEC >> 128; } if (x & 0x2000000000000000 > 0) { result = result * 0x1172B83C7D517ADCDF7C8C50EB14A791F >> 128; } if (x & 0x1000000000000000 > 0) { result = result * 0x10B5586CF9890F6298B92B71842A98363 >> 128; } if (x & 0x800000000000000 > 0) { result = result * 0x1059B0D31585743AE7C548EB68CA417FD >> 128; } if (x & 0x400000000000000 > 0) { result = result * 0x102C9A3E778060EE6F7CACA4F7A29BDE8 >> 128; } if (x & 0x200000000000000 > 0) { result = result * 0x10163DA9FB33356D84A66AE336DCDFA3F >> 128; } if (x & 0x100000000000000 > 0) { result = result * 0x100B1AFA5ABCBED6129AB13EC11DC9543 >> 128; } if (x & 0x80000000000000 > 0) { result = result * 0x10058C86DA1C09EA1FF19D294CF2F679B >> 128; } if (x & 0x40000000000000 > 0) { result = result * 0x1002C605E2E8CEC506D21BFC89A23A00F >> 128; } if (x & 0x20000000000000 > 0) { result = result * 0x100162F3904051FA128BCA9C55C31E5DF >> 128; } if (x & 0x10000000000000 > 0) { result = result * 0x1000B175EFFDC76BA38E31671CA939725 >> 128; } if (x & 0x8000000000000 > 0) { result = result * 0x100058BA01FB9F96D6CACD4B180917C3D >> 128; } if (x & 0x4000000000000 > 0) { result = result * 0x10002C5CC37DA9491D0985C348C68E7B3 >> 128; } if (x & 0x2000000000000 > 0) { result = result * 0x1000162E525EE054754457D5995292026 >> 128; } if (x & 0x1000000000000 > 0) { result = result * 0x10000B17255775C040618BF4A4ADE83FC >> 128; } if (x & 0x800000000000 > 0) { result = result * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB >> 128; } if (x & 0x400000000000 > 0) { result = result * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9 >> 128; } if (x & 0x200000000000 > 0) { result = result * 0x10000162E43F4F831060E02D839A9D16D >> 128; } if (x & 0x100000000000 > 0) { result = result * 0x100000B1721BCFC99D9F890EA06911763 >> 128; } if (x & 0x80000000000 > 0) { result = result * 0x10000058B90CF1E6D97F9CA14DBCC1628 >> 128; } if (x & 0x40000000000 > 0) { result = result * 0x1000002C5C863B73F016468F6BAC5CA2B >> 128; } if (x & 0x20000000000 > 0) { result = result * 0x100000162E430E5A18F6119E3C02282A5 >> 128; } if (x & 0x10000000000 > 0) { result = result * 0x1000000B1721835514B86E6D96EFD1BFE >> 128; } if (x & 0x8000000000 > 0) { result = result * 0x100000058B90C0B48C6BE5DF846C5B2EF >> 128; } if (x & 0x4000000000 > 0) { result = result * 0x10000002C5C8601CC6B9E94213C72737A >> 128; } if (x & 0x2000000000 > 0) { result = result * 0x1000000162E42FFF037DF38AA2B219F06 >> 128; } if (x & 0x1000000000 > 0) { result = result * 0x10000000B17217FBA9C739AA5819F44F9 >> 128; } if (x & 0x800000000 > 0) { result = result * 0x1000000058B90BFCDEE5ACD3C1CEDC823 >> 128; } if (x & 0x400000000 > 0) { result = result * 0x100000002C5C85FE31F35A6A30DA1BE50 >> 128; } if (x & 0x200000000 > 0) { result = result * 0x10000000162E42FF0999CE3541B9FFFCF >> 128; } if (x & 0x100000000 > 0) { result = result * 0x100000000B17217F80F4EF5AADDA45554 >> 128; } if (x & 0x80000000 > 0) { result = result * 0x10000000058B90BFBF8479BD5A81B51AD >> 128; } if (x & 0x40000000 > 0) { result = result * 0x1000000002C5C85FDF84BD62AE30A74CC >> 128; } if (x & 0x20000000 > 0) { result = result * 0x100000000162E42FEFB2FED257559BDAA >> 128; } if (x & 0x10000000 > 0) { result = result * 0x1000000000B17217F7D5A7716BBA4A9AE >> 128; } if (x & 0x8000000 > 0) { result = result * 0x100000000058B90BFBE9DDBAC5E109CCE >> 128; } if (x & 0x4000000 > 0) { result = result * 0x10000000002C5C85FDF4B15DE6F17EB0D >> 128; } if (x & 0x2000000 > 0) { result = result * 0x1000000000162E42FEFA494F1478FDE05 >> 128; } if (x & 0x1000000 > 0) { result = result * 0x10000000000B17217F7D20CF927C8E94C >> 128; } if (x & 0x800000 > 0) { result = result * 0x1000000000058B90BFBE8F71CB4E4B33D >> 128; } if (x & 0x400000 > 0) { result = result * 0x100000000002C5C85FDF477B662B26945 >> 128; } if (x & 0x200000 > 0) { result = result * 0x10000000000162E42FEFA3AE53369388C >> 128; } if (x & 0x100000 > 0) { result = result * 0x100000000000B17217F7D1D351A389D40 >> 128; } if (x & 0x80000 > 0) { result = result * 0x10000000000058B90BFBE8E8B2D3D4EDE >> 128; } if (x & 0x40000 > 0) { result = result * 0x1000000000002C5C85FDF4741BEA6E77E >> 128; } if (x & 0x20000 > 0) { result = result * 0x100000000000162E42FEFA39FE95583C2 >> 128; } if (x & 0x10000 > 0) { result = result * 0x1000000000000B17217F7D1CFB72B45E1 >> 128; } if (x & 0x8000 > 0) { result = result * 0x100000000000058B90BFBE8E7CC35C3F0 >> 128; } if (x & 0x4000 > 0) { result = result * 0x10000000000002C5C85FDF473E242EA38 >> 128; } if (x & 0x2000 > 0) { result = result * 0x1000000000000162E42FEFA39F02B772C >> 128; } if (x & 0x1000 > 0) { result = result * 0x10000000000000B17217F7D1CF7D83C1A >> 128; } if (x & 0x800 > 0) { result = result * 0x1000000000000058B90BFBE8E7BDCBE2E >> 128; } if (x & 0x400 > 0) { result = result * 0x100000000000002C5C85FDF473DEA871F >> 128; } if (x & 0x200 > 0) { result = result * 0x10000000000000162E42FEFA39EF44D91 >> 128; } if (x & 0x100 > 0) { result = result * 0x100000000000000B17217F7D1CF79E949 >> 128; } if (x & 0x80 > 0) { result = result * 0x10000000000000058B90BFBE8E7BCE544 >> 128; } if (x & 0x40 > 0) { result = result * 0x1000000000000002C5C85FDF473DE6ECA >> 128; } if (x & 0x20 > 0) { result = result * 0x100000000000000162E42FEFA39EF366F >> 128; } if (x & 0x10 > 0) { result = result * 0x1000000000000000B17217F7D1CF79AFA >> 128; } if (x & 0x8 > 0) { result = result * 0x100000000000000058B90BFBE8E7BCD6D >> 128; } if (x & 0x4 > 0) { result = result * 0x10000000000000002C5C85FDF473DE6B2 >> 128; } if (x & 0x2 > 0) { result = result * 0x1000000000000000162E42FEFA39EF358 >> 128; } if (x & 0x1 > 0) { result = result * 0x10000000000000000B17217F7D1CF79AB >> 128; } result >>= uint256(int256(63 - (x >> 64))); require(result <= uint256(int256(MAX_64x64))); return int128(int256(result)); } } /** * Calculate natural exponent of x. Revert on overflow. * * @param x signed 64.64-bit fixed point number * @return signed 64.64-bit fixed point number */ function exp(int128 x) internal pure returns (int128) { unchecked { require(x < 0x400000000000000000); // Overflow if (x < -0x400000000000000000) return 0; // Underflow return exp_2(int128(int256(x) * 0x171547652B82FE1777D0FFDA0D23A7D12 >> 128)); } } /** * Calculate x / y rounding towards zero, where x and y are unsigned 256-bit * integer numbers. Revert on overflow or when y is zero. * * @param x unsigned 256-bit integer number * @param y unsigned 256-bit integer number * @return unsigned 64.64-bit fixed point number */ function divuu(uint256 x, uint256 y) private pure returns (uint128) { unchecked { require(y != 0); uint256 result; if (x <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF) { result = (x << 64) / y; } else { uint256 msb = 192; uint256 xc = x >> 192; if (xc >= 0x100000000) { xc >>= 32; msb += 32; } if (xc >= 0x10000) { xc >>= 16; msb += 16; } if (xc >= 0x100) { xc >>= 8; msb += 8; } if (xc >= 0x10) { xc >>= 4; msb += 4; } if (xc >= 0x4) { xc >>= 2; msb += 2; } if (xc >= 0x2) msb += 1; // No need to shift xc anymore result = (x << 255 - msb) / ((y - 1 >> msb - 191) + 1); require(result <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); uint256 hi = result * (y >> 128); uint256 lo = result * (y & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); uint256 xh = x >> 192; uint256 xl = x << 64; if (xl < lo) xh -= 1; xl -= lo; // We rely on overflow behavior here lo = hi << 128; if (xl < lo) xh -= 1; xl -= lo; // We rely on overflow behavior here assert(xh == hi >> 128); result += xl / y; } require(result <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); return uint128(result); } } /** * Calculate sqrt (x) rounding down, where x is unsigned 256-bit integer * number. * * @param x unsigned 256-bit integer number * @return unsigned 128-bit integer number */ function sqrtu(uint256 x) private pure returns (uint128) { unchecked { if (x == 0) { return 0; } else { uint256 xx = x; uint256 r = 1; if (xx >= 0x100000000000000000000000000000000) { xx >>= 128; r <<= 64; } if (xx >= 0x10000000000000000) { xx >>= 64; r <<= 32; } if (xx >= 0x100000000) { xx >>= 32; r <<= 16; } if (xx >= 0x10000) { xx >>= 16; r <<= 8; } if (xx >= 0x100) { xx >>= 8; r <<= 4; } if (xx >= 0x10) { xx >>= 4; r <<= 2; } if (xx >= 0x8) r <<= 1; r = (r + x / r) >> 1; r = (r + x / r) >> 1; r = (r + x / r) >> 1; r = (r + x / r) >> 1; r = (r + x / r) >> 1; r = (r + x / r) >> 1; r = (r + x / r) >> 1; // Seven iterations should be enough uint256 r1 = x / r; return uint128(r < r1 ? r : r1); } } } }
// SPDX-License-Identifier: MIT // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.8.13; import "./Storage.sol"; import "./lib/UnsafeMath64x64.sol"; import "./lib/ABDKMath64x64.sol"; library CurveMath { int128 private constant ONE = 0x10000000000000000; int128 private constant MAX = 0x4000000000000000; // .25 in layman's terms int128 private constant MAX_DIFF = -0x10C6F7A0B5EE; int128 private constant ONE_WEI = 0x12; using ABDKMath64x64 for int128; using UnsafeMath64x64 for int128; using ABDKMath64x64 for uint256; // This is used to prevent stack too deep errors function calculateFee(int128 _gLiq, int128[] memory _bals, Storage.Curve storage curve, int128[] memory _weights) internal view returns (int128 psi_) { int128 _beta = curve.beta; int128 _delta = curve.delta; psi_ = calculateFee(_gLiq, _bals, _beta, _delta, _weights); } function calculateFee(int128 _gLiq, int128[] memory _bals, int128 _beta, int128 _delta, int128[] memory _weights) internal pure returns (int128 psi_) { uint256 _length = _bals.length; for (uint256 i = 0; i < _length; i++) { int128 _ideal = _gLiq.mul(_weights[i]); psi_ += calculateMicroFee(_bals[i], _ideal, _beta, _delta); } } function calculateMicroFee(int128 _bal, int128 _ideal, int128 _beta, int128 _delta) private pure returns (int128 fee_) { if (_bal < _ideal) { int128 _threshold = _ideal.mul(ONE - _beta); if (_bal < _threshold) { int128 _feeMargin = _threshold - _bal; fee_ = _feeMargin.mul(_delta); fee_ = fee_.div(_ideal); if (fee_ > MAX) fee_ = MAX; fee_ = fee_.mul(_feeMargin); } else { fee_ = 0; } } else { int128 _threshold = _ideal.mul(ONE + _beta); if (_bal > _threshold) { int128 _feeMargin = _bal - _threshold; fee_ = _feeMargin.mul(_delta); fee_ = fee_.div(_ideal); if (fee_ > MAX) fee_ = MAX; fee_ = fee_.mul(_feeMargin); } else { fee_ = 0; } } } function calculateTrade( Storage.Curve storage curve, int128 _oGLiq, int128 _nGLiq, int128[] memory _oBals, int128[] memory _nBals, int128 _inputAmt, uint256 _outputIndex ) internal view returns (int128 outputAmt_) { outputAmt_ = -_inputAmt; int128 _lambda = curve.lambda; int128[] memory _weights = curve.weights; int128 _omega = calculateFee(_oGLiq, _oBals, curve, _weights); int128 _psi; for (uint256 i = 0; i < 32; i++) { _psi = calculateFee(_nGLiq, _nBals, curve, _weights); int128 prevAmount; { prevAmount = outputAmt_; outputAmt_ = _omega < _psi ? -(_inputAmt + _omega - _psi) : -(_inputAmt + _lambda.mul(_omega - _psi)); } if (outputAmt_ / 1e13 == prevAmount / 1e13) { _nGLiq = _oGLiq + _inputAmt + outputAmt_; _nBals[_outputIndex] = _oBals[_outputIndex] + outputAmt_; enforceHalts(curve, _oGLiq, _nGLiq, _oBals, _nBals, _weights); enforceSwapInvariant(_oGLiq, _omega, _nGLiq, _psi); return outputAmt_; } else { _nGLiq = _oGLiq + _inputAmt + outputAmt_; _nBals[_outputIndex] = _oBals[_outputIndex].add(outputAmt_); } } revert("Curve/swap-convergence-failed"); } function calculateLiquidityMembrane( Storage.Curve storage curve, int128 _oGLiq, int128 _nGLiq, int128[] memory _oBals, int128[] memory _nBals ) internal view returns (int128 curves_) { enforceHalts(curve, _oGLiq, _nGLiq, _oBals, _nBals, curve.weights); int128 _omega; int128 _psi; { int128 _beta = curve.beta; int128 _delta = curve.delta; int128[] memory _weights = curve.weights; _omega = calculateFee(_oGLiq, _oBals, _beta, _delta, _weights); _psi = calculateFee(_nGLiq, _nBals, _beta, _delta, _weights); } int128 _feeDiff = _psi.sub(_omega); int128 _liqDiff = _nGLiq.sub(_oGLiq); int128 _oUtil = _oGLiq.sub(_omega); int128 _totalShells = curve.totalSupply.divu(1e18); int128 _curveMultiplier; if (_totalShells == 0) { curves_ = _nGLiq.sub(_psi); } else if (_feeDiff >= 0) { _curveMultiplier = _liqDiff.sub(_feeDiff).div(_oUtil); } else { _curveMultiplier = _liqDiff.sub(curve.lambda.mul(_feeDiff)); _curveMultiplier = _curveMultiplier.div(_oUtil); } if (_totalShells != 0) { curves_ = _totalShells.mul(_curveMultiplier); } } function enforceSwapInvariant(int128 _oGLiq, int128 _omega, int128 _nGLiq, int128 _psi) private pure { int128 _nextUtil = _nGLiq - _psi; int128 _prevUtil = _oGLiq - _omega; int128 _diff = _nextUtil - _prevUtil; require(0 < _diff || _diff >= MAX_DIFF, "Curve/swap-invariant-violation"); } function enforceHalts( Storage.Curve storage curve, int128 _oGLiq, int128 _nGLiq, int128[] memory _oBals, int128[] memory _nBals, int128[] memory _weights ) private view { uint256 _length = _nBals.length; int128 _alpha = curve.alpha; for (uint256 i = 0; i < _length; i++) { int128 _nIdeal = _nGLiq.mul(_weights[i]); if (_nBals[i] > _nIdeal) { int128 _upperAlpha = ONE + _alpha; int128 _nHalt = _nIdeal.mul(_upperAlpha); if (_nBals[i] > _nHalt) { int128 _oHalt = _oGLiq.mul(_weights[i]).mul(_upperAlpha); if (_oBals[i] < _oHalt) revert("Curve/upper-halt-1"); if (_nBals[i] - _nHalt > _oBals[i] - _oHalt) { revert("Curve/upper-halt-2"); } } } else { int128 _lowerAlpha = ONE - _alpha; int128 _nHalt = _nIdeal.mul(_lowerAlpha); if (_nBals[i] < _nHalt) { int128 _oHalt = _oGLiq.mul(_weights[i]); _oHalt = _oHalt.mul(_lowerAlpha); if (_oBals[i] > _oHalt) revert("Curve/lower-halt"); if (_nHalt - _nBals[i] > _oHalt - _oBals[i]) { revert("Curve/lower-halt"); } } } } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.13; import "./interfaces/ICurveFactory.sol"; import "./interfaces/IOracle.sol"; struct OriginSwapData { address _origin; address _target; uint256 _originAmount; address _recipient; address _curveFactory; } struct TargetSwapData { address _origin; address _target; uint256 _targetAmount; address _recipient; address _curveFactory; } struct SwapInfo { int128 totalAmount; int128 totalFee; int128 amountToUser; int128 amountToTreasury; int128 protocolFeePercentage; address treasury; ICurveFactory curveFactory; } struct DepositData { uint256 deposits; uint256 minQuote; uint256 minBase; uint256 quoteAmt; uint256 maxQuote; uint256 maxBase; uint256 baseAmt; address token0; uint256 token0Bal; uint256 token1Bal; } struct IntakeNumLpRatioInfo { uint256 baseWeight; uint256 minBase; uint256 maxBase; uint256 baseAmt; uint256 quoteWeight; uint256 minQuote; uint256 maxQuote; uint256 quoteAmt; int128 amount; address token0; uint256 token0Bal; uint256 token1Bal; }
// SPDX-License-Identifier: MIT // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.8.13; interface IAssimilator { function oracleDecimals() external view returns (uint256); function underlyingToken() external view returns (address); function getWeth() external view returns (address); function tokenDecimals() external view returns (uint256); function getRate() external view returns (uint256); function intakeRaw(uint256 amount) external payable returns (int128); function intakeRawAndGetBalance(uint256 amount) external payable returns (int128, int128); function intakeNumeraire(int128 amount) external payable returns (uint256); function intakeNumeraireLPRatio(uint256, uint256, uint256, uint256, uint256, uint256, address) external payable returns (uint256); function outputRaw(address dst, uint256 amount) external returns (int128); function outputRawAndGetBalance(address dst, uint256 amount) external returns (int128, int128); function outputNumeraire(address dst, int128 amount, bool toETH) external payable returns (uint256); function viewRawAmount(int128) external view returns (uint256); function viewRawAmountLPRatio(uint256, uint256, address, int128) external view returns (uint256); function viewNumeraireAmount(uint256) external view returns (int128); function viewNumeraireBalanceLPRatio(uint256, uint256, address) external view returns (int128); function viewNumeraireBalance(address) external view returns (int128); function viewNumeraireAmountAndBalance(address, uint256) external view returns (int128, int128); function transferFee(int128, address) external payable; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.13; interface ICurve { function getWeth() external view returns (address); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * * Furthermore, `isContract` will also return true if the target contract within * the same transaction is already scheduled for destruction by `SELFDESTRUCT`, * which only has an effect at the end of a transaction. * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } }
// SPDX-License-Identifier: MIT // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.8.13; interface IOracle { function acceptOwnership() external; function accessController() external view returns (address); function aggregator() external view returns (address); function confirmAggregator(address _aggregator) external; function decimals() external view returns (uint8); function description() external view returns (string memory); function getAnswer(uint256 _roundId) external view returns (int256); function getRoundData(uint80 _roundId) external view returns (uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound); function getTimestamp(uint256 _roundId) external view returns (uint256); function latestAnswer() external view returns (int256); function latestRound() external view returns (uint256); function latestRoundData() external view returns (uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound); function latestTimestamp() external view returns (uint256); function owner() external view returns (address); function phaseAggregators(uint16) external view returns (address); function phaseId() external view returns (uint16); function proposeAggregator(address _aggregator) external; function proposedAggregator() external view returns (address); function proposedGetRoundData(uint80 _roundId) external view returns (uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound); function proposedLatestRoundData() external view returns (uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound); function setController(address _accessController) external; function transferOwnership(address _to) external; function version() external view returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.13; import "./IAssimilatorFactory.sol"; interface ICurveFactory { function getProtocolFee() external view returns (int128); function getProtocolTreasury() external view returns (address); function assimilatorFactory() external view returns (IAssimilatorFactory); function wETH() external view returns (address); function isDFXCurve(address) external view returns (bool); }
// SPDX-License-Identifier: MIT // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.8.13; import "../assimilators/AssimilatorV3.sol"; import "../interfaces/IOracle.sol"; interface IAssimilatorFactory { function getAssimilator(address _token, address _quote) external view returns (AssimilatorV3); function newAssimilator(address _quote, IOracle _oracle, address _token, uint256 _tokenDecimals) external returns (AssimilatorV3); }
// SPDX-License-Identifier: MIT // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.8.13; import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; import "@openzeppelin/contracts/utils/math/SafeMath.sol"; import "@openzeppelin/contracts/utils/math/Math.sol"; import "../lib/ABDKMath64x64.sol"; import "../interfaces/IAssimilator.sol"; import "../interfaces/IOracle.sol"; import "../interfaces/IWeth.sol"; contract AssimilatorV3 is IAssimilator { using ABDKMath64x64 for int128; using ABDKMath64x64 for uint256; using SafeMath for uint256; using SafeERC20 for IERC20Metadata; IERC20Metadata public immutable pairToken; IOracle public immutable oracle; IERC20Metadata public immutable token; uint256 public immutable oracleDecimals; uint256 public immutable tokenDecimals; uint256 public immutable pairTokenDecimals; address public immutable wETH; // solhint-disable-next-line constructor( address _wETH, address _pairToken, IOracle _oracle, address _token, uint256 _tokenDecimals, uint256 _oracleDecimals ) { wETH = _wETH; oracle = _oracle; token = IERC20Metadata(_token); oracleDecimals = _oracleDecimals; tokenDecimals = _tokenDecimals; pairToken = IERC20Metadata(_pairToken); pairTokenDecimals = pairToken.decimals(); } function underlyingToken() external view override returns (address) { return address(token); } function getWeth() external view override returns (address) { return wETH; } function getRate() public view override returns (uint256) { (, int256 price,,,) = oracle.latestRoundData(); require(price >= 0, "invalid price oracle"); return uint256(price); } // takes raw eurs amount, transfers it in, calculates corresponding numeraire amount and returns it function intakeRawAndGetBalance(uint256 _amount) external payable override returns (int128 amount_, int128 balance_) { require(_amount > 0, "zero amount!"); uint256 balanceBefore = token.balanceOf(address(this)); token.safeTransferFrom(msg.sender, address(this), _amount); uint256 balanceAfter = token.balanceOf(address(this)); uint256 diff = _amount - (balanceAfter - balanceBefore); if (diff > 0) { intakeMoreFromFoT(_amount, diff); } uint256 _balance = token.balanceOf(address(this)); uint256 _rate = getRate(); balance_ = ((_balance * _rate) / 10 ** oracleDecimals).divu(10 ** tokenDecimals); amount_ = ((_amount * _rate) / 10 ** oracleDecimals).divu(10 ** tokenDecimals); } // takes raw eurs amount, transfers it in, calculates corresponding numeraire amount and returns it function intakeRaw(uint256 _amount) external payable override returns (int128 amount_) { require(_amount > 0, "zero amount!"); uint256 balanceBefore = token.balanceOf(address(this)); token.safeTransferFrom(msg.sender, address(this), _amount); uint256 balanceAfter = token.balanceOf(address(this)); uint256 diff = _amount - (balanceAfter - balanceBefore); if (diff > 0) { intakeMoreFromFoT(_amount, diff); } uint256 _rate = getRate(); amount_ = ((_amount * _rate) / 10 ** oracleDecimals).divu(10 ** tokenDecimals); } // takes a numeraire amount, calculates the raw amount of eurs, tr ansfers it in and returns the corresponding raw amount function intakeNumeraire(int128 _amount) external payable override returns (uint256 amount_) { uint256 _rate = getRate(); // improve precision amount_ = Math.ceilDiv(_amount.mulu(10 ** (tokenDecimals + oracleDecimals + 18)), _rate * 1e18); require(amount_ > 0, "zero amount!"); uint256 balanceBefore = token.balanceOf(address(this)); token.safeTransferFrom(msg.sender, address(this), amount_); uint256 balanceAfter = token.balanceOf(address(this)); uint256 diff = amount_ - (balanceAfter - balanceBefore); if (diff > 0) intakeMoreFromFoT(amount_, diff); } // takes a numeraire amount, calculates the raw amount of eurs, transfers it in and returns the corresponding raw amount function intakeNumeraireLPRatio( uint256 _minBaseAmount, uint256 _maxBaseAmount, uint256 _baseAmount, uint256 _minpairTokenAmount, uint256 _maxpairTokenAmount, uint256 _quoteAmount, address token0 ) external payable override returns (uint256 amount_) { if (token0 == address(token)) { amount_ = _baseAmount; } else { amount_ = _quoteAmount; } require(amount_ > 0, "zero amount!"); if (token0 == address(token)) { require(amount_ > _minBaseAmount && amount_ <= _maxBaseAmount, "Assimilator/LP Ratio imbalanced!"); } else { require(amount_ > _minpairTokenAmount && amount_ <= _maxpairTokenAmount, "Assimilator/LP Ratio imbalanced!"); } uint256 balanceBefore = token.balanceOf(address(this)); token.safeTransferFrom(msg.sender, address(this), amount_); uint256 balanceAfter = token.balanceOf(address(this)); uint256 diff = amount_ - (balanceAfter - balanceBefore); if (diff > 0) intakeMoreFromFoT(amount_, diff); } function intakeMoreFromFoT(uint256 amount_, uint256 diff) internal { require(amount_ > 0, "zero amount!"); // handle FoT token uint256 feePercentage = diff.mul(1e5).div(amount_).add(1); uint256 additionalIntakeAmt = (diff * 1e5) / (1e5 - feePercentage); token.safeTransferFrom(msg.sender, address(this), additionalIntakeAmt); } // takes a raw amount of eurs and transfers it out, returns numeraire value of the raw amount function outputRawAndGetBalance(address _dst, uint256 _amount) external override returns (int128 amount_, int128 balance_) { require(_amount > 0, "zero amount!"); uint256 _rate = getRate(); token.safeTransfer(_dst, _amount); uint256 _balance = token.balanceOf(address(this)); amount_ = ((_amount * _rate)).divu(10 ** (tokenDecimals + oracleDecimals)); balance_ = ((_balance * _rate)).divu(10 ** (tokenDecimals + oracleDecimals)); } // takes a raw amount of eurs and transfers it out, returns numeraire value of the raw amount function outputRaw(address _dst, uint256 _amount) external override returns (int128 amount_) { require(_amount > 0, "zero amount!"); uint256 _rate = getRate(); token.safeTransfer(_dst, _amount); amount_ = ((_amount * _rate)).divu(10 ** (tokenDecimals + oracleDecimals)); } // takes a numeraire value of eurs, figures out the raw amount, transfers raw amount out, and returns raw amount function outputNumeraire(address _dst, int128 _amount, bool _toETH) external payable override returns (uint256 amount_) { uint256 _rate = getRate(); amount_ = Math.ceilDiv(_amount.mulu(10 ** (tokenDecimals + oracleDecimals + 18)), _rate * 1e18); require(amount_ > 0, "zero amount!"); if (_toETH) { IWETH(wETH).withdraw(amount_); (bool success,) = payable(_dst).call{value: amount_}(""); require(success, "Assimilator/Transfer ETH Failed"); } else { token.safeTransfer(_dst, amount_); } } // takes a numeraire amount and returns the raw amount function viewRawAmount(int128 _amount) external view override returns (uint256 amount_) { uint256 _rate = getRate(); // improve precision amount_ = Math.ceilDiv(_amount.mulu(10 ** (tokenDecimals + oracleDecimals + 18)), _rate * 1e18); } function viewRawAmountLPRatio(uint256 _baseWeight, uint256 _pairTokenWeight, address _addr, int128 _amount) external view override returns (uint256 amount_) { uint256 _tokenBal = token.balanceOf(_addr); if (_tokenBal <= 0) return 0; _tokenBal = _tokenBal.mul(10 ** (18 + pairTokenDecimals)).div(_baseWeight); uint256 _pairTokenBal = pairToken.balanceOf(_addr).mul(10 ** (18 + tokenDecimals)).div(_pairTokenWeight); // Rate is in pair token decimals uint256 _rate = _pairTokenBal.mul(1e6).div(_tokenBal); amount_ = Math.ceilDiv(_amount.mulu(10 ** tokenDecimals * 1e6 * 1e18), _rate * 1e18); } // takes a raw amount and returns the numeraire amount function viewNumeraireAmount(uint256 _amount) external view override returns (int128 amount_) { uint256 _rate = getRate(); amount_ = ((_amount * _rate) / 10 ** oracleDecimals).divu(10 ** tokenDecimals); } // views the numeraire value of the current balance of the reserve, in this case eurs function viewNumeraireBalance(address _addr) external view override returns (int128 balance_) { uint256 _rate = getRate(); uint256 _balance = token.balanceOf(_addr); if (_balance <= 0) return ABDKMath64x64.fromUInt(0); balance_ = ((_balance * _rate) / 10 ** oracleDecimals).divu(10 ** tokenDecimals); } // views the numeraire value of the current balance of the reserve, in this case eurs function viewNumeraireAmountAndBalance(address _addr, uint256 _amount) external view override returns (int128 amount_, int128 balance_) { uint256 _rate = getRate(); amount_ = ((_amount * _rate) / 10 ** oracleDecimals).divu(10 ** tokenDecimals); uint256 _balance = token.balanceOf(_addr); balance_ = ((_balance * _rate) / 10 ** oracleDecimals).divu(10 ** tokenDecimals); } // views the numeraire value of the current balance of the reserve, in this case eurs // instead of calculating with chainlink's "rate" it'll be determined by the existing // token ratio. This is in here to prevent LPs from losing out on future oracle price updates function viewNumeraireBalanceLPRatio(uint256 _baseWeight, uint256 _pairTokenWeight, address _addr) external view override returns (int128 balance_) { uint256 _tokenBal = token.balanceOf(_addr); if (_tokenBal <= 0) return ABDKMath64x64.fromUInt(0); uint256 _pairTokenBal = pairToken.balanceOf(_addr).mul(1e18).div(_pairTokenWeight); // Rate is in 1e6 uint256 _rate = _pairTokenBal.mul(1e18).div(_tokenBal.mul(1e18).div(_baseWeight)); balance_ = ((_tokenBal * _rate) / 10 ** pairTokenDecimals).divu(1e18); } function transferFee(int128 _amount, address _treasury) external payable override { uint256 _rate = getRate(); if (_amount < 0) _amount = -(_amount); uint256 amount = _amount.mulu(10 ** (tokenDecimals + oracleDecimals + 18)) / (_rate * 1e18); token.safeTransfer(_treasury, amount); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; import "../extensions/IERC20Permit.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove(IERC20 token, address spender, uint256 value) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 newAllowance = token.allowance(address(this), spender) + value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); uint256 newAllowance = oldAllowance - value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } } function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1, "Math: mulDiv overflow"); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0); } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.13; interface IWETH { function deposit() external payable; function transfer(address to, uint256 value) external returns (bool); function withdraw(uint256) external; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 amount) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
{ "remappings": [ "@openzeppelin/=lib/openzeppelin-contracts/", "@forge-std/=lib/forge-std/src/", "ds-test/=lib/forge-std/lib/ds-test/src/", "forge-std/=lib/forge-std/src/", "openzeppelin-contracts/=lib/openzeppelin-contracts/" ], "optimizer": { "enabled": true, "runs": 200 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "ipfs", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "paris", "libraries": { "src/Curve.sol": { "Curves": "0xeb60919ac3b66d2fee0d53bf4cdd6a5f9a91a077" }, "src/Orchestrator.sol": { "Orchestrator": "0x11654bb1e4bc79894e4447545af6c1630b56921f" }, "src/ProportionalLiquidity.sol": { "ProportionalLiquidity": "0x3a2f9e9cdc6791c52dbb79dd271bd02817082379" }, "src/Swaps.sol": { "Swaps": "0xa49bf76606a82e75b9d6769ced0aa1b4cd8e5ecd" }, "src/ViewLiquidity.sol": { "ViewLiquidity": "0xd6af8d8bf04104f9b0f9f20b863e60d8f9b3e6f0" } } }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"ONE","outputs":[{"internalType":"int128","name":"","type":"int128"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"ONE_WEI","outputs":[{"internalType":"int128","name":"","type":"int128"}],"stateMutability":"view","type":"function"}]
Contract Creation Code
611bce61003a600b82828239805160001a60731461002d57634e487b7160e01b600052600060045260246000fd5b30600052607381538281f3fe730000000000000000000000000000000000000000301460806040526004361061006c5760003560e01c806309d2ea901461007157806360ee358e146100a8578063822f39d5146100c8578063b909f732146100db578063c2ee3a08146100f6578063eaadf2b514610106575b600080fd5b81801561007d57600080fd5b5061009161008c3660046118b9565b610126565b60405161009f9291906119a0565b60405180910390f35b6100bb6100b63660046119b9565b6104dc565b60405161009f91906119db565b6100916100d63660046119b9565b61062f565b6100e3601281565b604051600f9190910b815260200161009f565b6100e36801000000000000000081565b81801561011257600080fd5b506100bb6101213660046119ee565b6108e3565b8051600090606090829061014290670de0b6b3a7640000610be1565b600486015490915060008167ffffffffffffffff81111561016557610165611843565b60405190808252806020026020018201604052801561018e578160200160208202803683370190505b50905060008061019d89610c22565b9150915081600f0b6000036102745760005b8481101561026e5760006101fb8b60030183815481106101d1576101d1611a2c565b60009182526020909120600282040154600f8a810b926001166010026101000a909104900b610d56565b905061023e8b600401838154811061021557610215611a2c565b6000918252602090912001546001600160a01b0316610239600f84900b6012610d8d565b610dc0565b85838151811061025057610250611a2c565b6020908102919091010152508061026681611a58565b9150506101af565b50610453565b6000610284600f87900b84610e37565b905060006102d1670de0b6b3a76400008c6003016000815481106102aa576102aa611a2c565b6000918252602090912060028204015460019091166010026101000a9004600f0b90610e8e565b905060006102f7670de0b6b3a76400008d6003016001815481106102aa576102aa611a2c565b905060005b8781101561044e5761037460405180610180016040528060008152602001600081526020016000815260200160008152602001600081526020016000815260200160008152602001600081526020016000600f0b815260200160006001600160a01b0316815260200160008152602001600081525090565b8c604001518160200181815250508c60a001518160400181815250508c60c001518160600181815250508c602001518160a00181815250508c606001518160e00181815250508c608001518160c00181815250508c60e001518161012001906001600160a01b031690816001600160a01b03168152505061041e8e600401838154811061040357610403611a2c565b6000918252602090912001546001600160a01b031682610ef9565b88838151811061043057610430611a2c565b6020908102919091010152508061044681611a58565b9150506102fc565b505050505b87519650866104c35760405162461bcd60e51b815260206004820152603160248201527f50726f706f7274696f6e616c204c69717569646974792f63616e2774206d696e6044820152701d081b9959d85d1a5d9948185b5bdd5b9d607a1b60648201526084015b60405180910390fd5b6104ce893389610f6c565b509093505050509250929050565b600482015460609060006104ef8561115a565b91505060008267ffffffffffffffff81111561050d5761050d611843565b604051908082528060200260200182016040528015610536578160200160208202803683370190505b509050600061057861055d670de0b6b3a76400008960070154610be190919063ffffffff16565b61056f88670de0b6b3a7640000610be1565b600f0b90610e37565b905060005b84811015610621576105f288600401828154811061059d5761059d611a2c565b9060005260206000200160000160009054906101000a90046001600160a01b03166105ed848785815181106105d4576105d4611a2c565b6020026020010151600f0b610d5690919063ffffffff16565b61123c565b83828151811061060457610604611a2c565b60209081029190910101528061061981611a58565b91505061057d565b509093505050505b92915050565b600060608161064684670de0b6b3a7640000610be1565b600486015490915060008061065a88610c22565b9150915060008367ffffffffffffffff81111561067957610679611843565b6040519080825280602002602001820160405280156106a2578160200160208202803683370190505b50905082600f0b6000036107795760005b84811015610773576107448a60040182815481106106d3576106d3611a2c565b9060005260206000200160000160009054906101000a90046001600160a01b03166105ed601261073b8e600301868154811061071157610711611a2c565b60009182526020909120600282040154600f8d810b926001166010026101000a909104900b610d56565b600f0b90610d8d565b82828151811061075657610756611a2c565b60209081029190910101528061076b81611a58565b9150506106b3565b50610871565b6000610789600f87900b85610e37565b905060006107af670de0b6b3a76400008c6003016000815481106102aa576102aa611a2c565b905060006107d5670de0b6b3a76400008d6003016001815481106102aa576102aa611a2c565b905060005b8781101561086c5761083d8d60040182815481106107fa576107fa611a2c565b9060005260206000200160000160009054906101000a90046001600160a01b03168484610838601261073b8a8d89815181106105d4576105d4611a2c565b6112ab565b85828151811061084f5761084f611a2c565b60209081029190910101528061086481611a58565b9150506107da565b505050505b600789015460009061088b90670de0b6b3a7640000610be1565b9050856000600f83900b13156108bc576108a9600f88900b83610d56565b90506108b9600f82900b86610e37565b90505b6108d2600f82900b670de0b6b3a7640000610e8e565b9b929a509198505050505050505050565b600483015460609060006108f68661115a565b91505060008267ffffffffffffffff81111561091457610914611843565b60405190808252806020026020018201604052801561093d578160200160208202803683370190505b5090506000610961670de0b6b3a76400008960070154610be190919063ffffffff16565b9050600061097788670de0b6b3a7640000610be1565b90506000610989600f83900b84610e37565b905060005b86811015610bc757888015610ac057508a60040181815481106109b3576109b3611a2c565b600091825260209182902001546040805163107c279f60e01b815290516001600160a01b039092169263107c279f926004808401938290030181865afa158015610a01573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610a259190611a71565b6001600160a01b03168b6004018281548110610a4357610a43611a2c565b6000918252602091829020015460408051632495a59960e01b815290516001600160a01b0390921692632495a599926004808401938290030181865afa158015610a91573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610ab59190611a71565b6001600160a01b0316145b15610b3f57610b1c8b6004018281548110610add57610add611a2c565b9060005260206000200160000160009054906101000a90046001600160a01b031633610b15858a86815181106105d4576105d4611a2c565b6001611336565b858281518110610b2e57610b2e611a2c565b602002602001018181525050610bb5565b610b968b6004018281548110610b5757610b57611a2c565b9060005260206000200160000160009054906101000a90046001600160a01b031633610b8f858a86815181106105d4576105d4611a2c565b6000611336565b858281518110610ba857610ba8611a2c565b6020026020010181815250505b80610bbf81611a58565b91505061098e565b50610bd38a338b6113d0565b509198975050505050505050565b600081600003610bf057600080fd5b6000610bfc848461144f565b905060016001607f1b036001600160801b0382161115610c1b57600080fd5b9392505050565b6004810154600090606090828167ffffffffffffffff811115610c4757610c47611843565b604051908082528060200260200182016040528015610c70578160200160208202803683370190505b5090506000610c97670de0b6b3a7640000876003016000815481106102aa576102aa611a2c565b90506000610cbd670de0b6b3a7640000886003016001815481106102aa576102aa611a2c565b905060005b84811015610d48576000610d0084848b6004018581548110610ce657610ce6611a2c565b6000918252602090912001546001600160a01b03166115b4565b905080858381518110610d1557610d15611a2c565b600f9290920b60209283029190910190910152610d328189611a8e565b9750508080610d4090611a58565b915050610cc2565b509496919550909350505050565b6000600f83810b9083900b0260401d60016001607f1b03198112801590610d84575060016001607f1b038113155b610c1b57600080fd5b6000600f83810b9083900b0160016001607f1b03198112801590610d84575060016001607f1b03811315610c1b57600080fd5b604051600f82900b60248201526000908190624e387960e31b906044015b60408051601f198184030181529190526020810180516001600160e01b03166001600160e01b0319909316929092179091529050610e1c848261162d565b806020019051810190610e2f9190611abb565b949350505050565b600081600f0b600003610e4957600080fd5b600082600f0b604085600f0b901b81610e6457610e64611ad4565b05905060016001607f1b03198112801590610d84575060016001607f1b03811315610c1b57600080fd5b600081600003610ea057506000610629565b600083600f0b1215610eb157600080fd5b600f83900b6001600160801b038316810260401c90608084901c026001600160c01b03811115610ee057600080fd5b60401b8119811115610ef157600080fd5b019392505050565b6020810151604080830151606084015160a085015160c086015160e08701516101208801519551602481019790975260448701949094526064860192909252608485015260a484015260c48301526001600160a01b031660e482015260009081906303d388ef60e31b9061010401610dde565b600783015466038d7ea4c68000906000036110da57808211610fe15760405162461bcd60e51b815260206004820152602860248201527f50726f706f7274696f6e616c204c69717569646974792f616d6f756e7420746f6044820152676f20736d616c6c2160c01b60648201526084016104ba565b6000610fed8284611aea565b9050610ffd856007015482611701565b60078601556001600160a01b03841660009081526008860160205260409020546110279082611701565b6001600160a01b038516600090815260088701602090815260408083209390935591518381523392600080516020611b79833981519152910160405180910390a3611076856007015483611701565b600786015560008080526008860160205260409020546110969083611701565b60008080526008870160205260408082209290925590513090600080516020611b79833981519152906110cc9086815260200190565b60405180910390a350611154565b6110e8846007015483611701565b60078501556001600160a01b03831660009081526008850160205260409020546111129083611701565b6001600160a01b038416600090815260088601602090815260408083209390935591518481523392600080516020611b79833981519152910160405180910390a35b50505050565b6004810154600090606090828167ffffffffffffffff81111561117f5761117f611843565b6040519080825280602002602001820160405280156111a8578160200160208202803683370190505b50905060005b828110156112325760006111ea8760040183815481106111d0576111d0611a2c565b6000918252602090912001546001600160a01b0316611755565b9050808383815181106111ff576111ff611a2c565b600f9290920b6020928302919091019091015261121c8187611a8e565b955050808061122a90611a58565b9150506111ae565b5092949293505050565b604051636b677a8f60e01b8152600f82900b60048201526000906001600160a01b03841690636b677a8f90602401602060405180830381865afa158015611287573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610c1b9190611abb565b6040516208c23d60e51b81526004810184905260248101839052306044820152600f82900b60648201526000906001600160a01b0386169063011847a090608401602060405180830381865afa158015611309573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061132d9190611abb565b95945050505050565b600080630c374e5d60e11b8561134f600f87900b6117c0565b6040516001600160a01b039092166024830152600f0b6044820152841515606482015260840160408051601f198184030181529190526020810180516001600160e01b03166001600160e01b03199093169290921790915290506113b3868261162d565b8060200190518101906113c69190611abb565b9695505050505050565b6001600160a01b03821660009081526008840160205260409020546113f590826117ee565b6001600160a01b0383166000908152600885016020526040902055600783015461141f90826117ee565b60078401556040518181526000903390600080516020611b798339815191529060200160405180910390a3505050565b60008160000361145e57600080fd5b60006001600160c01b0384116114895782604085901b8161148157611481611ad4565b0490506115a0565b60c084811c64010000000081106114a2576020918201911c5b6201000081106114b4576010918201911c5b61010081106114c5576008918201911c5b601081106114d5576004918201911c5b600481106114e5576002918201911c5b600281106114f4576001820191505b60bf820360018603901c6001018260ff0387901b8161151557611515611ad4565b0492506001600160801b0383111561152c57600080fd5b608085901c83026001600160801b038616840260c088901c604089901b82811015611558576001820391505b608084901b9290038281101561156f576001820391505b829003608084901c821461158557611585611afd565b88818161159457611594611ad4565b04870196505050505050505b6001600160801b03811115610c1b57600080fd5b604051630173deed60e21b815260048101849052602481018390523060448201526000906001600160a01b038316906305cf7bb490606401602060405180830381865afa158015611609573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610e2f9190611b13565b60606001600160a01b0383163b6116945760405162461bcd60e51b815260206004820152602560248201527f417373696d696c61746f72732f63616c6c65652d69732d6e6f742d612d636f6e6044820152641d1c9858dd60da1b60648201526084016104ba565b600080846001600160a01b0316846040516116af9190611b36565b600060405180830381855af49150503d80600081146116ea576040519150601f19603f3d011682016040523d82523d6000602084013e6116ef565b606091505b50909250905081610e2f573d60208201fd5b60008261170e8382611b65565b91508110156106295760405162461bcd60e51b815260206004820152601360248201527243757276652f6d696e742d6f766572666c6f7760681b60448201526064016104ba565b60405163ac969a7360e01b81523060048201526000906001600160a01b0383169063ac969a7390602401602060405180830381865afa15801561179c573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906106299190611b13565b60006001607f1b600f83900b016117d657600080fd5b600082600f0b126117e75781610629565b5060000390565b6000826117fb8382611aea565b91508111156106295760405162461bcd60e51b815260206004820152601460248201527343757276652f6275726e2d756e646572666c6f7760601b60448201526064016104ba565b634e487b7160e01b600052604160045260246000fd5b604051610140810167ffffffffffffffff8111828210171561188b57634e487b7160e01b600052604160045260246000fd5b60405290565b6001600160a01b03811681146118a657600080fd5b50565b80356118b481611891565b919050565b6000808284036101608112156118ce57600080fd5b8335925061014080601f19830112156118e657600080fd5b6118ee611859565b91506020850135825260408501356020830152606085013560408301526080850135606083015260a0850135608083015260c085013560a083015260e085013560c08301526101006119418187016118a9565b60e08401526101208681013591840191909152940135938101939093525092909150565b600081518084526020808501945080840160005b8381101561199557815187529582019590820190600101611979565b509495945050505050565b828152604060208201526000610e2f6040830184611965565b600080604083850312156119cc57600080fd5b50508035926020909101359150565b602081526000610c1b6020830184611965565b600080600060608486031215611a0357600080fd5b833592506020840135915060408401358015158114611a2157600080fd5b809150509250925092565b634e487b7160e01b600052603260045260246000fd5b634e487b7160e01b600052601160045260246000fd5b600060018201611a6a57611a6a611a42565b5060010190565b600060208284031215611a8357600080fd5b8151610c1b81611891565b600f81810b9083900b0160016001607f1b03811360016001607f1b03198212171561062957610629611a42565b600060208284031215611acd57600080fd5b5051919050565b634e487b7160e01b600052601260045260246000fd5b8181038181111561062957610629611a42565b634e487b7160e01b600052600160045260246000fd5b600060208284031215611b2557600080fd5b815180600f0b8114610c1b57600080fd5b6000825160005b81811015611b575760208186018101518583015201611b3d565b506000920191825250919050565b8082018082111561062957610629611a4256feddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3efa26469706673582212203df2ce778a49314ebb3a4a9d02b0b8ecd6672404f81c9734cd2b12ec5baa253c64736f6c63430008150033
Deployed Bytecode
0x733a2f9e9cdc6791c52dbb79dd271bd02817082379301460806040526004361061006c5760003560e01c806309d2ea901461007157806360ee358e146100a8578063822f39d5146100c8578063b909f732146100db578063c2ee3a08146100f6578063eaadf2b514610106575b600080fd5b81801561007d57600080fd5b5061009161008c3660046118b9565b610126565b60405161009f9291906119a0565b60405180910390f35b6100bb6100b63660046119b9565b6104dc565b60405161009f91906119db565b6100916100d63660046119b9565b61062f565b6100e3601281565b604051600f9190910b815260200161009f565b6100e36801000000000000000081565b81801561011257600080fd5b506100bb6101213660046119ee565b6108e3565b8051600090606090829061014290670de0b6b3a7640000610be1565b600486015490915060008167ffffffffffffffff81111561016557610165611843565b60405190808252806020026020018201604052801561018e578160200160208202803683370190505b50905060008061019d89610c22565b9150915081600f0b6000036102745760005b8481101561026e5760006101fb8b60030183815481106101d1576101d1611a2c565b60009182526020909120600282040154600f8a810b926001166010026101000a909104900b610d56565b905061023e8b600401838154811061021557610215611a2c565b6000918252602090912001546001600160a01b0316610239600f84900b6012610d8d565b610dc0565b85838151811061025057610250611a2c565b6020908102919091010152508061026681611a58565b9150506101af565b50610453565b6000610284600f87900b84610e37565b905060006102d1670de0b6b3a76400008c6003016000815481106102aa576102aa611a2c565b6000918252602090912060028204015460019091166010026101000a9004600f0b90610e8e565b905060006102f7670de0b6b3a76400008d6003016001815481106102aa576102aa611a2c565b905060005b8781101561044e5761037460405180610180016040528060008152602001600081526020016000815260200160008152602001600081526020016000815260200160008152602001600081526020016000600f0b815260200160006001600160a01b0316815260200160008152602001600081525090565b8c604001518160200181815250508c60a001518160400181815250508c60c001518160600181815250508c602001518160a00181815250508c606001518160e00181815250508c608001518160c00181815250508c60e001518161012001906001600160a01b031690816001600160a01b03168152505061041e8e600401838154811061040357610403611a2c565b6000918252602090912001546001600160a01b031682610ef9565b88838151811061043057610430611a2c565b6020908102919091010152508061044681611a58565b9150506102fc565b505050505b87519650866104c35760405162461bcd60e51b815260206004820152603160248201527f50726f706f7274696f6e616c204c69717569646974792f63616e2774206d696e6044820152701d081b9959d85d1a5d9948185b5bdd5b9d607a1b60648201526084015b60405180910390fd5b6104ce893389610f6c565b509093505050509250929050565b600482015460609060006104ef8561115a565b91505060008267ffffffffffffffff81111561050d5761050d611843565b604051908082528060200260200182016040528015610536578160200160208202803683370190505b509050600061057861055d670de0b6b3a76400008960070154610be190919063ffffffff16565b61056f88670de0b6b3a7640000610be1565b600f0b90610e37565b905060005b84811015610621576105f288600401828154811061059d5761059d611a2c565b9060005260206000200160000160009054906101000a90046001600160a01b03166105ed848785815181106105d4576105d4611a2c565b6020026020010151600f0b610d5690919063ffffffff16565b61123c565b83828151811061060457610604611a2c565b60209081029190910101528061061981611a58565b91505061057d565b509093505050505b92915050565b600060608161064684670de0b6b3a7640000610be1565b600486015490915060008061065a88610c22565b9150915060008367ffffffffffffffff81111561067957610679611843565b6040519080825280602002602001820160405280156106a2578160200160208202803683370190505b50905082600f0b6000036107795760005b84811015610773576107448a60040182815481106106d3576106d3611a2c565b9060005260206000200160000160009054906101000a90046001600160a01b03166105ed601261073b8e600301868154811061071157610711611a2c565b60009182526020909120600282040154600f8d810b926001166010026101000a909104900b610d56565b600f0b90610d8d565b82828151811061075657610756611a2c565b60209081029190910101528061076b81611a58565b9150506106b3565b50610871565b6000610789600f87900b85610e37565b905060006107af670de0b6b3a76400008c6003016000815481106102aa576102aa611a2c565b905060006107d5670de0b6b3a76400008d6003016001815481106102aa576102aa611a2c565b905060005b8781101561086c5761083d8d60040182815481106107fa576107fa611a2c565b9060005260206000200160000160009054906101000a90046001600160a01b03168484610838601261073b8a8d89815181106105d4576105d4611a2c565b6112ab565b85828151811061084f5761084f611a2c565b60209081029190910101528061086481611a58565b9150506107da565b505050505b600789015460009061088b90670de0b6b3a7640000610be1565b9050856000600f83900b13156108bc576108a9600f88900b83610d56565b90506108b9600f82900b86610e37565b90505b6108d2600f82900b670de0b6b3a7640000610e8e565b9b929a509198505050505050505050565b600483015460609060006108f68661115a565b91505060008267ffffffffffffffff81111561091457610914611843565b60405190808252806020026020018201604052801561093d578160200160208202803683370190505b5090506000610961670de0b6b3a76400008960070154610be190919063ffffffff16565b9050600061097788670de0b6b3a7640000610be1565b90506000610989600f83900b84610e37565b905060005b86811015610bc757888015610ac057508a60040181815481106109b3576109b3611a2c565b600091825260209182902001546040805163107c279f60e01b815290516001600160a01b039092169263107c279f926004808401938290030181865afa158015610a01573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610a259190611a71565b6001600160a01b03168b6004018281548110610a4357610a43611a2c565b6000918252602091829020015460408051632495a59960e01b815290516001600160a01b0390921692632495a599926004808401938290030181865afa158015610a91573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610ab59190611a71565b6001600160a01b0316145b15610b3f57610b1c8b6004018281548110610add57610add611a2c565b9060005260206000200160000160009054906101000a90046001600160a01b031633610b15858a86815181106105d4576105d4611a2c565b6001611336565b858281518110610b2e57610b2e611a2c565b602002602001018181525050610bb5565b610b968b6004018281548110610b5757610b57611a2c565b9060005260206000200160000160009054906101000a90046001600160a01b031633610b8f858a86815181106105d4576105d4611a2c565b6000611336565b858281518110610ba857610ba8611a2c565b6020026020010181815250505b80610bbf81611a58565b91505061098e565b50610bd38a338b6113d0565b509198975050505050505050565b600081600003610bf057600080fd5b6000610bfc848461144f565b905060016001607f1b036001600160801b0382161115610c1b57600080fd5b9392505050565b6004810154600090606090828167ffffffffffffffff811115610c4757610c47611843565b604051908082528060200260200182016040528015610c70578160200160208202803683370190505b5090506000610c97670de0b6b3a7640000876003016000815481106102aa576102aa611a2c565b90506000610cbd670de0b6b3a7640000886003016001815481106102aa576102aa611a2c565b905060005b84811015610d48576000610d0084848b6004018581548110610ce657610ce6611a2c565b6000918252602090912001546001600160a01b03166115b4565b905080858381518110610d1557610d15611a2c565b600f9290920b60209283029190910190910152610d328189611a8e565b9750508080610d4090611a58565b915050610cc2565b509496919550909350505050565b6000600f83810b9083900b0260401d60016001607f1b03198112801590610d84575060016001607f1b038113155b610c1b57600080fd5b6000600f83810b9083900b0160016001607f1b03198112801590610d84575060016001607f1b03811315610c1b57600080fd5b604051600f82900b60248201526000908190624e387960e31b906044015b60408051601f198184030181529190526020810180516001600160e01b03166001600160e01b0319909316929092179091529050610e1c848261162d565b806020019051810190610e2f9190611abb565b949350505050565b600081600f0b600003610e4957600080fd5b600082600f0b604085600f0b901b81610e6457610e64611ad4565b05905060016001607f1b03198112801590610d84575060016001607f1b03811315610c1b57600080fd5b600081600003610ea057506000610629565b600083600f0b1215610eb157600080fd5b600f83900b6001600160801b038316810260401c90608084901c026001600160c01b03811115610ee057600080fd5b60401b8119811115610ef157600080fd5b019392505050565b6020810151604080830151606084015160a085015160c086015160e08701516101208801519551602481019790975260448701949094526064860192909252608485015260a484015260c48301526001600160a01b031660e482015260009081906303d388ef60e31b9061010401610dde565b600783015466038d7ea4c68000906000036110da57808211610fe15760405162461bcd60e51b815260206004820152602860248201527f50726f706f7274696f6e616c204c69717569646974792f616d6f756e7420746f6044820152676f20736d616c6c2160c01b60648201526084016104ba565b6000610fed8284611aea565b9050610ffd856007015482611701565b60078601556001600160a01b03841660009081526008860160205260409020546110279082611701565b6001600160a01b038516600090815260088701602090815260408083209390935591518381523392600080516020611b79833981519152910160405180910390a3611076856007015483611701565b600786015560008080526008860160205260409020546110969083611701565b60008080526008870160205260408082209290925590513090600080516020611b79833981519152906110cc9086815260200190565b60405180910390a350611154565b6110e8846007015483611701565b60078501556001600160a01b03831660009081526008850160205260409020546111129083611701565b6001600160a01b038416600090815260088601602090815260408083209390935591518481523392600080516020611b79833981519152910160405180910390a35b50505050565b6004810154600090606090828167ffffffffffffffff81111561117f5761117f611843565b6040519080825280602002602001820160405280156111a8578160200160208202803683370190505b50905060005b828110156112325760006111ea8760040183815481106111d0576111d0611a2c565b6000918252602090912001546001600160a01b0316611755565b9050808383815181106111ff576111ff611a2c565b600f9290920b6020928302919091019091015261121c8187611a8e565b955050808061122a90611a58565b9150506111ae565b5092949293505050565b604051636b677a8f60e01b8152600f82900b60048201526000906001600160a01b03841690636b677a8f90602401602060405180830381865afa158015611287573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610c1b9190611abb565b6040516208c23d60e51b81526004810184905260248101839052306044820152600f82900b60648201526000906001600160a01b0386169063011847a090608401602060405180830381865afa158015611309573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061132d9190611abb565b95945050505050565b600080630c374e5d60e11b8561134f600f87900b6117c0565b6040516001600160a01b039092166024830152600f0b6044820152841515606482015260840160408051601f198184030181529190526020810180516001600160e01b03166001600160e01b03199093169290921790915290506113b3868261162d565b8060200190518101906113c69190611abb565b9695505050505050565b6001600160a01b03821660009081526008840160205260409020546113f590826117ee565b6001600160a01b0383166000908152600885016020526040902055600783015461141f90826117ee565b60078401556040518181526000903390600080516020611b798339815191529060200160405180910390a3505050565b60008160000361145e57600080fd5b60006001600160c01b0384116114895782604085901b8161148157611481611ad4565b0490506115a0565b60c084811c64010000000081106114a2576020918201911c5b6201000081106114b4576010918201911c5b61010081106114c5576008918201911c5b601081106114d5576004918201911c5b600481106114e5576002918201911c5b600281106114f4576001820191505b60bf820360018603901c6001018260ff0387901b8161151557611515611ad4565b0492506001600160801b0383111561152c57600080fd5b608085901c83026001600160801b038616840260c088901c604089901b82811015611558576001820391505b608084901b9290038281101561156f576001820391505b829003608084901c821461158557611585611afd565b88818161159457611594611ad4565b04870196505050505050505b6001600160801b03811115610c1b57600080fd5b604051630173deed60e21b815260048101849052602481018390523060448201526000906001600160a01b038316906305cf7bb490606401602060405180830381865afa158015611609573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610e2f9190611b13565b60606001600160a01b0383163b6116945760405162461bcd60e51b815260206004820152602560248201527f417373696d696c61746f72732f63616c6c65652d69732d6e6f742d612d636f6e6044820152641d1c9858dd60da1b60648201526084016104ba565b600080846001600160a01b0316846040516116af9190611b36565b600060405180830381855af49150503d80600081146116ea576040519150601f19603f3d011682016040523d82523d6000602084013e6116ef565b606091505b50909250905081610e2f573d60208201fd5b60008261170e8382611b65565b91508110156106295760405162461bcd60e51b815260206004820152601360248201527243757276652f6d696e742d6f766572666c6f7760681b60448201526064016104ba565b60405163ac969a7360e01b81523060048201526000906001600160a01b0383169063ac969a7390602401602060405180830381865afa15801561179c573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906106299190611b13565b60006001607f1b600f83900b016117d657600080fd5b600082600f0b126117e75781610629565b5060000390565b6000826117fb8382611aea565b91508111156106295760405162461bcd60e51b815260206004820152601460248201527343757276652f6275726e2d756e646572666c6f7760601b60448201526064016104ba565b634e487b7160e01b600052604160045260246000fd5b604051610140810167ffffffffffffffff8111828210171561188b57634e487b7160e01b600052604160045260246000fd5b60405290565b6001600160a01b03811681146118a657600080fd5b50565b80356118b481611891565b919050565b6000808284036101608112156118ce57600080fd5b8335925061014080601f19830112156118e657600080fd5b6118ee611859565b91506020850135825260408501356020830152606085013560408301526080850135606083015260a0850135608083015260c085013560a083015260e085013560c08301526101006119418187016118a9565b60e08401526101208681013591840191909152940135938101939093525092909150565b600081518084526020808501945080840160005b8381101561199557815187529582019590820190600101611979565b509495945050505050565b828152604060208201526000610e2f6040830184611965565b600080604083850312156119cc57600080fd5b50508035926020909101359150565b602081526000610c1b6020830184611965565b600080600060608486031215611a0357600080fd5b833592506020840135915060408401358015158114611a2157600080fd5b809150509250925092565b634e487b7160e01b600052603260045260246000fd5b634e487b7160e01b600052601160045260246000fd5b600060018201611a6a57611a6a611a42565b5060010190565b600060208284031215611a8357600080fd5b8151610c1b81611891565b600f81810b9083900b0160016001607f1b03811360016001607f1b03198212171561062957610629611a42565b600060208284031215611acd57600080fd5b5051919050565b634e487b7160e01b600052601260045260246000fd5b8181038181111561062957610629611a42565b634e487b7160e01b600052600160045260246000fd5b600060208284031215611b2557600080fd5b815180600f0b8114610c1b57600080fd5b6000825160005b81811015611b575760208186018101518583015201611b3d565b506000920191825250919050565b8082018082111561062957610629611a4256feddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3efa26469706673582212203df2ce778a49314ebb3a4a9d02b0b8ecd6672404f81c9734cd2b12ec5baa253c64736f6c63430008150033
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 31 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.